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Abstract The aim of this paper is to use large deviation theory in order to compute the entropy of
macrostates for the microcanonical measure of the shallow water system. The main prediction of
this full statistical mechanics computation is the energy partition between a large scale vortical flow
and small scale fluctuations related to inertia-gravity waves. We introduce for that purpose a semi-
Lagrangian discrete model of the continuous shallow water system, and compute the corresponding
statistical equilibria. We argue that microcanonical equilibrium states of the discrete model in the con-
tinuous limit are equilibrium states of the actual shallow water system.

We show that the presence of small scale fluctuations selects a subclass of equilibria among the
states that were previously computed by phenomenological approaches that were neglecting such fluc-
tuations. In the limit of weak height fluctuations, the equilibrium state can be interpreted as two subsys-
tems in thermal contact: one subsystem corresponds to the large scale vortical flow, the other subsystem
corresponds to small scale height and velocity fluctuations. It is shown that either a non-zero circulation
or rotation and bottom topography are required to sustain a non-zero large scale flow at equilibrium.

Explicit computation of the equilibria and their energy partition is presented in the quasi-geostrophic
limit for the energy-enstrophy ensemble. The possible role of small scale dissipation and shocks is
discussed. A geophysical application to the Zapiola anticyclone is presented.
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1 Introduction

Geophysical turbulent flows have the propensity to self-organize into large scale coherent structures
such as cyclones, anticyclones and jets. These coherent structures are long lived, but can also loose
energy, for instance through the radiation of waves that eventually break into small scale structures.
The aim of this paper is to understand the energy partition into large scale structures and small scale
fluctuations in the framework of freely evolving shallow water dynamics, using statistical mechanics
arguments. Indeed, geophysical turbulent flows involve a huge number of degrees of freedom coupled
through non-linear interactions, which strongly motivates a statistical mechanics approach. This ap-
proach allows to reduce the study of self-organization and energy partition down to a few parameters,
such as the total energy of the flow and its total enstrophy.

In the case of the three dimensional Euler equations, equilibrium statistical mechanics predicts that
all the energy is lost into small scales, consistently with the classical picture of a small scale energy
transfer. By contrast, two-dimensional flows are characterized by a large scale energy transfer, and
equilibrium tools are appropriate to describe the large scale structure resulting from self-organization at
the domain scale, in the absence of forcing and dissipation. The idea goes back to Onsager [28], and has
been mostly developed during the nineties after the work of Miller-Robert-Sommeria [23,33], see also
Refs. [17,10,4] and references therein. Importantly, the theory predicts that the contribution of small
scale fluctuations to the total energy are negligible in the two-dimensional case. Equilibrium statistical
mechanics of two-dimensional and quasi-geostrophic flows is now fairly well understood. It has been
applied to various problems in geophysical context such as the description of Jovian vortices [44,3],
oceanic rings and jets [50,55], equilibria on a sphere [15], and to describe the vertical energy partition
in continuously stratified quasi-geostrophic flows [19,52,48].

Due to the combined effect of stable stratification, thin aspect ratio and rotation, geophysical flows
are very different from classical three-dimensional turbulence. However, such flows are not purely two-
dimensional. Here we consider the shallow water equations, which is an intermediate model between
three-dimensional and two-dimensional turbulence. This model describes the dynamics of a thin layer
a fluid with homogeneous density. On the one hand, shallow water equations admit conservation laws
similar to two-dimensional Euler equations, that lead to self-organization of the energy at large scale in
the Euler case. On the other hand, shallow water dynamics support the presence of inertia-gravity waves
that are absent from purely two-dimensional turbulence. A small scale energy transfer may exist due to
the existence of these inertia-gravity waves in the shallow water system. The quasi-geostrophic model
is recovered as a limit case of the shallow water model, when the Rossby parameter (comparing inertial
terms to Coriolis forces) is small. A small Rossby number corresponds to a strong rotation limit. It is
then natural to ask whether previously computed statistical equilibrium states of the quasi-geostrophic
models remain equilibrium states of the shallow water model. More generally, given a certain amount
of energy in an unforced, undissipated geophysical flow, will the flow self-organize into a large scale
coherent structure, just as in two dimensional turbulence? Or will the energy be transferred towards the
small scales, just as in three dimensional homogeneous turbulence? The aim of this paper is to answer
these questions by computing statistical equilibrium states of the inviscid shallow water model.

The first step before computing equilibrium states is to identify a suitable phase space to describe
microscopic configurations of the system. The phase space variables must satisfy a Liouville theorem,
which ensures that the flow in phase space is divergence-less. Consequently, a uniform measure on a
constant energy-Casimirs shell of phase space is invariant (microcanonical measure). The second step
is to describe the system at a macroscopic level. The macrostates will be the sets of microstates sharing
the same macroscopic behavior. The third step is to find the most probable macrostate, and to show
that almost all the microstates correspond to this macrostate for given values of the constraints. While
these three steps may be straightforward for differential equations with a finite number of degrees of
freedom, for continuous systems described by partial differential equations, these three steps require
the introduction of discrete approximations of the continuous field and of the invariant measure, and to
study the continuous field limit of these discrete approximations. This point will be further discussed
in the following.
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This program has been achieved in the 90s for the two-dimensional Euler equations. Indeed, a Li-
ouville theorem is satisfied by the vorticity field, which describes therefore a microscopic configuration
of the system. A macrostate can be defined as a probability field describing the distribution of vorticity
levels at a given point, either through a coarse graining procedure [22,23] or directly by the introduction
of Young measures [30,31,33].

For the shallow water dynamics, they are further issues that need to be overcome. The existence
of a Liouville theorem for the shallow water flow was found by Warn [53] by describing the flow
configurations on a basis given by the eigenmodes of the linearized dynamics. However, the constraints
of the problem given by dynamical invariants are not easily expressed in terms of the variables satisfying
this Liouville theorem (except in the weak flow limit discussed by Warn [53]). This difficulty has been
overcome by Weichman and Petrich [56] who considered first a Lagrangian representation of the flow,
and then used a formal change of variable to describe the flow configurations with Eulerian variables
convenient to express the constraints of the problem. Using a different method that does not require a
Lagrangian representation of the fluid, we will show the existence of a formal Liouville theorem.

A second difficulty concerns the choice of a relevant discrete approximation that allows to keep as
much as possible geometric conservations laws of the continuous dynamics. Those geometric conserva-
tion laws include the Liouville property, the Lagrangian conservation laws (i.e. the conservation of the
volume carried by each fluid particle), and global dynamical invariants. Unfortunately, we are not aware
of a discrete model that does not break at least one of those geometric conservation laws. However, we
will argue that there is no logical need for the discrete model to satisfy all the conservation laws of the
continuous dynamics in order to guess the correct microcanonical measure of the continuous system by
considering the limit of a large number of degrees of freedom.

A third difficulty is that local small scale fluctuations of the fields may have a substantial contribu-
tion to the total energy. This contrasts with 2d Euler dynamics, for which small scale fluctuations of the
vorticity field have a vanishingly small contribution to the total energy in the continuous limit. In the
shallow water case, it is not a priori obvious that the contribution of these small scale fluctuations to the
total energy can be expressed in terms of the macroscopic probability density field.

In order to overcome the second and the third difficulty, we introduce in this paper a semi-Lagrangian
discretization : one the one hand, we consider fluid particles of equal volume, which allows to keep track
of the Lagrangian conservation laws of the dynamics. On the other hand, the particle positions are re-
stricted to a uniform horizontal grid, and each grid node may contain many particles, which allows
for an Eulerian representation of the macrostates and to keep track of global conservation laws, while
taking into account the presence of small scale fluctuations contributing to the total energy. We then
derive the statistical mechanics theory for this discrete representation of the shallow water model, using
large deviation theory.

We will argue that in the limit of a large number of degrees of freedom, the equilibrium states of the
semi-Lagrangian discrete model are the equilibrium states of the actual shallow water system, and we
will also show that we recover with this model results already obtained in several limiting cases. While
the statistical mechanics treatment of our discrete model is rigorous, there is some arbitrariness in our
definition of the discrete model, which is not fully satisfactory.

We stress that our approach to guess the invariant measure of the continuous shallow-water system
is heuristic: there is to our knowledge no simple way to define mathematically the microcanonical
measure or the Gibbs measure of an Hamiltonian infinite dimensional system. As far as we know the
only example of a rigorous work for defining invariant measures in the class of deterministic partial
differential equations of interest, is a work by [5] on the periodic nonlinear Schrodinger equation. For
the 2d Euler equations, the microcanonical measure seems clear from a physical point of view because
different discretizations, for instance either Eulerian ones [22,32] or Lagrangian ones (see [8], lead to a
consistent picture in the thermodynamics limit, but even in that case no clear mathematical construction
of the invariant measure exists.

There exist only a very limited number of results on statistical equilibrium states of the shallow
water system. Warn [53] studied the equilibrium states in a weak flow limit in the energy-enstrophy
ensemble. He showed that in the absence of lateral boundaries and in the absence of bottom topography,
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all the initial energy of a shallow water flow is transferred towards small scales. Here we relax the
hypothesis of a weak flow, generalizing the conclusions of Warn [53] for any flow, and we discuss the
effect of bottom topography. We show that when there is a non zero bottom topography and when the
flow is rotating, there is a large scale flow associated with the equilibrium states.

Refs. [20,7] did compute statistical equilibrium states of “balanced” shallow water flows, by as-
suming that all the energy remain in the large scale flow. The equilibria described by Merryfield et
al [20] were obtained in the framework of the energy-enstrophy theory, neglecting any other potential
vorticity moments than the potential enstrophy. Similar states were described as minima of the potential
enstrophy for the macroscopic potential vorticity field by Sanson [37].

Chavanis and Sommeria [7] proposed a generalization of the 2D-Euler variational problem given
by the Miller-Robert-Sommeria theory to the shallow water case. Their main result is a relationship
between the large scale streamfunction and height field. This result was very interesting and inspiring
to us. However, Chavanis and Sommeria did not derive their variational problem from statistical me-
chanics arguments but proceeded through analogy. They were moreover neglecting height fluctuations.
This does not allow for energy partition between vortical flow and fluctuations, and moreover leads to
inconsistencies for some range of parameters, as the Chavanis-Sommeria constrained entropy can be
shown to have no maxima for negative temperatures (the negative temperature critical points of this
variational problem are saddles rather than maxima). As a consequence a range of possible energy val-
ues can not be achieved in this phenomenological framework. Nevertheless, with an approach based
on statistical mechanics, we will confirm, in this study, the form of the variational problem proposed
by Chavanis and Sommeria [7] for describing part of the field, for a restricted range of parameters.
We stress however, that generically part of the energy will be carried by the fluctuations, and thus that
the Chavanis–Sommeria variational problem should be considered with an energy value which is not
the total one. Determining which part of the energy should be taken into account requires a full sta-
tistical mechanics treatment, taking into account height fluctuations. We also note that for some other
ranges of parameters, all the energy will be carried by the fluctuations, and thus the Chavanis-Sommeria
variational problem then does not make sense.

In the preparation of this work, we have also been inspired by the work of Weichman and Petrich
[56]. In this work, the authors computed a class of statistical equilibrium states of the shallow water
system, starting from a grand canonical distribution. The main result of their work is the same equation
describing the relation between the large scale stream function and height field, as the one previously
obtained by Chavanis and Sommeria [7]. The Weichman–Petrich approach seemed more promising
than the Chavanis–Sommeria one as it was based on a statistical mechanics treatment. However it also
fails to predict which part of the energy goes into fluctuations, and to recognize the range of parameters
for which the mean field equation for the largest scale is relevant. The reason is that, while natural
in condensed matter physics, the hypothesis of a Gibbs or a grand canonical distribution, is question-
able for an inertial flow equation which is in contact neither with an energy bath, nor with a potential
vorticity bath. Related to this issue, Weichman and Petrich had to assume an ad hoc scaling for the
thermodynamical parameters, in order to obtain statistical ensembles where entropy actually balances
conservation laws. It has been recognized for a long time that this kind of theoretical difficulties are
related to the Rayleigh-Jeans paradox. The proper way to address these issues, in some fluid models
like for instance the two-dimensional Euler equation, is to start from the microcanonical measure rather
than from a canonical or grand canonical one [4]. We will overcome all these problems in this work by
solving the microcanonical problem, which may seem more difficult, but which can be handled using
large deviation theory. It also leads to a more precise description of macrostate probabilities.

In this paper, starting from the microcanonical measure, we propose a complete computation of
the macrostate entropy for the shallow water equations. In order to achieve this goal, we consider a
large-deviation approach that allows to perform the statistical mechanics computation in an explicit and
clear way, and that gives a precise description of most-probable macrostates. Moreover, we compute
explicitly both the large scale flow and the small scales fluctuations of the equilibrium states. Our results
are thus a complete statistical mechanics treatment of the shallow water equations.
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We also connect our general results to some of the partial treatment discussed in the previous lit-
erature. For instance, we show that only one subclass of the states described by [20,56,7] are actual
statistical equilibria of the shallow water model. More precisely, we will see that the large scale flow
and the small scales fluctuations can be interpreted as two subsystems in thermal contact, and that the
temperature of small scales fluctuations is necessarily positive. The large scale flow is therefore also
characterized by a positive temperature.

The paper is organized as follows. The shallow water model and its properties are introduced in
section 2. Equilibrium statistical mechanics of a discrete flow model arguably relevant to describe the
continuous shallow water system is derived in section 3. Computation of the equilibrium states and a de-
scription of their main properties are presented in section 4. Energy partition between a large scale flow
and small scale fluctuations is computed analytically in the quasi-geostrophic limit in section 5, which
also includes a geophysical application to the Zapiola anticyclone. The main results are summarized
and discussed in the conclusion.

2 Shallow water model

2.1 Dynamics

The shallow water equations describe the dynamics of a fluid layer with uniform mass density, in the
limit where the layer depth is very small compared to the horizontal length scales of the flow [46,29].
In this limit the vertical momentum equation yields hydrostatic equilibrium, and the horizontal velocity
field (u,v) = u(x, t) is depth independent, where x = (x,y) is any point of a two-dimensional simply
connected domain D . We consider the Coriolis force in the f-plane approximation, i.e. with a constant
Coriolis parameter f and a rotation axis along the vertical direction. We denote η (x, t) the vertical
displacement of the upper interface and hb (x) the bottom topography (see Fig. 1). The origin of the z

axis is chosen such that
ˆ

D
dx hb (x) = 0, (1)

and the vertical displacement is defined such that
ˆ

D
dx η (x, t) = 0 (2)

as well. We introduce the total depth

h = H −hb +η (x, t) , (3)

where

H =
1
|D |

ˆ

D
dr h(r) (4)

is the mean depth of the fluid, with |D | the area of the flow domain. The horizontal and vertical length
units can always be chosen such that the domain area and the mean height H are equal to one (|D |= 1,
H = 1), and this choice will be made in the remainder of this paper.

The dynamics is given by the horizontal momentum equations
{

∂tu+u∂xu+ v∂yu− f v =−g∂x(h+hb)

∂tv+u∂xv+ v∂yv+ f u =−g∂y(h+hb)
(5)

and the mass continuity equation

∂th+∇ · (hu) = 0, (6)



7

Fig. 1: Scheme of a vertical slice of fluid, η is the upper interface displacement, hb is the bottom topography, h is the
height field and H is the mean height of the fluid (〈h〉)

where ∇ = (∂x,∂y), with impermeability boundary conditions

u ·n = 0 on ∂D , (7)

where n is the outward border-normal unit vector.
By introducing the Bernoulli function

B ≡ 1
2

u2 +g(h+hb −1) , (8)

the relative vorticity field
ω = ∂xv−∂yu, (9)

the divergence field
ζ = ∇ ·u = ∂xu+∂yv, (10)

and the potential vorticity field

q =
ω + f

h
, (11)

the momentum equations (5) can be recast into a conservative form
{

∂tu−qhv =−∂xB

∂tv+qhu =−∂yB
. (12)

One can get from the momentum equations (12) a dynamical equations for the potential vorticity field
(11) and for the divergence field (10), respectively:

∂tq+u ·∇q = 0, (13)
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∂tζ −∇⊥ · (qhu) =−∆B, (14)

where ∆ = ∇ ·∇ is the Laplacian operator and ∇⊥ = (−∂y,∂x). In order to show that the shallow water
system described by (h,u) is also fully described by the triplet (h,q,ζ ), we introduce the velocity
streamfunction ψ(x,y, t) and the velocity potential φ(x,y, t) through the Helmholtz decomposition of
the velocity1:

u = ∇⊥ψ +∇φ . (15)

The boundary condition for the velocity given in Eq. (7) yields
{

n ·∇⊥ψ = 0
n ·∇φ = 0

on ∂D , (16)

where n is the boundary normal vector. The relative vorticity (9) and the divergence (10) can be ex-
pressed in terms of the velocity streamfunction and velocity potential as

ω = ∆ψ, ζ = ∆φ . (17)

To the fields ω and ζ correspond a unique field ψ and a field φ defined up to a constant with the
boundary condition (16). Thus, to the fields ω = qh− f and ζ corresponds a unique velocity vector
written formally as

u = ∇⊥∆−1 (qh− f )+∇∆−1ζ . (18)

It will also be useful to consider the field µ defined as

µ = ∆ 1/2φ , (19)

where ∆ 1/2 is the linear operator whose eigenmodes are Laplacian eigenmodes in the domain D with
the boundary condition n ·∇ = 0 on ∂D , and whose eigenvalues are the negative square root of the
modulus of Laplacian eigenvalues. The field µ can be interpreted as a measure of the amplitude of the
potential contribution to the velocity field, given that

´

D µ2 =
´

D (∇φ)2. This field will also be referred
to as the divergence field in the following. To the field µ correspond a unique field φ (up to a constant).
Thus, the shallow water system is fully described by the triplet (h,q,µ), and the velocity vector can be
written formally in terms of these fields as

u = ∇⊥∆−1 [hq− f ]+∇∆−1/2 [µ ] . (20)

2.2 Stationary states

We investigate in this subsection the conditions for stationarity of the flow in the shallow water model
following [7]. Using a Helmholtz decomposition, one can define the mass transport streamfunction
Ψ(x,y, t) and the mass transport potential Φ(x,y, t) , not to be confused with ψ and φ defined in Eq.
(15) and (16):

hu = ∇⊥Ψ +∇Φ . (21)

The boundary condition for the velocity given in Eq. (7) yields
{

n ·∇⊥Ψ = 0
n ·∇Φ = 0

on ∂D . (22)

1 In the particular case of a bi-periodic domain, i.e. with periodic boundary conditions for the velocity u, one would
need to describe in addition the homogeneous part of the velocity field, which is both divergence-less and irrotational.
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It will be useful in the remainder of the paper to express the vorticity field defined in Eq. (9) and the
divergent field defined in Eq. (10) in terms of these transport streamfunction Ψ and transport potential
Φ :

ω = ∇ ·
(

1
h

∇Ψ

)
+ J

(
1
h
,Φ

)
, (23)

ζ = ∇ ·
(

∇Φ

h

)
− J

(
1
h
,Ψ

)
, (24)

where
J ( f ,g) = ∂x f ∂yg−∂y f ∂xg (25)

is the Jacobian operator. The dynamics in Eqs. (6), (13) and (14) can also be written in terms of Ψ and
Φ :

∂th =−∆Φ , (26)

∂t q+
1
h

J(Ψ ,q)+
1
h

∇Φ ·∇q = 0, (27)

∂t ζ + J(Φ ,q)−q∆Ψ −∇q ·∇Ψ =−∆B. (28)

We see that ∂th = 0 implies Φ = Cst , and ∂tq = 0 implies J(Ψ ,q) = 0, which means that isolines
of potential vorticity are the mass transport streamlines. This is the case if for instance q = F (Ψ).
Reciprocally, if Φ = Cst and if q and Ψ have the same isolines, then ∂th = 0 and ∂tq = 0, which
also implies ∂tΨ = 0. Thus, through the decomposition (21), the velocity field is also stationary, with
u = (1/h)∇⊥Ψ . We conclude that a necessary and sufficient condition for a shallow water flow (h,u)
to be stationary is

Φ =Cst, q and Ψ have the same isolines. (29)

There is an additional relation verified by the stationary flow. This relation may be obtained by
considering stationarity of the kinetic energy. The dynamics of the kinetic energy is obtained from Eq.
(12):

∂t

(
u2

2

)
=−1

h
J(Ψ ,B)− 1

h
∇Φ ·∇B. (30)

Stationarity of the kinetic energy field and Eq. (29) gives J(Ψ ,B) = 0: the Bernoulli function defined in
Eq. (8) and the mass transport streamfunction Ψ have the same isolines. In addition, in any subdomain
where q=F(Ψ), the stationarity of the velocity field and the momentum equations (12) give the relation

q =
dB

dΨ
. (31)

2.3 Conserved quantities

Provided that the velocity and height fields remain differentiable, the shallow water dynamics in Eqs.
(6), (13) and (14) conserves the total energy

E [u,h] =
1
2

ˆ

dx
[
hu2 +g(h+hb −1)2

]
, (32)

which includes a kinetic energy contribution and a potential energy contribution. It is known that the
shallow water dynamics sometimes leads to shocks that prevent energy conservation. We postpone a
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discussion of this important point to the last section of this paper.

As a consequence of particle relabeling symmetry there is an infinite number of other conserved
quantities called Casimir functionals, see e.g. [35]. These functionals are written

Cs =

ˆ

dx hs(q) , (33)

where s is any distribution. This conservation can be easily checked from Eqs. (13) and (6). The con-
servation of all the Casimirs implies the conservation of all the potential vorticity moments

∀k ∈ N, Zk =

ˆ

dx hqk . (34)

These Casimir functionals include the total mass conservation (k = 0), the conservation of the circula-
tion2 (k = 1) and the conservation of the enstrophy (k = 2).

The conservation of all the Casimirs is equivalent to the conservation of mass plus the conservation
of the potential vorticity distribution D [q] defined through

∀σ , D [q] (σ)dσ =

ˆ

dx hI{σ≤q≤σ+dσ} (35)

where I{σ≤q≤σ+dσ} is the characteristic function, i.e. it returns one if σ ≤ q(x) ≤ σ + dσ and zero
otherwise. It means that the global volume of each potential vorticity level σq is conserved through the
dynamics.

We will restrict ourselves to initial states where the potential vorticity field has a distribution char-
acterized by its moments only, then the knowledge of its global distribution given in Eq. (35) and of the
total mass is equivalent to the knowledge of the moments given in Eq. (34).

Depending on the domain geometry, there could be additional invariants. For the sake of simplicity,
we do not discuss the role of these additional invariant in this paper, but it would not be difficult to
generalize our results by taking them into account.

In the quasi-geostrophic or two-dimensional Euler models, dynamical invariants have important
consequences such as the large scale energy transfer, the self-organization at the domain scale, and the
existence of an infinite number of stable states for the dynamics, see for instance Ref. [4] and references
therein. We show in the present paper that these dynamical invariants play a similar role in the shallow
water case, allowing for a large-scale circulation associated with the potential vorticity field, even if this
process may be associated with a concomitant loss of energy toward small scales.

3 Equilibrium statistical mechanics of a discrete shallow water model

The aim of this section is to compute statistical equilibrium states of a discrete model of the shallow
water system and to consider the thermodynamic limit for this model. In the first subsection, a formal
Liouville theorem is given for the triplet of variables (h,hu,hv) and then the triplet (h,q,µ) after a
change of variables. The derivation given with more details in Appendix A is made in the Eulerian
representation. This allows to write formally the microcanonical measure of the shallow water model
for these triplets of fields.

In the second subsection, a finite dimensional semi-Lagrangian discretization of the model is pro-
posed to give a physical meaning to the formal measure. Other discretizations of the shallow water

2 The actual circulation is usually defined as Γ ≡
´

∂D
dl ·u, where dl is a vector tangent to the domain boundary. Stokes

theorem yields to Z1 = Γ + f .
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system may have been considered but any other choices we have tried were not taking into account the
fluid particle mass conservation and led to inconsistent results (for instance the equilibrium states were
not stationary, not stable by coarse-graining, and unbalanced, see Appendix E).

Then the macroscopic states are defined through a coarse-graining procedure in a third subsection.
The variational problem leading to the equilibrium states, i.e. the most probable macroscopic state, is
introduced in the fourth subsection. This variational problem generalizes the Miller-Robert-Sommeria
equilibrium theory to the shallow water system.

3.1 Liouville theorem

The first step before computing equilibrium states is to define what is a microscopic configuration of
the system, which requires to identify the relevant phase space. The simplest set of variables to consider
are those that satisfy a Liouville theorem. A Liouville theorem means that the flow in phase space is
non-divergent, which implies the time invariance of the microcanonical ensemble. The existence of a
Liouville theorem for the shallow water system was initially shown by Warn [53] who considered a
decomposition of the flow fields on a basis given by the eigenmodes of the linearized dynamics. A
Liouville theorem was shown by Weichman and Petrich[56] for a Lagrangian representation of the
dynamics. Following a general method proposed by one of us and described by Thalabard [40], it is
shown in Appendix A that the triplet (h,hu,hv) does satisfy a formal Liouville theorem. At a formal
level, the microcanonical measure can then be written3

dµh,hu,hv

(
E,{Zk}k≥0

)
=

1

Ω
(
E,{Zk}k≥0

)D [h]D [hu]D [hv]δ (E −E)
+∞

∏
k=0

δ (Zk −Zk) , (36)

with the phase space volume

Ω
(
E,{Zk}k≥0

)
=

ˆ

D [h]D [hu]D [hv]δ (E −E)
+∞

∏
k=0

δ (Zk −Zk) . (37)

Here E is the energy of a microscopic configuration defined in Eq. (32), and the {Zk}k≥0 are the
potential vorticity moments of a microscopic configuration defined in Eq. (34). Those constraints are
the dynamical invariants of the shallow water model. The notation

´

D [h]D [hu]D [hv] means that
the integral is formally performed over each possible triplet of fields (h, hu, hv). The microcanonical
measure allows to compute the expectation of an observable A [h,hu,hv] in the microcanonical ensemble
as

〈A 〉dµh,hu,hv
=

ˆ

dµh,hu,hv A [h,hu,hv] . (38)

Assuming ergodicity, the ensemble average 〈A 〉dµh,hu,hv
can finally be interpreted as the time average

of the observable A .

The triplet (h,hu,hv) is not a convenient one to work with, since the Casimir functionals {Zk}k≥0
defined in Eq. (34) are not easily expressed in terms of these fields. Indeed, the expression of the
Casimir functionals {Zk}k≥0 involve not only the triplet (h,hu,hv), but also the triplet of the horizontal
derivatives of these fields. We showed in subsection 2.1 that the triplet of fields (h,q,µ) fully describes
the shallow water dynamics in a closed domain, and the functionals {Zk}k≥0 are much more easily
expressed in terms of the fields h,q. It is therefore more convenient to use these fields as independent
variables. The price to pay is that the simple form of the energy defined in Eq. (32) in terms of the
triplet (h,hu,vh) becomes more complicated when expressed in terms of the triplet (h,q,µ). However,

3 The letter “µ” appearing in the measure denoted dµ is not related to the divergent field denoted µ .
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we will propose a simplified version of this energy functional, and argue in Appendix B that this is the
relevant form of the energy to consider to compute the equilibrium state.

Unfortunately no direct proof of a Liouville theorem can be obtained for the triplet (h,q,µ). How-
ever, it is still possible to start from the microcanonical measure built with (h,hu,hv) in Eq. (36), and
change variables at a formal level.It is shown in Appendix A.2 that the Jacobian of the transformation
is4

∣∣∣∣J
[
(h,hu,hv)

(q,h,µ)

]∣∣∣∣=Ch3. (39)

where C is a constant. We conclude that the microcanonical measure can therefore be formally written

dµh,q,µ

(
E,{Zk}k≥0

)
=

1

Ω
(
E,{Zk}k≥0

)h3D [h]D [q]D [µ ]δ (E −E)
+∞

∏
k=0

δ (Zk −Zk) , (40)

with

Ω
(
E,{Zk}k≥0

)
=

ˆ

h3D [h]D [q]D [µ ]δ (E −E)
+∞

∏
k=0

δ (Zk −Zk) . (41)

In that case, the expectation of an observable A [q,h,µ ] in the microcanonical ensemble is given by

〈A 〉dµq,h,µ
=

ˆ

dµq,h,µA [q,h,µ ] . (42)

A finite-dimensional projection of the fields will be given in the next subsection to give a meaning to
the formal notations of this subsection.

3.2 A discrete model

In this subsection, we devise a discrete model of the shallow water system based on a semi-Lagrangian
representation. This allows to give a finite dimensional representation of the formal measure given Eq.
(40).

In order to keep track of the conservation properties of the continuous dynamics, we propose a
convenient discretization of the shallow water system in terms of fluid particles. Since the fluid is
considered incompressible, it is discretized into equal volume particles. The fluid particles do not have
necessarily the same height, and the horizontal velocity field may be divergent. It is not possible to
build a uniform grid with a single fluid particle per grid point since two particles with equal volume and
different height can not occupy the same area. In order to bypass this difficulty, we define a uniform grid
where several fluid particles can occupy a given site. To keep track that the actual fluid is continuous
and incompressible, we add the condition that the area occupied by the particles inside a grid site fit the
available area of the grid site.

In a first step the ensemble of microscopic configurations (the ensemble of the microstates of the
discrete model) is defined. In a second step, the constraints of the discrete shallow water system are
introduced, which allows to define the microcanonical measure of the discrete model in a third step.

4 The h3 term that appears after the change of variables in the functional integral must be understood as a “functional
product” ∏x∈D h3 (x), see also the finite-dimensional representation of this measure given in the next subsection.
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3.2.1 Definition of the ensemble of microscopic configurations

For the sake of simplicity, the domain D where the flow takes place is considered rectangular but
generalizing the results to any shape would be straightforward. We recall that the horizontal and vertical
length units have been chosen such that the domain area and the mean height are equal to one (|D |=
LxLy = 1, H = 1). The domain D is discretized into a uniform grid with N = Nx ×Ny sites. The area
of a grid site is |D |/N = 1/N. Each site can contain many fluid particles. It is assumed that the fluid
contains N ×M fluid particles of equal mass and volume (the fluid is incompressible), where M is the
average number of particles per site. The volume of a fluid particle is therefore

δV =
|D |H
NM

=
1

NM
. (43)

The grid sites are indexed by (i, j) with 1 ≤ i, j ≤ Nx,Ny and the fluid particles by n with 1 ≤ n ≤ NM.

Each fluid particle is characterized by its position (In,Jn) on the grid, by its potential vorticity
qn ∈ [qmin,qmax], its divergence µn ∈ [−µmax,µmax] and its height hn ∈ [hmin,hmax]. The cutoffs on the
potential vorticity can be physically related to actual minimum and maximum in the global distribution
of potential vorticity level defined in Eq. (35), since this distribution is conserved by the dynamics. Such
a justification does not exist for the other cutoffs. We will consider first the limit of an infinite number
of fluid particles per grid site (M →+∞), then the limit of an infinite number of grid site (N → ∞) and
finally the limit of infinite height and divergence cut-off µmax → +∞, hmax → +∞, hmin → 0. We will
see that the result does not depend on those cut-off.

Let us introduce Mi j the number of particles per grid site (i, j), defined as

Mi j =
NM

∑
n=1

δIn,iδJn, j. (44)

The set of the particles that belong to the site (i, j) is denoted

Mi j = {1 ≤ n ≤ NM | (In,Jn) = (i, j)} , (45)

whose cardinal is Mi j . Mass conservation states that the total number of particles filling the grid is a
constant, which gives the constraint

∑
i j

Mi j = NM, (46)

where ∑i j means that we sum over the all the sites of the grid. A fluid particle labeled by n and carrying
the height hn occupies an area δV/hn. The constraint that the area of each grid site is covered by fluid
particles leads to the constraint

∀i, j
1
M

∑
n∈Mi j

1
hn

= 1, (47)

where Mi j is the set defined in Eq. (45).
The ensemble of microstates of the discrete model is given by the set of all reachable values of grid

positions, potential vorticities, divergences and heights of each fluid particle in accordance with the
constraint of particle filling the area of each grid site:

Xmicro ≡
{

χmicro = {(In,Jn) ,qn,µn,hn}1≤n≤MN

∣∣∣∣∣ ∀i, j 1 ≤ i, j ≤ Nx,Ny

1
M

∑
n∈Mi j

1
hn

= 1

}
. (48)
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3.2.2 Coarse-graining

Here we consider a microstate χmicro = {(In,Jn) ,qn,µn,hn}1≤n≤MN and an arbitrary function

g : n → gn = g(hn,qn,µn) . (49)

We introduce two different coarse-graining procedures: an areal coarse-graining, and a volumetric
coarse-graining.

The areal coarse-graining of the function g is defined at each grid point (i, j) as

gi j ≡
1
M

∑
n∈Mi j

1
hn

gn (50)

where Mi j is a set defined in Eq. (45). The terms 1/hn appearing in Eq. (50) means that we consider
local average of gn weighted by the area occupied by each fluid particle. Note that we will only consider
function g such that gi j converges to a finite value in the limit of large Mi j ∼ M. This means that the
terms gn should not be allowed to scale with M. This is the reason why we will consider first the large
M limit, and then the limit of large cut-off µmax and hmax for the fields µ and h.

The area filling constraint in Eq. (47) can then be written in terms of this areal coarse graining:

1i j = 1. (51)

for any i, j. We also notice that the areal coarse-grained height field is simply the ratio of the number of
particles in the site (i, j) over the averaged number of particles per site:

hi j =
Mi j

M
. (52)

The volumetric coarse-graining of the function g is defined at each grid point (i, j) as

〈g〉i j ≡
1

Mi j
∑

n∈Mi j

gn. (53)

This field corresponds to the average of the function g carried by a fluid particle on site (i, j). The
volumetric coarse-graining is related to the areal one through

〈g〉i j =
hgi j

hi j

. (54)

3.2.3 Definition of a velocity field on the grid

Let us now define a large scale velocity field (or mean flow) on the uniform grid of the discrete model.
We will introduce later a field accounting for small scale fluctuations of the velocity at each grid point.
In the case of the actual shallow water model, for a given triplet of continuous fields h, q, µ , the ve-
locity field is computed by using Eq. (20), which involves two spatial differential operators, namely
∇⊥∆−1 and ∇∆−1/2. Discrete approximations of these spatial operators are well defined on the uni-
form grid of the discrete model. Discrete approximations of Eq. (20) can therefore be used to define
a velocity field on the uniform grid. Let us consider a coarse-grained vorticity field ω̃ = h〈q〉− f and
a coarse-grained divergent field µ̃ = 〈µ〉 defined on the same uniform grid. Discrete approximations
of the operators appearing in Eq. (20) can be written respectively as

{
∇⊥∆−1 [ω̃ ]

}
i j
= ∑kl Gω

i j,kl .ω̃kl

and
{

∇⊥∆−1 [µ̃ ]
}

i j
= ∑kl G

µ
i j,kl .µ̃kl , where the sum ∑kl is performed over each grid site (k, l). In the
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remainder of this paper, we do not need the explicit expression of the kernels {Gω} and {Gµ} , which
depend only on the domain geometry. Using these notations, we define the large scale velocity field as

um f ,i j =
{

∇⊥∆−1 [h〈q〉− f
]}

i j
+
{

∇∆−1/2 [〈µ〉]
}

i j
, (55)

where the index “m f ” stands for “mean flow”.
At this point one may wonder why the relevant coarse-grained fields used to define the large scale

flow um f should be h,〈µ〉 ,〈q〉 (which, using Eq. (54) , is equivalent to either the triplet h,hµ ,hq or to the
triplet

〈
h−1
〉
,〈µ〉 ,〈q〉). Our motivation for such a choice is twofold. First, we will see a posteriori that

this allows to recover previous results derived in several limit cases (weak flow limit, quasi-geostrophic
limit), and to obtain consistent results in the general case. Second, in physical space, the number of
fluid particles at each grid site is given by the areal-coarse-grained height field h, according to the
previous section. The relevant macroscopic potential vorticity field or divergent field is then given by
the volumetric coarse-graining 〈q〉= hq/h and 〈µ〉= hµ/h. In that respect, the phase space variable h

does not play the same role as q and µ when considering macroscopic quantities in physical space, and
this is why we do not consider the triplet 〈h〉 ,〈µ〉 ,〈q〉 to describe the system at a macroscopic level.

3.2.4 Definition of the microcanonical ensemble for the discrete model.

Here we introduce a set of constraints associated with the discrete model in order to define the micro-
canonical ensemble. These constraints are a discrete version of the Casimirs functional and the energy
of the continuous shallow water model, defined in Eqs. (34) and (32), respectively. Additional assump-
tions on the form of the energy will be required, and we will discuss the relevance of such assumptions.

Note that we introduce here constraints for the discrete shallow water model, but we do not define
what would be the dynamics of the discrete model. Indeed, it is not necessary to know the dynamics in
order to compute the equilibrium state of the system. Only the knowledge of constraints provided by
dynamical invariants is required.

Let us consider a given microstates χmicro = {(In,Jn) ,qn,µn,hn}1≤n≤MN , which belongs to the en-
semble Xmicro of possible configurations of the discrete model defined in Eq. (48). By construction of
the ensemble Xmicro, each element χmicro satisfies the areal filling constraint given in Eq. (47).

The potential vorticity moments of the discrete model are defined as

∀k ≥ 0, Zk ≡
1

NM

NM

∑
n=1

qk
n =

1
N

∑
i j

hqk
i j. (56)

The notation ∑i j means that the sum is performed over each grid point, with 1≤ i ≤Nx, 1 ≤ j ≤ Ny. It is
shown in Appendix B that those discrete potential vorticity moments tend to the potential vorticity mo-
ments of the continuous dynamics defined in Eq. (34) in the limit of large number of fluid particles NM.

We also define the total energy of the discrete model as

E ≡ 1
NM

NM

∑
n=1

(
1
2

u2
m f ,InJn

+
1
2

(
µn −〈µ〉InJn

)2
+g

(
hn

2
+hbInJn

))
−Ecst . (57)

where hb,i j is the discrete topography5, where um f ,i j is the mean flow defined in Eq. (55), and where
Ecst

[
hbi j

]
is an unimportant functional of hb chosen such that E = 0 at rest (i.e. when µn = 0, um f InJn =

5 Here, the bottom topography is assumed sufficiently smooth to be considered constant over a grid site. A fluctuating
topography would require further discussion.
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0, hn = 1−hbInJn
for any n and Mi j = M for any (i, j)):

ECst =
1
N

∑
i j

g

2

(
1−h2

bi j

)
. (58)

A simple interpretation for this form of the total energy is that each fluid particle carries a kinetic energy
associated with the mean flow um f , as well as a kinetic energy associated with local fluctuations of the
divergence field and finally a potential energy (the height of the center of mass of the fluid particle is
hbInJn

+hn/2).
It is argued in Appendix B that with only a few reasonable assumptions on the properties of the

equilibrium state, the energy of the discrete model defined in Eq. (57) would also be the energy of the
equilibrium state of the actual shallow water model defined in Eq. (32) in the limit of large number
of fluid particles NM. Note also that according to Eq. (57), the vortical part of the velocity field does
not contribute to local small scale kinetic energy, which is analogous to previous statistical mechanics
results for non-divergent flow models such as two-dimensional Euler equations or quasi-geostrophic
equations [23,33]. Qualitatively, this is due to the fact that inverting the Laplacian operator smooth out
local fluctuations of the relative vorticity ω = hq− 1 so that the streamfunction associated with the
microscopic vorticity field is the same as the streamfunction associated with the coarse-grained relative
vorticity field, see Appendix B for more details.

The expression of the energy in Eq. (57) involves a sum over the NM fluid particles. This sum can
be recast into a sum over the N points of the grid, by using the definition of the areal coarse-graining in
Eq. (50) and the definition of volumetric coarse-graining in Eq. (53):

E =
1
N

∑
i j

(
1
2

hi ju
2
m f ,i j +

1
2

hi j

(〈
µ2〉

i j
−〈µ〉2

i j

)
+

g

2

((
hi j +hb,i j −1

)2
+
(

h2
i j −h

2
i j

)))
. (59)

This Eulerian representation of the energy allows to identify three different contributions.
One first contribution to the total energy is given by the sum over each grid point (i, j) of the kinetic

energy of the mean flow um f (which is carried by Mi j = Mhi j fluid particles), and of the potential energy
of the areal coarse-grained height field hi j :

Em f ≡
1

2N
∑
i j

[
hi ju

2
m f ,i j +g

(
hi j +hb,i j −1

)2
]
. (60)

This contribution will be referred to as the total mean flow energy, or the energy of the large scale flow.
A second contribution to the total energy is given by the sum over each grid points of the variance

of the divergence levels µ carried by fluid particles at site (i, j) , times the number of fluid particles
(Mi j = Mhi j):

Eδ µ ≡ 1
2N

∑
i j

hi j

(〈
µ2〉

i j
−〈µ〉2

i j

)
. (61)

This term can be interpreted as a subgrid-scale (or small scale) kinetic energy term due entirely to the
divergent part of the velocity field (see Appendix B).

The last contribution to the total energy is the sum over each grid point of the potential energy
associated with local fluctuations of the height field:

Eδ h ≡
g

2N
∑
i j

(
h2

i j −h
2
i j

)
. (62)

This term can be interpreted as a subgrid-scale (or small scale) potential energy term.
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One can finally check that total energy defined in Eq. (59) is the sum of the three contributions given
in Eqs. (60), (61) and (62) :

E = Em f +Eδ µ +Eδ h. (63)

It is well known that for the 2D Euler model or the quasi-geostrophic model, there is no contribution
to the energy from the sub-grid fluctuations of the potential vorticity in the limit of vanishing grid size
(see [22,33]). For the shallow water model, this is also the case. However the sub-grid fluctuations of
height and divergence do contribute to the energy (see Eqs. (61), (62) and (63)). A qualitative reason for
this contribution of local height and divergence fluctuations to the total energy is that those two fields
may be decomposed on the basis of inertia-gravity waves, which are known to develop a small scale
energy transfer [53], and consequently to a loss of energy at subgrid-scales in the discretized model.

Now that we have defined the configurations space in Eq. (48), the potential vorticity moments
{Zk [χmicro]}k≥0 of the discrete model in Eq. (56) and the energy E [χmicro] of the discrete model in Eq.
(59), we introduce the microcanonical ensemble as the restriction of the configurations space Xmicro to
configurations with fixed values of energy E and Casimirs {Zk}k≥0:

{
χmicro = {(In,Jn) ,qn,µn,hn}1≤n≤MN ∈ Xmicro |E [χmicro] = E, ∀k ∈ N Zk [χmicro] = Zk

}
. (64)

In our discrete model, we assume that the microcanonical measure over the ensemble of configurations
Xmicro is :

dµN,M
E,{Zk}k≥0

(χmicro) =
δ (E [χmicro]−E)

Ω (E,{Zk}k≥0)

∞

∏
k=0

δ (Zk[χmicro]−Zk)∏
i j

δ (1i j[χmicro]−1)

×
NM

∏
n=1

h3
ndhndqndµndIndJn, (65)

where Ω (E,{Zk}) is the phase space volume defined as

Ω (E,{Zk}k≥0)=
Nx

∑
I1=1

· · ·
Nx

∑
In=1

Ny

∑
J1=1

· · ·
Ny

∑
Jn=1

ˆ

[
NM

∏
n=1

h3
ndhndqndµn

]
δ (E [χmicro]−E)

∞

∏
k=0

δ (Zk[χmicro]−Zk)

×∏
i j

δ (1i j[χmicro]−1). (66)

The terms dIn and dJn are discrete measures with support on the grid coordinates: dIn( f ) = ∑
Nx
i=1 fi,

dJn( f ) =∑
Ny

j=1 f j. The product ∏i j is performed over the grid sites (i, j) with 1≤ i≤ Nx and 1≤ j ≤Ny.

The constraint δ
(
1i j [χmicro]−1

)
corresponds to the area filling constraint defined in Eq. (51), which

must be satisfied by each microstate χmicro ∈ Xmicro.
Note that Eq. (65) is a discrete version of the formal microcanonical measure given in Eq. (40) for

the continuous case. The expectation of an observable A [χmicro] in the microcanonical ensemble is

〈A 〉N,M
E,{Zk}k≥0

= dµN,M
E,{Zk}k≥0

(A ) =

ˆ

dµN,M
E,{Zk}k≥0

(χmicro)A [χmicro]. (67)

The problem is now to compute the macrostate entropy, which accounts for the logarithm of the number
of microstates corresponding to the same macrostate. Although we do not need to consider this problem
in the present work, it would be very interesting to have continuous or discrete approximation of the
shallow water equation that have the invariant measure (65), in an analogous way as what was achieved
for the 2D Euler equations [9,13].
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3.3 Macrostates and their entropy

The aim of this subsection is to compute the equilibrium state of the discrete model introduced in
the previous subsection. The first step is to define the macrostates of the system, the next step is to
compute the most probable macrostates, using large deviation theory, which yields also a concentration
property asymptotically for large N and M (almost all the microstates correspond to the most probable
macrostate).

3.3.1 Definition of the empirical density field

Let us consider a microstate χmicro = {(In,Jn) ,qn,µn,hn}1≤n≤MN picked in the ensemble of configura-
tions Xmicro defined in Eq. (48). The empirical density field of this microstate is defined for each grid
point (i, j) as

pi j

(
σh,σq,σµ

)
[χmicro]≡ δ (h−σh)δ (q−σq)δ

(
µ −σµ

)
i j
, (68)

where the overline operator is the areal coarse-graining defined in (50). This field contains all the
statistical information of the system at the grid level. The constraint that each grid site (i, j) is covered
by particles is given by Eq. (51), which ensures the normalization:

ˆ

dσhdσqdσµ pi j = 1. (69)

Let us consider a function g(hn,qn,µn) depending on the height, potential vorticity and divergence
carried by a fluid particle. Let us then consider the discrete microscopic field n → gn = g(hn,qn,µn)
with 1 ≤ n ≤ NM. Following Eqs. (50) and (68), the corresponding coarse-grained field gi j is expressed
solely in terms of the empirical density field pi j:

gi j =

ˆ

dσhdσqdσµ g(σh,σq,σµ)pi j

(
σh,σq,σµ

)
. (70)

If we consider for instance the function g(h,q,µ) = q , then gn = qn the microscopic potential
vorticity field, and coarse-grained potential vorticity field qi j is obtained by a direct application of Eq.
(70): qi j =

´

dσhdσqdσµ σq pi j .
Importantly, the constraints {Zk [χmicro] = Zk}k≥0 and E [χmicro] = E defined in Eq. (56) and (59)

depend only on the empirical density field pi j (since they depend only on local areal coarse-grained mo-
ments of the different fields). The empirical density is therefore a relevant variable to fully characterize
the system at a macroscopic level.

3.3.2 Definition of the macrostates

The macrostates are defined as the set of microscopic configurations leading to a given value pi j = ρi j

of the empirical density field:

ρ ≡
{

χmicro ∈ Xmicro

∣∣∀i, j pi j [χmicro] = ρi j

}
. (71)

For the sake of simplicity, we make a small abuse of notation by denoting ρ both the macrostate defined
in Eq. (71) and the field ρ =

{
ρi j

}
. The values of the constraints are the same for all microstates within

a given macrostate since they depend only on the local coarse-grained moments of the different fields,
which remain unchanged for a prescribed empirical density field. The energy and the Casimirs, defined
in Eqs. (57) and (56) respectively, have the same values for all the microstates within a single macrostate
and will therefore be denoted by E [ρ] and {Zk [ρ]}k≥0 .
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3.3.3 Macroscopic observables and empirical density

Let us now consider an observable A [χmicro] on the configuration space Xmicro defined in Eq. (48) such
that their dependance on the microscopic configuration χmicro occurs only through the empirical density
field:

A [χmicro] = A
[{

pi j [χmicro]
}]

. (72)

This is actually the case for any observable written as a sum over the fluid particles, i.e. for any ob-
servable appearing in Eq. (67). It is therefore possible to change variables from χmicro to the empirical
density field values

{
ρi j

}
1≤i, j≤Nx,Ny

in Eq. (67):

〈A 〉N,M
E,{Zk}k≥0

=

ˆ

[
∏
i j

D [ρi j]

]
A
[{

ρi j

}] Ω (ρ)

Ω
(
E,{Zk}k≥0

)δ (E [ρ]−E)
∞

∏
k=0

δ (Zk [ρ]−Zk)

×∏
i j

δ
(
1i j [ρi j ]−1

)
, (73)

where

Ω (ρ) =
Nx

∑
I1=1

· · ·
Nx

∑
In=1

Ny

∑
J1=1

· · ·
Ny

∑
Jn=1

ˆ

[
NM

∏
n=1

h3
ndhndqndµn

]
∏
i j

[
δ̂ (pi j[χmicro]−ρi j)

]
(74)

is the volume of a macrostate ρ defined in Eq. (71) in the configuration space Xmicro defined in Eq.
(48), and where Ω

(
E,{Zk}k≥0

)
is the total volume in phase space defined in Eq. (66). The constraint

δ
(
1i j [ρi j]−1

)
is a normalization constraint for the

{
ρi j

}
, since 1i j [ρi j ] =

´

dσhdσqdσµ ρi j . This nor-
malization constraint also corresponds to the constraint that the fluid particles within a site must fit the
available area, see Eq. (47). The term

´

D [ρi j ] means that the integral is performed over all the possible
functions ρi j . The term δ̂ (pi j −ρi j) is a Dirac delta distribution on the functional space of the empirical
density field values ρi j(σh,σq,σµ), with pi j

(
σh,σq,σµ

)
[χmicro] the empirical density field defined in

Eq. (68).

3.3.4 Asymptotic behavior of the macrostates volume and derivation of its entropy

Let us compute the asymptotic form of Ω (ρ) defined in Eq. (74), by considering the limit M → ∞,
where M is the average number of particles per grid site (i, j). For a given set of macrostates ρ defined
in Eq. (71), the number of fluid particles per grid site is

Mi j = M

ˆ

dσhdσqdσµ σhρi j . (75)

This is the only constraint on the particle positions in the grid for a microstate that belongs to the
macrostates ρ . All the realizations of the particle positions that satisfies (75) count equally in the en-
semble of macrostates ρ . Through combinatorial calculation, the number of realizations of {(In,Jn)}
that satisfy (75) is (NM)!/∏i j Mi j!. Using Eq. (52) to express Mi j in terms of hi j , we get

Ω (ρ) =
(NM)!

∏i j

(
Mhi j

)
!
∏
i j

Ωi j, (76)

where

Ωi j ≡
ˆ

[Mhi j

∏
m=1

h3
mdhmdqmdµm

]
δ̂


 1

M

Mhi j

∑
m=1

1
hm

δ (hm −σh)δ (qm −σq)δ
(
µm −σµ

)
−ρi j


 (77)
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is the number of possible configurations for a given set of Mi j = Mhi j fluid particles at site (i, j).

The asymptotic behavior of the pre-factor in Eq. (76) is computed through the Stirling formula:

log

(
(NM)!

∏i j

(
Mhi j

)
!

)
∼

M→∞
MN

(
− 1

N
∑
i j

hi j log
(
hi j

)
+ log(N)

)
. (78)

The asymptotic behavior with M of Ωi j defined in Eq. (77) can be computed by using Sanov’s
theorem.

Before applying this theorem to our problem, let us consider the simpler case of K independent and
identically distributed variables {χk}1≤k≤K with common probability density function F (χ). Those
variable take values in a bounded interval of R. 6 Sanov’s theorem describes the large deviation of the
empirical density distribution

fK ≡ 1
K

K

∑
k=1

δ (χk − χ) , (79)

which can be considered as an actual probability distribution for the variable χ . The probability distri-
bution functional of this empirical density function is

P [ f ]≡
ˆ K

∏
k=1

F (χk)dχk δ̂ ( f − fK) . (80)

Sanov’s theorem is a statement about the asymptotic behavior of the logarithm of P [ f ]. For a given
function f (χ), Sanov’s theorem states

log(P [ f ]) ∼
K→+∞

−K

ˆ

dχ f (χ) log

(
f (χ)

F (χ)

)
(81)

if
´

dχ f (χ) = 1 and log(P [ f ])∼−∞ otherwise. An heuristic discussion of Sanov’s theorem is given
in Ref [43].

Combining Eqs. (79), (80) and (81) and generalizing this result to K independent and identi-

cally distributed L-tuple of variables
{{

χl,k

}
1≤l≤L

}
1≤k≤K

with common probability density function

F
(
{χl}1≤l≤L

)
, Sanov’s theorem is written in compact form as

log

(
ˆ K

∏
k=1

F
({

χl,k

}
1≤l≤L

) L

∏
l=1

dχ l,k δ̂

(
f − 1

K

K

∑
k=1

L

∏
l=1

δ
(
χl,k − χl

)
))

∼
K→∞

−K

ˆ L

∏
l=1

dχ l f log

(
f

F

)

(82)
if
´

∏L
l=1 dχl f

(
{χl}1≤l≤L

)
= 1.

Let us come back to the asymptotic behavior of Ωi j defined in Eq. (77), in the large M limit. Before
applying Sanov’s theorem, it is needed to recast this equation into a form similar to the argument of the
logarithm in the lhs of Eq. (82). Because of the 1/hm term appearing in the delta Dirac function of Eq.
(77), one needs to perform first a change of variable from ρi j to

πi j ≡
σh

hi j

ρi j (83)

The formal Jacobian J arising from this change of variable in the functional delta Dirac function
depend only on hi j which does not depend on M and will therefore not matter for the asymptotic
behavior of log(Ωi j). In addition, the factor h3

m appearing in front of the Lebesgue measure in Eq. (77)

6 The fact that the variable χk have to be bounded is the reason why we set the cutoffs on the values of hn, qn and µn.
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must be divided by a normalization factor Z =
´

h3
mdhmdqmdµm so that P(hm,qm,µm) = h3

m/Z can be
interpreted as a probability distribution function.7 Then Ωi j writes :

Ωi j = J ZMhi j

ˆ Mhi j

∏
m=1

(
h3

m

Z

)
dhmdqmdµm δ̂


πi j −

1

Mhi j

Mhi j

∑
m=1

δ (hm −σh)δ (qm −σq)δ
(
µm −σµ

)

 .

(84)
A direct application of Sanov’s theorem to Eq. (84) then yields

log(Ωi j) ∼
M→∞

Mhi j

[
−
ˆ

dσhdσqdσµ πi j log

(
πi j

σ3
h

)]
. (85)

The normalization constraint on the distributions πi j is already fulfilled by the definition of the coarse-
grained height fields hi j = hi j

´

dσhdσqdσµ πi j (see Eq. (70)). The inverse change of variable ρi j =

hi jπi j/σh in Eq. (85) yields

log(Ωi j) ∼
M→∞

M

[
−
ˆ

dσhdσqdσµ σhρi j log

(
ρi j

σ2
h

)
+hi j log

(
hi j

)]
. (86)

Combining Eq. (76) with Eqs. (78) and (86), we obtain the asymptotic behavior of Ω (ρ) with M:

log(Ω (ρ)) ∼
M→∞

MN S [ρ] , (87)

where

S [ρ] =− 1
N

∑
i j

ˆ

dσhdσqdσµ σhρi j log

(
ρi j

σ2
h

)
(88)

is the macrostate entropy8.

3.4 Continuous limit

3.4.1 Expressions of the macrostate entropy, energy and potential vorticity moments

Considering now the limit of an infinite number of grid site (N → ∞), the site coordinates (i, j) tend
toward the continuous space coordinates x and the macrostate entropy S derived in Eq. (88) becomes

S [ρ] =−
ˆ

dxdσhdσqdσµ σhρ
(
x,σh,σq,σµ

)
log

(
ρ
(
x,σh,σq,σµ

)

σ2
h

)
. (89)

The empirical density has become a probability density function (pdf). For any function g : n → gn =
g(hn,qn,µn), its continuous coarse-grained field is now computed through

g(x) =

ˆ

dσhdσqdσµ ρ
(
x,σh,σq,σµ

)
g
(
σh,σq,σµ

)
, (90)

The discrete mean flow defined in Eq. (55) becomes (by construction):

um f

[
h,hq,hµ

]
= ∇⊥∆−1 (hq− f

)
+∇∆−1/2

(
hµ

h

)
, (91)

7 Here, Z depends on the cutoffs introduced in subsection 3.2. But we will see that it will vanish from the expression
of the entropy in the end.

8 Here we dropped the term logN coming from Eq. (78) as it is constant that can be discarded by redefining ΩE,{Zk}k≥0
.
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where all the coarse-grained fields have been expressed in terms of an areal coarse-graining, using Eq.
(54). Similarly, the potential vorticity moments defined in Eq. (56) for the discrete model become

∀k ∈ N Zk [ρ] =

ˆ

dx hqk. (92)

The total energy defined in Eq. (59) for the discrete model becomes

E [ρ] =
1
2

ˆ

dx

[
hu2

m f +

(
hµ2 − hµ

2

h

)
+g(h+hb −1)2

]
. (93)

We note that the total energy is a functional of h,h2,hq,hµ ,hµ2 . Just as in the discrete case, this
energy can be separated into a mean flow contribution (a large scale contribution including kinetic and
potential energy), as well as a contribution from small scale kinetic energy due to local fluctuations
of the divergent velocity field and a contribution from small scale potential energy due to local height
fluctuations. The large scale (or mean flow) energy defined in Eq. (60) for the discrete model becomes

Em f

[
h,hq,hµ

]
=

1
2

ˆ

dx
[
hu2

m f +g
(
h+hb −1

)2
]
. (94)

The small scale (or subgrid-scale) kinetic energy due to local fluctuations of the divergent part of the
velocity field defined in Eq. (61) becomes

Eδ µ

[
h,µ ,µ2

]
=

1
2

ˆ

dx

(
hµ2 − hµ

2

h

)
, (95)

and the small scale (or sub-grid scale) potential energy due to local height fluctuations defined in Eq.
(62) becomes

Eδ h

[
h,h2

]
=

g

2

ˆ

dx
(

h2 −h
2
)
. (96)

One can check that the total energy in Eq. (93) is the sum of the three contributions given in Eq (94),
(95) and (96):

E = Em f +Eδ µ +Eδ h. (97)

3.4.2 Microcanonical variational problem for the probability density field

Let us come back to the average of a macroscopic observable A defined in Eq. (73). Using the asymp-
totic estimate for Ω [ρ] given in Eq. (87), the average of an observable A defined in Eq. (73) becomes9

〈A 〉
dµM,N

q,h,µ
=

ˆ

D [ρ] A [ρ]
eNM S [ρ]

Ω (E,{Zk})
δ (E [ρ]−E)

∞

∏
k=0

δ (Zk [ρ]−Zk)∏
x

δ
(
1 [ρ]−1

)
. (98)

It comes to a Laplace-type integral where NM → ∞. Thus, the value of 〈A 〉
dµ

M,N
q,h,µ

will be completely

dominated by the contribution of the pdf ρ that maximizes the macrostate entropy defined in Eq. (89)
while satisfying the normalization constraint

1 [ρ] =
ˆ

dσhdσqdσµ ρ
(
x,σh,σq,σµ

)
= 1, (99)

9 Strictly speaking, the equal sign should be noted ≍ which means that the logarithm of the terms on both sides are
equivalent, see e.g. Ref. [43].
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and the microcanonical constraints E [ρ] = E , {Zk [ρ] = Zk}k≥0, where the energy is defined in Eq.
(93) and the potential vorticity moments are defined in Eq. (92). This variational problem can be written
in compact form as:

max
ρ

{
S [ρ]

∣∣ E [ρ] = E, ∀k ∈ N Zk [ρ] = Zk, ∀x ∈ D 1(x) [ρ] = 1
}
. (100)

The probability measure ρ induced by the empirical density field has a concentration property. In other
words, the average of an observable depending only on macrostates is dominated by the most probable
macrostates, which are solutions of the variational problem (100).

An interesting limit case for the entropy in Eq. (89) is worth mentioning in order to relate the
variational problem in Eq. (100) with previous studies on the shallow water system. Let us assume that
there is neither height variation nor divergent fluctuations, which would be the case if considering a
quasi-geostrophic model or 2d incompressible Euler equations. Then the only height level and the only
divergence level are σh = 1, σµ = 0, respectively. Defining ρq (x,σq) = ρ (x,1,σq,0), Eq. (89) becomes
up to an unimportant constant:

S [ρq(x,σq)] =−
ˆ

dxdσq ρq logρq. (101)

We recover in that case the macrostate entropy of the Miller-Robert-Sommeria theory [22,34].
Let us now assume that the height varies with position but that there is no local height fluctuations.

Then at point x the only height level is σh = h(x) = h(x). Defining ρqµ

(
x,σq,σµ

)
= ρ

(
x,h(x),σq,σµ

)
,

the macrostate entropy in Eq. (89) becomes up to an unimportant constant:

S
[
ρqµ

(
x,σq,σµ

)
,h(x)

]
=−
ˆ

dxdσqdσµ hρqµ logρqµ . (102)

This form of the entropy was proposed by [7], without microscopic justification. Interestingly, [7] ob-
tained Eq. (102) by assuming that the macrostate entropy can be written as

S =

ˆ

dxdσqdσµh(x)s
(
ρqµ

(
x,σq,σµ

))
, (103)

and by noting that s(ρ) =−ρ logρ is the only function that leads to equilibrium states that are station-
ary.

4 General properties of the equilibria and simplification of the theory in limiting cases.

General properties of equilibrium states, solutions of the variational problem in Eq. (100), are discussed
in this section. Critical points of the variational problem are given in the first subsection ; they are
computed in appendix C. This allows to obtain an equation for the large scale flow, and to show that
equilibrium states of the shallow water model are positive temperature states. A weak height fluctuation
limit is considered in a second subsection. It is found that the large scale flow and the small scale
fluctuations are decoupled in this limit, and that there is equipartition between small scale potential
energy and small scale kinetic energy. The quasi-geostrophic limit is investigated in a third subsection.
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4.1 Equilibrium states are stationary states with positive temperatures

4.1.1 Properties of the critical points

Critical points of the equilibrium variational problem defined in Eq. (100) are solutions of the equation

∀δρ, δS [ρ]−βδE [ρ]−
+∞

∑
k=0

αkδZk [ρ]−
ˆ

dx ξ (x)

ˆ

dσhdσqdσµ δρ = 0 (104)

where β ,{αk}k≥0 and ξ (x) are the Lagrange multipliers associated with the conservation of the energy,
the potential vorticity moments, and with the normalization constraint, respectively. The computation
of the critical points is performed in Appendix C.

A first key result of Appendix C is that solutions of Eq. (104) factorize as

ρ = ρh (x,σh)ρq (x,σq)ρµ

(
x,σµ

)
. (105)

A second result of Appendix C is that the pdf of the divergence field is a Gaussian

ρµ

(
x,σµ

)
=

√
β

2π
exp

(
−β

2

(
σµ −µ

)2
)
. (106)

Recalling that β = ∂ S/∂ E is the inverse temperature, we see that the variance of the pdf of the diver-
gence field is given by the temperature of the flow:

µ2 −µ2 = β−1. (107)

This equation has important physical consequences. First, fluctuations of the divergent field do not vary
with space. Second, the temperature of the equilibrium state is necessary positive. This contrasts with
equilibrium states of two-dimensional Euler flow, which can be characterized by negative temperature
states [33,23]. This was realized first by Onsager for the point vortex model [28]. In the context of 2D
Euler equations in doubly periodic domains, the equilibrium states are always characterized by negative
temperature, just as in the case discussed by Onsager (this result is shown in [2]). However, the existence
of large scale flow structures characterized by positive temperatures are possible at low energy in the
presence of lateral boundaries and non-zero circulation, and/or in the presence of bottom topography
in the framework of QG model. Such positive temperature states are known and documented in the
literature (see e.g. the original papers by [23], [34] and [18] or [4] and references therein).

In addition, it follows from Eqs. (95), (105) and (107) that the temperature is directly related to
small scale kinetic energy due to the divergent velocity field:

Eδ µ =
1

2β
. (108)

A third result of Appendix C is the expression of the pdf of the height field:

ρh (x,σh) =
1

Gh (x)
σ2

h exp

(
−β

g

2
σh −

ξh (x)

σh

)
, Gh (x) =

ˆ

dσh σ2
h exp

(
−β

g

2
σh −

ξh (x)

σh

)
,

(109)
where ξh (x) a function related to h̄(x) through h̄ =

´

dσh σhρh.
A fourth result of Appendix C is the expression of the pdf of the potential vorticity field:

ρq (x,σq)=
1

Gq

(
βΨm f

) exp

(
βΨm f σq −

+∞

∑
k=1

αkσ k
q

)
, Gq

(
βΨm f

)
=

ˆ

dσq exp

(
βΨm f σq −

+∞

∑
k=1

αkσ k
q

)
,

(110)
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where Ψm f

[
h,q,µ

]
is the mass transport streamfunction of the mean flow defined through an Helmholtz

decomposition of hum f :
hum f = ∇⊥Ψm f +∇Φm f . (111)

According to Eq. (110), the coarse-grained potential vorticity field is a function of the mass transport
streamfunction:

q =
G

′
q(βΨm f )

Gq(βΨm f )
. (112)

A fifth result of Appendix C is that the mass transport potential of the mean flow defined in Eq.
(111) vanishes:

Φm f = 0, (113)

and the velocity field can now be written

um f =
1

h
∇⊥Ψm f . (114)

A sixth result of Appendix C concerns the Bernoulli function of the mean flow defined as

Bm f =
1
2

u2
m f +g

(
h+hb −1

)
. (115)

According to Eq. (218), combining Eq. (216) and Eq. (217) of Appendix C allows to express Bm f in
terms of β , Gq, Gh and a constant A0 that can be computed in principle using the conservation of the
total mass Z0 = 1:

Bm f = β−1 log(GqGh)+gh+A0. (116)

4.1.2 Equation for the large scale flow

Let us now establish the equations allowing to compute the large scale flow. A first equation is obtained
by injecting the expression for the mean flow um f given in Eq. (114) into the expression of the Bernoulli
function defined in Eq. (115), and by combining Eq. (115) with Eq. (116):

1
2

1

h
2

(
∇Ψm f

)2
+ghb =

1
β

log(GqGh)+A1, (117)

with A1 = A0 +g. A second equation is obtained by taking first the curl of Eq. (91), which yields hq−
f = ∇⊥um f . Then, replacing um f by its expression given in Eq. (114), remembering that the potential
vorticity field and the height field of the critical points of the variational problem are decorrelated
(qh = hq), and replacing q by its expression given in Eq. (112) yields

h
G′

q

(
βΨm f

)

Gq

(
βΨm f

) − f = ∇

(
∇Ψm f

h

)
. (118)

The closed system of partial differential equations (117) and (118) must be solved for h and Ψm f

for a given value of β , Gq, Gh, and A1. The set of parameters β ,{αk}k≥1 ,A1 must in fine be expressed
in terms of the constraints of the problem given by the energy E, and the potential vorticity moments
{Zk}k≥0. This may require a numerical resolution in the general case.

We have seen in subsection 2.2 that a flow described by (h,u) (or equivalently by (h,q,µ), or by
(h,Φ ,Ψ)) is a stationary state of the shallow water model if and only if J(q,Ψ) = 0 and Φ = 0.

According to Eqs. (112) and (113), the large scale flow
(
h,um f

)
is a stationary state of the shallow

water model.
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4.1.3 Comparison with previous results

The set of equations (117) and (118) describing the large scale flow is similar to the one obtained
by Weichman and Petrich [56] (through a Kac-Hubbard-Stratonovich transformation) and by Chavanis
and Sommeria [7] (through a phenomenological generalization of the Miller-Robert-Sommeria theory),
excepted that the rhs of Eq. (117) contains an additional term 1

β log(Gh)+A1 which does not appear
in these previous works. The reason for the presence of this additional term is that we have taken into
account the presence of small scale fluctuations of height and velocity, which were neglected in Refs.
[56,7]. We will see in subsection 4.3 that this additional term becomes negligible with respect to the
others in the quasi-geostrophic limit, in which case we recover exactly the set of equations for the large
scale flow obtained in Refs. [56,7].

In addition, we have shown in subsection 4.1.1 that only positive temperature states are allowed,
which shows that only one subclass of the states described by Eqs. (117) and (118) are actual equilib-
rium states.

4.2 Equipartition and decoupling in the limit of weak local height fluctuations

We consider in this subsection the limit of weak local height fluctuations. This step makes possible
computation of explicit solutions of the variational problem (100). Meanwhile, it allows to explore the
consequence of the presence of these small scale fluctuations on the structure of the large scale flow.
By “limit of weak local height fluctuations”, we mean

∀x ∈ D ,
(

h2 −h
2
)1/2

≪ h. (119)

As already argued in [56], this limit of weak local fluctuations is physically relevant, since the
presence of shocks in the actual dynamics tends to dissipate small scale fluctuations of height or kinetic
energy. This will be further discussed in subsection 5.2.

4.2.1 The height distribution

Assuming in addition that height levels σh such that
∣∣σh −h

∣∣≫
(

h2 −h
2
)1/2

do not contribute signifi-

cantly to the pdf ρh defined in Eq. (109), we perform an asymptotic development with
(
σh/h−1

)
≪ 1,

and obtain at lowest order in this small parameter a Gaussian shape for the pdf:

ρh (x,σh) =

√
gβ

2πh (x)
exp

(
− gβ

2h(x)

(
σh −h(x)

)2
)
. (120)

Similarly, the term Gh defined in Eq. (109) can be computed explicitly in this limit. One gets at lowest
order

Gh = h
2
(x)

√
2πh(x)

gβ
exp
(
−gβh (x)

)
. (121)

Using Eq. (120), the weak local height fluctuation limit given in Eq. (119) can be interpreted as a low
temperature limit gh ≫ 1/β . Injecting Eq. (121) in the previously established relation in Eq. (116)
yields

Bm f =
1
β

logGq +
5

2β
logh+A2, (122)

where A2 is a free parameter determined by the conservation of the total volume. In the rhs of Eq.
(122), there remains an additional term 5

2β logh which is not present in the large scale flow equation
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obtained by [56,7], but considering the weak flow limit allowed to obtain an explicit expression for this
additional term. We will see in subsection 4.3 that this term becomes negligible with respect to 1

β logGq

in the quasi-geostrophic limit.

4.2.2 Equipartition and the limit of weak small scale energy

Injecting Eq. (120) in the expression of the small scale potential energy defined in Eq. (96) yields

Eδ h =
1

2β
. (123)

Comparing this result with Eq. (108) shows equipartition of the small scale energy between the potential
energy and the kinetic energy. The total energy due to small scale fluctuations is

E f luct ≡ Eδ h +Eδ µ =
1
β
. (124)

This equipartition result of the small scale energy was already obtained by Warn when comput-
ing equilibrium states of the Galerking truncated dynamics in a weak flow limit [53]. More precisely,
Warn decomposed the dynamics into vortical modes and inertia-gravity modes (which are defined as
the eigenmodes of the linearized dynamics), and concluded that the energy of the equilibrium state
should be equipartitioned among inertia-gravity modes in the limit of infinite wavenumber cut-off. This
equipartition of energy among inertia-gravity modes would lead to equipartition between potential and
kinetic energy at small scales, just as in our case. Here we have recovered this result with a different
approach and we have generalized it beyond the weak flow limit.

Finally, we remark that the equipartition result of Eq. (124) shows that the low temperature limit
gh ≫ 1/β corresponds to a limit of weak small scale energy due to local fluctuation of the height field
and of the divergent field:

gh ≫ E f luct . (125)

4.2.3 Decoupling between the large scale flow and the fluctuations

Still by considering the weak local height fluctuation limit, let us assume that E f luct defined in Eq. (124)
is given, which means that the temperature is given. According to Eq. (118) and Eq. (117), knowing
the coarse-grained height field h and the pdf of potential vorticity levels ρq(x,σq) (which allows to
compute Gq) is sufficient to determine the mass transport streamfunction Ψm f , and hence the velocity
um f by using Eq. (114). Then the mean-flow energy defined in Eq. (94) does not depend on ρµ :

Em f

[
h,ρq

]
=

1
2

ˆ

dx

[
hu2

m f

[
h,q
]
+g
(
h+hb −1

)2
]
. (126)

The total energy defined in Eq. (97) is therefore the sum of the mean-field energy associated with a
large scale flow that depends only on h and ρq , and of the energy of small scale fluctuations associated
with height and divergence fluctuations:

E = Em f

[
h,ρq

]
+E f luct . (127)

In addition, injecting Eq. (105) in Eq. (92) gives the expression of the potential vorticity moments as a
functional of h and ρq only:

∀k ∈ N Zk

[
h,ρq

]
=

ˆ

dxdσq hρqσ k
q . (128)
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Let us now consider the macrostate entropy functional defined in Eq. (89). Injecting Eqs. (106) and
(120) in Eq. (105), and performing the asymptotic expansion of the integrand of the mean-field entropy
with

(
σh/h−1

)
≪ 1 leads at lowest order to (up to a irrelevant constant)

S = Sm f

[
h̄,ρq

]
+S f luct

(
E f luc

)
, (129)

Sm f

[
h,ρq

]
≡−
ˆ

dxdσq hρq log
ρq

h
5/2

, (130)

S f luct

(
E f luct

)
≡ log

(
E f luct

)
. (131)

Since ρq and h are two fields allowing to compute the large scale flow of energy Em f , and since the
fluctuations of the potential vorticity field do not contribute to the small scale energy E f luct , the entropy
Sm f

[
h,ρq

]
will be referred to as the macrostate entropy of the large scale flow.

The second contribution to the total entropy in Eq. (129) depends only on the energy of the small
scale fluctuations E f luct . Since this energy is solely due to the local variance of the height field and of
the divergent field, it will be referred to as the entropy of the small scale fluctuations. Note that in that
case the height field is involved both in the large scale flow through its local mean value, and in the
small scale fluctuations through its local variance.

The decoupling of the energy and the macrostate entropy functional into a part that depends only
on ρq,h and another part that depends only on small scale height and divergent fluctuations with energy
E f luct has both a useful practical consequence and an interesting physical interpretation. The variational
problem in Eq. (100) can now be recast into two simpler variational problems:

S
(
E,{Zk}k≥0

)
= max

E f luct

{
Sm f

(
E −E f luct ,{Zk}k≥0

)
+S f luct

(
E f luct

)}
, (132)

Sm f

(
Em f ,{Zk}k≥0

)
= max

ρq,
´

ρq=1,h

{
Sm f

[
h,ρq

] ∣∣ Em f

[
h,ρq,

]
= Em f , ∀k ∈ N Zk

[
ρq,h

]
= Zk

}
,

(133)
where Sm f , Em f and Zk are the functional defined in Eqs. (130), (126), and (128), respectively. The
variational problem in Eq. (132) describes two subsystems in thermal contact. In order to compute the
equilibrium state, one can then compute independently the equilibrium state of each subsystem, and
then equating their temperature in order to find the global equilibrium state. This classical argument
follows directly from the maximization of (132). If the two subsystems can not have the same tempera-
ture (for instance when the temperature of both subsystem have a different sign), all the energy is stored
in the subsystem with positive temperature in order to maximize the global entropy.

In the present case, a first subsystem is given by the large scale flow of energy Em f , which involves
the field h and the potential vorticity field described by the pdf of vorticity levels ρq. The equilibrium
state of this subsystem is obtained by solving the variational problem in Eq. (133). This variational
problem corresponds to the one introduced by [7] except that large scale flow energy is not the total
energy but only the available energy when the energy of the fluctuations has been removed. The entropy
of the large scale flow (130) in the variational problem (133) is closely related to the entropy introduced
in [7] (up to a functional of h). The potential vorticity moment constraints apply only to this subsystem.
These additional constraints are essential since they allow for the possible existence of a large scale
flow, see e.g. [4].

The second subsystem is given by the local small scale height fluctuations and the local small scale
divergent fluctuations with total energy E f luct , and with the entropy given in Eq. (131). The inverse
temperature of this subsystem β = dS f luct/dE f luct , which, using Eq. (131), yields a temperature of
β−1 = E f luct .

In practice, it is easier to compute directly equilibrium states of the large scale flow subsystem in
the canonical ensemble, where the energy constraint is relaxed. In that case the equilibrium states of
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this subsystem depend on the temperature E f luct and on the dynamical invariants {Zk}k≥0. One just
need to check a posteriori that this ensemble is equivalent to the microcanonical one by verifying that
each admissible energy Em f is reached when varying E f luct form 0 to +∞ , for a given set of potential
vorticity moments {Zk}k≥0 . In order to find the actual equilibrium state associated with the total energy
E, one then needs to solve the equation

E = Em f

(
E f luct ,{Zk}k≥0

)
+E f luct . (134)

To conclude, it is now possible to study independently the large scale flow subsystem, to consider
if necessary any approximation on this flow, such as the quasi-geostrophic limit or the Euler 2D limit,
and finally to couple this subsystem with the small scale height and divergence fluctuations subsystem
in order to select the actual equilibrium state. If one linearize the large scale flow entropy entropy
(130) and the large scale flow energy (126), this picture of two subsystems in thermal contact gives a
justification to the variational problem introduced by [45] and extended by [25]. [45,25] suggest that for
a given frozen in space potential vorticity, the dynamics should relax through geostrophic adjustment to
a state minimizing the total energy. This result is recovered from the coupled variational problem (132).

4.2.4 Either a non-zero circulation or a non-zero bottom topography is required to sustain a large
scale flow at equilibrium

It is shown in appendix D that when circulation is zero (i.e. when Z1 = f ) and when topography is
zero (hb = 0), a state with a large scale flow at rest (um f = 0) is a maximizer of the large scale flow
macrostate entropy among all the possible energies:

S(0,{Zk}k≥0) = max
Em f

{
Sm f

(
Em f ,{Zk}k≥0

)}
when Z1 = f and hb = 0. (135)

According to Eq. (131), the fluctuation entropy S f luct increases with the fluctuation energy E f luct . The
total macroscopic entropy Sm f

(
E −E f luct ,{Zk}k≥0

)
+S f luct

(
E f luct

)
is therefore maximal when all the

energy is transferred into fluctuations (E f luct = E). This generalizes to a wider range of flow parameters
and to a wider set of flow geometries a result previously obtained by Warn in a weak flow limit for a
doubly periodic domain without bottom topography [53]. In addition, we will see in the next section
that when there is a non-zero bottom topography and rotation, a large scale flow can be sustained at
equilibrium.

4.3 The quasi-geostrophic limit

We show in this subsection that the variational problem of the Miller Robert Sommeria theory is recov-
ered from Eq. (133) for the large scale flow subsystem when considering the quasi-geostrophic limit,
which applies to strongly rotating and strongly stratified flows.

4.3.1 Geostrophic balance

Let E
1/2
m f be the typical velocity of the large-scale flow and let L =

√
|D | be the typical horizontal scale

of the domain where the flow takes place. We introduce the Rossby number and the Rossby radius of
deformation respectively defined as

Ro ≡
E

1/2
m f

f L
, R ≡

√
gH

f
. (136)
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Here f is the Coriolis parameter, H = 1 is the mean depth and g the gravity, see subsection 2.1. If f 6= 0
we can always rescale time unit so that f = 1, and we make this choice in the following. It is also
assumed that the aspect ratio of the domain where the flow takes place is of order one, so that L = 1
since we chose length unit so that |D |= 1. The quasi-geostrophic limit corresponds to small Rossby
number, and to a Rossby radius of deformation that is not significantly larger than the domain length
scale:

Ro ≪ 1, R−1 = O (1) . (137)

By construction, the mean flow is of the order of the Rossby number: |um f | ∼ Ro. The coarse-grained
interface height is given by

η = h−1+hb. (138)

Let us assume that the spatial variations in fluid depth are small compared to the total depth H = 1,
with the scaling η ∼ R−2Ro. At lowest order in Ro, the mean flow Bernoulli potential defined in Eq.
(115) becomes Bm f = R2η . Remembering that we consider in addition to the quasi-geostrophic limit
a weak fluctuation limit given by Eq. (125), which can be expressed as R2 ≫ β−1, Eq. (122) yields at
lowest order

Bm f = R2η = β−1 logGq + cst. (139)

This equation implies dBm f /dΨm f = q, consistently with what we expected for a stationary flow in the
absence of small scale fluctuations, see subsection 2.2. Taking the curl of Eq. (139) and collecting the
lowest order terms yields geostrophic balance10

R2∇⊥η = um f . (140)

Eq. (140) also shows that the scaling hypothesis for η is self-consistent.
It is remarkable that equilibrium statistical mechanics predicts the emergence of geostrophic bal-

ance. We stress that those results, which have been obtained through the introduction of a semi-
Lagrangian discrete model, are valid whatever the amplitude of bottom topography variations (i.e.
beyond the usual approximation hb ∼ Ro required to derive the quasi-geostrophic dynamics). By con-
trast, in the framework of a Eulerian discrete model, one would find that the large scale flow is not at
geostrophic equilibrium unless hb ∼ Ro or hb ≪ Ro, see Appendix E.

4.3.2 Quasi-geostrophic dynamics

The geostrophic balance is not a dynamical equation. When hb ∼ Ro, the dynamics if given by the
quasi-geostrophic equations. At lowest order in Ro, we get hum f = um f , and

ψm f =Ψm f , φm f = Φm f = 0. (141)

where Ψm f and ψm f are the transport streamfunction and the streamfunction obtained through the
Helmholtz decomposition of hum f and um f , respectively. In that case, the relative vorticity is

ω = ∆ψm f . (142)

The geostrophic balance (140) is equivalent to η = R−2ψm f +C. The value of ψm f at the domain
boundary can always be chosen such that the constant term vanishes, which yields

η =
ψm f

R2 . (143)

10 For the shallow water model, the fluid is at hydrostatic balance. Thus the pressure in the fluid is P(x,y,z,t) = Po +
ρg(H +η(x,y,t)− z). Then the pressure horizontal gradient is simply proportional to the interface height horizontal
gradient. Hence, the geostrophic balance simply writes R2∇⊥η = um f .
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Mass conservation given in Eq. (2) leads then to the following constraint on the streamfunction:
ˆ

dx ψm f = 0. (144)

Given a potential vorticity level σq, a change of variable can be performed by introducing quasi-
geostrophic potential vorticity levels11

σg ≡ (σq −1) . (145)

The pdf of quasi-geostrophic levels is

ρg (x,σg) = ρq (x,1+σg) . (146)

The local quasi-geostrophic potential vorticity moments are defined as

∀k ∈ N, qk
g ≡
ˆ

dσg σ k
g ρg. (147)

At lowest order in Ro, the coarse-grained quasi-geostrophic potential vorticity obtained by considering
k = 1 in Eq. (147) becomes

qg = ω −η +hb. (148)

which, using Eqs. (142) and (143), yields

qg = ∆ψm f −
ψm f

R2 +hb . (149)

In the quasi-geostrophic limit, the large scale flow is fully described by the streamfunction ψm f , which
can be obtained by inverting the coarse-grained potential vorticity field defined in Eq. (149).

4.3.3 Quasi-geostrophic constraints and variational problem

At lowest order in Ro, and after an integration by part, the expression of the mean-flow energy in Eq.
(126) is equal to the quasi-geostrophic energy:

Em f ,g

[
qg

]
≡ 1

2

ˆ

dx

[
(
∇ψm f

)2
+

ψ2
m f

R2

]
, (150)

where ψm f can be expressed in terms of qg through Eq. (149). Similarly, the conservation of the po-
tential vorticity moments defined in Eq. (128) implies the conservation of quasi-geostrophic potential
vorticity moments

∀k ∈ N, Zg,k ≡
ˆ

dx qk
g , (151)

and the macrostate entropy of the large scale flow defined in Eq. (130) writes now

Sm f ,g [ρg] =−
ˆ

dxdσq ρg logρg. (152)

11 This change of variable is a guess guided by the fact that the QG potential vorticity is usually obtained by expanding
the SW potential vorticity in the limit of small height variations minus a constant and unimportant term. Here we start by
removing the unimportant constant (1 in our unit system) from the potential vorticity levels, and then perform the small
scale expansion in height.
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Using Eq. (150), (151) and (152), the variational problem in Eq. (133) is now recast into a simpler
variational problem on the pdf ρg:

Sm f ,g

(
Em f ,{Zk}k≥1

)
= max

ρg,
´

ρg=1

{
Sm f ,g [ρg]

∣∣ Em f ,g [ρg] = Em f , ∀k ∈ N Zg,k [ρg] = Zk

}
. (153)

The entropy Sm f ,g, the energy Em f ,g and the potential vorticity moments
{
Zg,k

}
k≥1 are defined in Eqs.

(152), (150) and (151). The variational problem defined in Eq. (153) is the variational problem of the
Miller-Robert-Sommeria statistical mechanics [22,33].

4.3.4 Maximum energy states and consistency of the quasi-geostrophic approximation.

We have shown that in the weak height fluctuation limit and the quasi-geostrophic limit, computation
of the large scale flow associated with the equilibrium state amounts to the computation of the solution
of the variational problem in Eq. (153), with the restriction that the temperature is positive (due to
the coupling with small scale fluctuations of height and divergence, as discussed in subsection 4.1.1).
Here we discuss the solutions of this variational problem, which are energy maxima for a given set of
potential vorticity moments

{
Zg,k

}
k≥1. Although the initial weak fluctuation or quasi-geostrophic limit

may not be fulfilled for such states, they can always be computed, and it provides an upper bound for
the energy of the large scale flow obtained in those limits.

It is known that for positive temperatures (β−1 = E f luct > 0), the equilibrium entropy defined in
Eq. (153) is concave [4], and the energy increases when β decreases. This means that the state with a
maximum energy is reached when β → 0, see e.g. [33].

Injecting β = 0 in the expression of ρq in Eq. (110) leads to a uniform mean potential vorticity field.
According to Eq. (146) and (147), this implies that the quasi-geostrophic potential vorticity field is also
uniform: qg = Zg,1 where Zg,1 =

´

dx qg is the circulation. Since qg is a constant, this state is referred
to as the “mixed” state. We get

∆ψmix −
ψmix

R2 = Zg,1 −hb. (154)

Let us call Emix the energy of the mixed state:

Emix ≡ max
ρg,
´

ρg=1

{
Em f |∀k ∈ N Zg,k = Zg,k

}
. (155)

Using Eq. (150), it can formally be written

Emix =−1
2

ˆ

(Zg,1 −hb)

(
∆ − 1

R2

)−1

(Zg,1 −hb) . (156)

For a given domain geometry, a given circulation Zg,1 and a given bottom topography field hb, a
non trivial large scale flow can be observed whenever Emix > 0. We see from Eq. (156) and (155) that
the condition for a large scale flow to exist is that either the circulation Zg,1 is non zero or the bottom
topography hb is non-zero. If both Zg,1 = 0 and hb = 0, then the energy of the large scale flow vanishes
(Em f = 0), and all the energy is lost in small scale fluctuations (E = E f luct ), consistently with the results
of subsection 4.2.4. In this case, coupling thermally a large scale flow with fluctuations leads to a state
with all the energy lost in fluctuations. Note that in the case Zg,1 = 0 R ∼ 1, Emix can also be interpreted
as a norm of the topography field hb.

Since Em f ≤ Emix, and since Emix depends only on the problem parameters (namely the circulation,
the Rossby radius and the bottom topography), a sufficient condition to have Ro ≪ 1 is

E
1/2
mix ≪ 1. (157)

If this condition is fulfilled, the quasi-geostrophic assumption is self-consistent (as well as for the
scaling hb ∼ Ro in the case Zg,1 = 0).
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5 Explicit computation of phase diagrams and discussion

The aim of this section is to apply the results of the previous section to the actual computation of equi-
libria and their energy partition. In order to solve analytically the variational problem of the statistical
mechanics theory, we focus on a subclass of equilibria referred to as the energy-enstrophy equilibrium
states. This allows to build phase diagrams in a two parameter space, and to discuss the energy partition
between a large scale flow and small scale fluctuations when these parameters are varied. We finally
discuss the role of shocks that occur in the actual shallow water dynamics, and present a geophysical
application to the Zapiola anticyclone.

5.1 Energy-enstrophy equilibria for the quasi-geostrophic model.

We consider the variational problem

Sg,m f (E,Z2) = max
ρg,
´

ρg=1

{
Sm f ,g [ρg]

∣∣ Em f ,g [ρg] = Em f , Zg2 [ρg] = Z2, Zg1 [ρg] = 0
}
, (158)

where the functionals Sm f ,g, Em f ,g, Zg1,2 are defined in Eqs. (152), (150), and (151), respectively.
The peculiarity of this variational problem is that only two potential vorticity moments (the circu-

lation and the enstrophy) have been retained as a constraint, in addition to the energy. Such energy-
enstrophy equilibria are a subclass of statistical equilibria solutions of the more general variational
problem given in Eq. (153), see e.g. [1,26]. For a given global distribution of potential vorticity, several
limit cases on the energy allow to simplify the computation of the solutions of

the variational problem in Eq. (153) into the computation of the simpler variational problem in
Eq. (158). For instance, assuming that bottom topography is non zero, and that the global potential
distribution is such that the mixed state q = cst exists, the solutions of (158) are the solutions of the
more general variational problem Eq. (153) when E → Emix.

The set of all potential vorticity fields q corresponding to solutions of the variational problem in Eq.
(158) have been previously described by [6,49,51,26] in the case of a bounded geometry, and phase
diagrams were obtained with energy E and circulation Z1 as external parameters. The role of enstrophy
Z2 was not discussed. The main reason is that for a given large scale flow characterized by E1 and Z1,
changing Z2 would only imply changes in the small scale fluctuations of potential vorticity levels, see
e.g. [26], and such small scale fluctuations do not contribute to the total energy. In the present case, Z2
will play an important role in determining the energy partition between the large scale (vortical) flow
and small scale fluctuations due to the height and divergent velocity field. For the sake of simplicity we
consider vanishing circulations Z1 = 0.

The problem (158) is solved in Appendix F for positive temperature states, and we present here the
main results. A typical phase diagram is shown on Fig. 2. This figure is obtained by assuming that the
bottom topography is proportional to the first Laplacian eigenmode (see Fig. 2-c) but it is explained in
Appendix F that this phase diagram is generic to any bottom topography.12

There are two important quantities related to the height field: the maximum allowed energy Emix

defined in Eq. (156), and the available potential enstrophy

Zb ≡
ˆ

dx h2
b, (159)

which is the maximum reachable value for the macroscopic enstrophy
´

dx qg
2 , see Appendix F. Both

Zb and Emix are a norm for the height field.

12 For such a bottom topography, the topography, the stream function and the potential vorticity field are all proportional
to each other for any initial condition for the enstrophy Z2 and the energy E. That is why we do not show plots of the
flows for different point of the phase diagram in Fig. 2. We rather choose to consider the case of the Zapiola drift in
subsection 5.3 to see the effect of different value for the initial energy.
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Fig. 2: a) Phase diagram of the energy-enstrophy ensemble in the plane (Z2,Em f ). Zb is the maximum reachable value for
the macroscopic enstrophy defined in Eq. (159). Emix is the maximum reachable energy for the mean-flow defined in Eq.
(155). The dashed lines corresponds to isotherms, on which the energy E f luct of the small scale fluctuations is constant.
The thick black line on the bottom left corner is a boundary below which no equilibria exist. b) Ratio between the energy
of the large scale flow Em f over the total energy Em f /E as a function of the total energy E = Em f +E f luct . The different
curves correspond to different values of the initial microscopic enstrophy Z2 represented by horizontal marked lines on
panel a. The x-axis is on a logarithmic scale. c) Colormap plot of the bottom topography hb used to compute the phase
diagram in Fig. 2-a-b and 3. Here, hb = sin(πx) is a single mode of the Laplacian operator. Thus the stream function ψ
and the potential vorticity field qg are simply proportional to hb for any values of the initial enstrophy Z2 and the initial
energy E.
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The phase diagram of the quasi-geostrophic energy-enstrophy ensemble restricted to positive tem-
perature states is presented in Fig. 2-a. As explained in subsection 4.3, the energy of the large scale
flow Em f can not exceed the value Emix defined in Eq. (155), due the restriction of positive temperature
states. Depending on the sign of Z2 −Zb, where the potential enstrophy Zb is defined in Eq. (159), the
system behaves differently:

– When Z2 > Zb the minimum admissible large scale flow energy is zero.
– When Z2 < Zb , there exists a minimum reachable large scale flow energy Emin(Z2) below which

there is no equilibria. The curve Emin increases from 0 to Emix when Z2 decreases from Zb to 0.

The thick black line in Fig. 2-a delimits the domain of existence for the equilibria. The thin dashed
black curves represent the isotherm, i.e. the points of the diagram with the same value of E f luct . Note
that there is no bifurcation in this phase diagram; to each point (Em f ,Z2) corresponds a single equilib-
rium state, whose expression is given explicitly in Appendix F. The structure of an equilibrium large
scale flow above a topographic bump at low and high energy are presented in the last subsection.

The phase diagram in Fig. 2 allows to discuss the energy partition between small scale fluctua-
tions and large scale flow when the quasi-geostrophic flow is coupled to small scale fluctuations of
the height field and divergence field (through the shallow water dynamics). The motivation behind the
works of [53] and [56] was the prediction of energy partition between large scale flow and small scale
fluctuations. Here we provide for the first time an explicit expression for such energy partition.

We have seen that in the weak height fluctuation limit, the temperature of the large scale flow at
equilibrium is given by the energy of the small scale fluctuations of height and divergence fields. The
parameters are now the total energy E and enstrophy Z2. The mean flow energy Em f and the fluctuation
energy E f luct are found by solving

E = Em f

(
E f luct ,Z2

)
+E f luct , (160)

which is easily done graphically using the diagram of Fig. 2-a, and performed numerically in practice,
see Appendix F for more details. The ratio of the large scale energy Em f over the total initial energy E
as a function of the total initial energy E is shown on Fig. 2-b for different values of initial enstrophy
Z2. According to computations performed in Appendix F, four cases for the energy partition in the low
energy limit are distinguished depending on the sign of Z2 −Zb and the scaling of Z2 −Zb with E:

– When Z2 < Zb, the ratio Em f /E tends to 1 when E tends to the minimal admissible energy Emin(Z2).
– When Z2 > Zb, the ratio Em f /E tends to 0 when E tends to zero.
– When Z2 > Zb with Z2−Zb ∼ Eα with α > 1/2, the ratio Em f /E tends to 1/5 when E tends to zero.
– When Z2 > Zb with Z2 − Zb ∼ E1/2, the ratio Em f /E tends to a finite value (depending on the

proportionality coefficient between Z2 −Zb and E1/2 and the bottom topography).
– When Z2 > Zb with Z2 −Zb ∼ Eα with α < 1/2, the ratio Em f /E tends to 0.

Whenever Z2 ≥ Zb, we found E f luct ∼E. We see on Fig. 2-b that the ratio Em f /E converges to one when
E → Emin(Z2 < Zb), that it converges to zero for Z2 > Zb, and that it converges to 1/5 for Zb = Z2. Note
also that Em f is bounded by Emix such that Em f /E tends to zero when E tends to infinity.

5.2 The effect of energy dissipation and enstrophy dissipation

The actual shallow water dynamics is known to be characterized by shocks that prevent energy conser-
vation. In addition, the presence of viscosity, no matter how small it is, may lead to enstrophy dissipa-
tion, and more generally would break the conservation of potential vorticity moments. The aim of this
subsection is to discuss qualitatively the effect of these dissipative processes on the large scale flow,
assuming that the system evolves through a sequence a equilibrium states, which is a natural hypothesis
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Fig. 3: Phase diagram of Fig. 2-a with hypothetical trajectories of the shallow water system in the presence of dissipation.
Trajectory A-B: the dynamics dissipates small scale fluctuations of height and divergence field only. Trajectory A-C: the
dynamics dissipates small scale fluctuations of potential vorticity. Trajectory A-D: the dynamics dissipates small scale
fluctuations of all the fields.

if there exists a separation of time scales.

For the sake of simplicity, let us focus on the phase diagram obtained in the energy-enstrophy en-
semble and described in the previous subsection. Let us consider that the system has reached at some
time an arbitrary equilibrium state denoted by A in Fig. 3.

Let us first consider a case where energy is conserved, but enstrophy is dissipated. Then the sys-
tem will evolve form point A to point C of Fig. 3. In other words, the small scale enstrophy Z2 will
be dissipated so that the enstrophy of the system tends to the minimum admissible value of enstrophy
Z2 min(Em f ). Note that the curve Z2 min(Em f ) is nothing but the curve of energy minima for a given
Z2 < Zb. We saw previously that the mean-flow energy Em f dominates the fluctuation energy E f luc on
this line. We conclude that enstrophy dissipation alone drives the system towards a large scale flow
without small scale fluctuations. This large scale flow vanished when topography vanished (since Emix

and Zb would also vanish).

Let us now consider that the enstrophy is not dissipated and look the effect of energy dissipation. Let
us first explain why one may expect that even weak dissipation can lead to a significant decrease of the
large scale flow energy Em f when E f luct 6= 0 (in the absence of small scale fluctuations, Em f would not
decrease significantly with weak dissipation). At equilibrium, the energy of the small scale fluctuations
E f luct should be equipartitioned among all the modes of the height field and divergent field. Since there
is an infinite number of such modes, this means a loss of energy through dissipative process, no matter
how small they are. Since Em f decreases with E f luct , dissipating the energy E f luct amounts to diminish
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the energy Em f . For a given enstrophy Z2 > Zb, as in the case of point A Fig. (3), this dissipative process
drives the system towards a zero energy state B. For a given enstrophy Z2 < Zb, this process would drive
the system towards the line of minimal energy.

We expect to see both enstrophy and energy dissipation working together, so the trajectory of the
system in phase diagram will be somewhere between the trajectory A→B and the trajectory A→C, e.g.
the trajectory e.g. A → D. We conclude that in the presence of topography and small scale dissipation,
we eventually reach a geostrophic regime at large time, provided that the initial enstrophy is sufficiently
low (otherwise the final state contains no large scale flow). In addition, each time the system is perturbed
by adding a little amount of energy without changing the enstrophy, it drives the system a bit more
towards the mixed state

(
Em f = Emix,Z2 = 0

)
.

5.3 Flow structure of the equilibrium states: application to the Zapiola Anticyclone.

So far we have discussed energy partition for shallow water equilibria in the quasi-geostrophic limit.
Here we focus on the structure of the large scale flow associated with these equilibrium states. We
consider for that purpose an oceanic application to the Zapiola anticyclone.

The Zapiola anticyclone is a strong anticyclonic recirculation taking place in the Argentine basin
above a sedimentary bump known as the Zapiola drift [54,38,24]. The anticyclone is characterized by
a mass transport as large as any other major oceanic current such as the Gulf Stream. It is a quasi-
barotropic (depth independent) flow, with typical velocities of the order of 0.1 m.s−1 , and a lateral
extension of the order of 800 km.

It is known from the earlier statistical mechanics studies that positive temperature states in the
energy enstrophy ensemble of one layer models lead to anticyclonic circulations above topography
anomalies, see e.g. [35] and references therein. A generalization of this result to the continuously strat-
ified case with application to the Zapiola anticyclone is given in [48].

We have shown in this paper that quasi-geostrophic equilibria characterized by positive temperature
states are also shallow water equilibria. The Zapiola anticyclone can therefore be interpreted as an
equilibrium state of the shallow water model. Let us now show the qualitative difference between low
energy states (when Z2 > Zb and Em f → 0) and high energy states (when Em f → Emix), which are shown
on Fig. 4-a and Fig 4-b, respectively.

In both cases the bottom topography is the same, and its isolines are visualized with thin black lines.
Bottom topography has been obtained from data available online and described in [39]. We isolated the
largest close contour defining the Zapiola drift (the sedimentary bump above which the recirculation
takes place), and considered the actual bottom topography inside this contour, and a flat bottom outside
this contour. It allows to focus on the interesting flow structure occurring above the Zapiola drift.

Energy-enstrophy equilibrium states are then computed using Eq. (234) in Appendix F. We have
seen that low energy limit corresponds to β → +∞ with Z2 > Zb. Taking this limit in Eq. (234) yields
ψm f = (Z2 −Zb)hb/β : the equilibrium state is a Fofonoff flow [12], meaning that streamlines are
proportional to the isolines of topography, just as in Fig. 3-a.

The maximum energy state corresponds to the case β = 0, which corresponds to the mixed state

defined in Eq. (154). The streamfunction is ψmix =
(
R−2 −∆

)−1
hb. The operator

(
R−2 −∆

)−1
with

R ∼ 1 is expected to smooth out the small scale topography features, just as in Fig. 4-a.

6 Conclusion

We have presented in this paper analytical computations of equilibrium states for the shallow water
system, giving thus predictions for the energy partition into small scale fluctuations and large scale
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Fig. 4: Plots of the streamfunction isolines (colored lines) from higher values (red) to lower values (blue) over the Zapiola
Drift topography iso-contours (black lines) for a small mean-flow energy (a)) and for a high mean-flow energy (b)).

flow. Our results rely on the definition of a discrete version of the shallow water model. Once our semi-
Lagrangian discrete model was introduced, the whole machinery of equilibrium statistical mechanics
could be applied.

We found that equilibrium states of the shallow water system are associated with the concomitant
existence of a large scale flow which is a stationary state of the shallow water dynamics, superimposed
with small scale fluctuations that may contain in some cases a substantial part of the total energy. The
novelty of our work was to explicitly compute the contribution of these small scale fluctuations, and to
decipher the physical consequences of the presence of these fluctuations.

In particular, we found that the presence of small scale fluctuations implies a positive temperature
for the equilibrium state. This explains a previous result by Warn [53], who showed that equilibrium
states in a weak flow limit admit no large scale flow when there is no bottom topography and no lateral
boundaries. We have generalized these results, by showing that a large scale vortical flow exists at
equilibrium when there is both rotation and bottom topography, or when there is a non-zero circulation.

In the limit of weak height fluctuations, we found equipartition of the small scale kinetic and po-
tential energy. We also obtained an interesting physical picture of the equilibrium state, which may
be interpreted in that limit as two subsystems in thermal contact. One subsystem is the “large scale”
potential vortical flow whose entropy is closely related to the one introduced heuristically by Chavanis
and Sommeria (see [7]). Our work provides therefore a microscopic justification of their entropy with a
complete statistical mechanics derivation and a generalization of this results by including the presence



39

of small scales fluctuations of the height and divergence fields. We note however that it is wrong to
interpret the "large scale" potential vortical flow entropy as the entropy of the system, it is only one part
of it. The other subsystem contains the field of height fluctuations associated with small scale potential
energy, and the field of velocity fluctuations, associated with small scale kinetic energy. These velocity
fluctuations are due solely to the divergent part of the velocity field. Warn obtained a similar result in
the weak flow limit, by projecting the non-linear dynamics into eigenmodes of the linearized dynamics
[53]. He found an energy partition into a vortical flow on the one side, and on inertia-gravity waves on
the other side, with a weak coupling between both subsystems. Hence we may interpret local height
and divergent velocity fields fluctuations appearing in our model as inertia gravity waves.

We studied the quasi-geostrophic limit for the large scale flow, taking into account the presence
of small scale fluctuations. We recovered in this limit the variational problem of the Miller-Robert-
Sommeria theory, with the additional constraint that the temperature is positive. We obtained phase
diagrams in the particular case of energy-enstrophy equilibria, with explicit prediction for the ratio
of energy between small scale fluctuations and a large scale quasi-geostrophic flow. This allowed to
discuss the qualitative effect of small scale dissipation and shocks on the temporal evolution of the
system. The main result is that such dissipative processes drive the system towards a minimum energy
state (depending on the enstrophy), which may be non-zero.

In view of those results, the semi-Lagrangian discrete model seems to be a good discretization of
the shallow water system. It has the key desired properties to take into account of the conservation of
fluid particle volume, while working in an Eulerian framework. This gives a clear framework, which
allows for a rigorous derivation once the discretization is assumed. Moreover we stress that it leads to
equilibrium states that are stationary states of the shallow water model, by contrast with other choices
of discretization. What is not completely satisfactory however is that there is a degree of arbitrariness
in the definition of the discrete model. We have tried to have the model consistent with the geometric
constraints related to the Liouville theorem, even though the link between the model and the Liouville
theorem is clearly not rigorous. There is clearly room for improvement, but we are afraid we are faced
with extremely tricky mathematical problems. Nevertheless we guess that the invariant measure of the
discrete model converge to the actual invariant measure of the shallow water system in the continuous
limit, but proving this is beyond the scope of this paper.

The statistical mechanics prediction of a vanishing large scale flow in the absence of boundary and
bottom topography seems to contradict some numerical results performed in such configurations, in
which case long lived vortex were reported, see e.g. [11]. This issue is related to the estimation of a
time scale for the convergence towards equilibrium. Indeed, if the coupling between the large scale
flow (potential vortical modes) and the small scale fluctuations (inertia-gravity waves) is weak, and
if one starts from an initially balanced and unstable large scale flow, then this large scale flow may
self-organize spontaneously on a short time scale into an equilibrium state of the quasi-geostrophic
subsystem. This justifies the physical interest of the variational principle for the large scale flow in-
troduced by [7] without small scale fluctuation. According to our statistical mechanics predictions, the
energy of this large scale flow should leak into small scale fluctuations, but this process may be slow
if coupling between both subsystems is weak. This difficult issue was already raised by Warn [53], and
the interaction between geostrophic motion and inertia-gravity waves remains an active field of research
[47]. In particular, very interesting models of interactions between near-inertial waves and geostrophic
motion have been proposed [58,14,57]. In the context of statistical mechanics approaches, it has been
proposed to compute equilibrium states with frozen degrees of freedom [36] or restricted partition func-
tions in order to avoid the presence of inertia-gravity waves [16].

One of the main interests of the present study is the prediction of a concomitant large scale energy
transfer associated with a large scale potential vortical flow and a small scale transfer of energy that is
lost into small scale fluctuations interpreted as inertia-gravity waves. In that respect, the shallow water
model lies between three dimensional and two-dimensional turbulence. There are other models for
which the energy may be partitioned into a large scale flow and small scale fluctuations. There are, for
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instance, some strong analogies with the case of three-dimensional axisymmetric Euler equations, that
is also intermediate between 2D and 3D flows. A statistical mechanics theory has been recently derived
for this system by Thalabard et al [41]. This statistical theory can also be understood as two subsystems
in contact, one of them being the fluctuations, and thus leading to positive temperatures [41]. From this
key observation, [41] concluded that the temperature of the system, that measures the variance of the
fluctuations, is positive and uniform in space, as previously stressed in [27]. More generally, and beyond
those simplified flow models that allow for analytical treatment, it is common to observe in bounded
laboratory experiment the emergence of large scale structures at the domain scale superimposed with
small scale energy fluctuations, see e.g. [42]. It is not clear whether equilibrium theory may be relevant
to describe such problems, but we believe that it is at least a useful first step to address these questions.

A Invariant measure and formal Liouville theorem

A.1 Formal Liouville theorem for the triplet of fields (h,hu,hv)

The existence of a formal Liouville theorem for the shallow water dynamics is shown in this appendix. The shallow water
system is fully described by the triplet of fields (h,hu,hv). We consider a measure written formally as

dµ =CD [h]D [hu]D [hv] ,

with uniform density in (h,hu,hv)-space (C is a constant). The average of any functional A over this measure is

∀A [h,uh,vh] , 〈A 〉µ =

ˆ

dµ A . (161)

The term
´

D [h]D [hu]D [hv] means that the integral is formally performed over each possible triplet of fields (h, hu, hv).
The measure is said to be invariant if

∀A ,
d
dt

〈A 〉µ = 0 (162)

This yields the condition

∀A ,

ˆ

D [h]D [hu]D [hv]

ˆ

dx
δA

δ h
∂th+

δA

δ (hu)
∂t (hu)+

δA

δ (hv)
∂t (hu) = 0. (163)

An integration by parts yields

∀A ,

ˆ

D [h]D [hu]D [hv]A

ˆ

dx

(
δ ∂th

δ h
+

δ ∂t (hu)

δ (hu)
+

δ ∂t (hv)

δ (hv)

)
= 0. (164)

We say that the equation follows a formal Liouville theorem if we formally have

ˆ

dx

(
δ ∂th

δ h
+

δ ∂t (hu)

δ (hu)
+

δ ∂t (hv)

δ (hv)

)
= 0, (165)

which ensures that the measure dµ is invariant.
The shallow water equations (5) and (6) can be written on the form

∂t (hu) =−∂x

(
hu2 +

1
2

gh2
)
−∂y (huv)+ f hv, (166)

∂t (hv) = −∂y

(
hv2 +

1
2

gh2
)
−∂x (huv)− f hu, (167)

∂th+∂x (hu)+∂y (hv) = 0. (168)

We see that
δ ∂th

δ h
+

δ ∂t (hu)

δ (hu)
+

δ ∂t (hv)

δ (hv)
=−∇ ·

(
δ (hu)

δ h
+

δ (huu)

δ (hu)
+

δ (hvu)

δ (hv)

)
. (169)

As the divergence operator is a linear operator, it commutes with the functional derivatives. This allows to conclude that
the measure µ is invariant. This shows formally the existence of a Liouville theorem for the fields (h,uh,vh).
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A.2 Change of variables from (h,hu,hv) to (h,q,µ)

The microcanonical measure can formally be written

dµh,hu,hv = D [h]D [hu]D [hv]δ (E −E)
+∞

∏
k=0

δ (Zk −Zk) , (170)

The constraints are more easily expressed in terms of the variables

h, q =
−∂yu+∂xv+ f

h
, µ = ∆−1/2 (∂xu+∂yv) . (171)

It will thus be more convenient to use these fields as independent variables. We call J [(h,hu,hv)/(h,q,µ)] the Jacobian
of the transformation. We proceed step by step to compute this Jacobian. The change of variables (h,hu,hv)→ (h,u,v)
involves a upper-diagonal Jacobian matrix at each point r:

J

[
(h,hu,hv)

(h,u,v)

]
=

(
1 u v
0 h 0
0 0 h

)
(172)

which implies det(J [(h,hu,hv)/(h,u,v)]) = h2 and

D [h]D [hu]D [hv] = h2D [h]D [u]D [v] . (173)

The change of variable (h,u,v) → (h,ω ,µ) involves linear operators that do not depend on space coordinates, thus the
determinant of the Jacobian of the transformation is an unimportant constant:

D [h]D [u]D [v] =CD [h]D [ω ]D [µ ] . (174)

Using ω = qh−1, the change of variable (h,ω ,µ)→ (h,q,µ) involves an upper diagonal Jacobian matrix at each point
r:

J

[
(h,ω ,µ)

(h,q,µ)

]
=

(
1 q 0
0 h 0
0 0 1

)
, (175)

with a determinant det(J [(h,ω ,µ)/(q,h,µ)]) = h. Finally, the Jacobian of the transformation is J [(hu,hv,h)/(q,h,µ)] =
h3 and the microcanonical measure can formally be written

dµh,q,µ =Ch3D [h]D [q]D [µ ]δ (E −E)
+∞

∏
k=0

δ (Zk −Zk) . (176)

We note the presence of the pre-factor h3 which gives the weight of each microscopic configuration in the (h,q,µ)-space.

B Relevance of the constraints for the discrete model

In this appendix, we explain how the dynamical invariants of the shallow water model, given in Eqs. (32) and (34) re-
spectively, are related to the constraints of the microcanonical ensemble for the discrete model, given in Eqs. (92) and
(97), respectively.

B.1 Areal coarse-graining for continuous fields

Let us consider a field g(x) on the domain D where the flow takes place, and let us consider the uniform grid introduced
in subsection 3.2.1. We define the local areal coarse-graining of the continuous field g(x) over a site (i, j) as

gi j = N

ˆ

site (i, j)
dx g(x) , (177)

where 1/N is the area of the site (i, j) and where
´

site (i, j) means that we integrate over the site (i, j) only. With an abuse
of notation, we use here the same notation gi j as in Eq. (50), since the coarse-graining operator defined in Eq. (177)
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generalizes to the continuous case the areal coarse-graining operator defined in Eq. (50) for the discrete microscopic
model, taking into account the fact that for a fluid particle “n” of area dxn and height hn, we get Ndxn = 1/(Mhn).

We denote g the continuous limit (large N) of gi j . Integrating a continuous field g amounts to perform the integration
over its local average field g:

ˆ

dx g(x) =

ˆ

dx g (x) . (178)

B.2 Potential vorticity moments

Using (178), the potential vorticity moments in Eq. (34) simply leads to

Zk =

ˆ

dx hqk. (179)

Now that the potential vorticity moments are expressed in terms of the areal coarse-graining of moments of h and q, it
can directly be expressed in terms of the probability density field ρ

(
σh,σq,σµ

)
through Eq. (90), and we recover the

expression of the constraint given in Eq. (92), whose discrete representation is given in Eq. (56).

B.3 Energy

Using (178), recalling that we restrict ourself to bottom topographies such that hb = hb, the total energy of the shallow
water model defined in Eq. (32) can be decomposed into a mean flow kinetic energy defined in Eq. (94), a potential
energy term due to local height fluctuations and defined in Eq. (96), a fluctuating kinetic energy term

Ec, f luct ≡ E −Em f −Eδh (180)

Ec, f luct ≡
1
2

ˆ

dx
(
hu2 −hu2

m f

)
, (181)

where the velocity fields u and um f are computed from the triplet (h,q,µ) and from the triplet
(
h,hq,hµ

)
, respectively

through

u = ∇⊥ψ +∇φ , (hq− f ) = ∆ψ , µ = ∆1/2φ , (182)

and through

um f = ∇⊥ψm f +∇φm f ,
(
hq− f

)
= ∆ψm f ,

hµ

h
= ∆1/2φm f . (183)

We want to discuss the relation between decomposition of the energy for the discrete model, Eq. (97) and the decompo-
sition for the actual total energy defined in Eq. (32). Our construction is relevant if these two decomposition coincide in
the continuous limit, or equivalently if Ec, f luct is equal to Eδ µ (95) in the continuous limit. In the following we show that
this is the case if some cross correlations are actually negligible. More precisely, we assume that

1. For any positive integers k, l,m , the coarse-grained fields hkql µm(x) defined through the coarse graining procedure
in Eq. (178) exist. In the framework of our microscopic model introduced in subsection 3.2, this hypothesis is
automatically satisfied by assuming that the cut-off µmin,µmax,qmin,qmax,hmax scales as Nα with α < 1. Other fields
may be characterized by local extreme values such that the limit defined in Eq. (178) does not converge. For instance,
we will see that the actual divergence ζ = ∆φ of the equilibrium state is not bounded, i.e. that ζ would have no
meaning.

2. The fields h,q,µ are decorrelated (in particular, hkql µm = hkql µm). This point will be shown to be self-consistent
when computing the equilibrium state.

3. The coarse-grained divergent velocity field is equal to the mean-flow velocity field ∇φ = ∇φm f .

4. ∆
[(

φ −φm f

)2
]
= 0. While ∇(φ −φm f ) is a random vector field characterized by wild local fluctuation, this hypoth-

esis amounts to assume that those fluctuations have no preferential direction.
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We believe that these four assumptions would be satisfied by a typical triplet of fields (h,q,µ) picked at random among
all the possible states satisfying the constraints of the dynamics. By typical, we mean that an overwhelming number of
fields would share these properties.

We then prove that these four assumptions are sufficient to prove that Ec, f luct is equal to Eδ µ (95) in the continuous
limit. According to the assumption 1, ω = hq−1 is well defined. Classical arguments show that the streamfunction of the
coarse-grained vorticity field ω is equal to the streamfunction of the vorticity field, i.e. that∇ψm f = ∇ψ , see e.g. [33,21].
Qualitatively, this is due to the fact that inverting the Laplacian operator smooth out local fluctuations of the vorticity13.
This yields

u = um f +∇
(
φ −φm f

)
. (184)

Injecting this expression in the kinetic energy density expression Eq. (181), using that h and µ are not correlated (as-
sumption 2), and using ∇φ = ∇φm f (assumption 3) yields

Ec, f luct =
1
2

ˆ

dx h
(
∇
(
φ −φm f

))2
. (185)

Let us now remember the definition of the coarse-graining operator in Eq. (178):

(
∇
(
φ −φm f

))2
= lim

N→∞
N

ˆ

Si j

dx
(
∇
(
φ −φm f

))2
, for x ∈ Si j, (186)

where Si j is the surface covered by a grid site (i, j). An integration by parts yields

N

ˆ

Si j

dx
(
∇
(
φ −φm f

))2
=−N

ˆ

Si j

dx
[(

∆−1/2 (µ −µ)
)(

∆1/2 (µ −µ)
)]

+N

˛

∂Si j

dl n ·
(
φ −φm f

)
∇
(
φ −φm f

)
(187)

Projecting the first term of the rhs on Laplacian eigenmodes allows to simplify the expression of the first term of the rhs
in Eq. (187):

−N

ˆ

Si j

dx
[(

∆−1/2 (µ −µ)
)(

∆1/2 (µ −µ)
)]

= N

ˆ

Si j

dx (µ −µ)2 . (188)

The second term of the rhs in Eq. (187) can be written as

N

˛

∂Si j

dl n ·
(
φ −φm f

)
∇
(
φ −φm f

)
=

N

2

ˆ

Si j

∆
[(

φ −φm f

)2
]

(189)

which, according to assumption 4, vanishes in the large N limit. Finally, the kinetic energy density of the fluctuations is
simply expressed as

Ec, f luct =
1
2

ˆ

dx h
(

µ2 −µ2
)
. (190)

Finally, we use again the assumption 2 to get

Ec, f luct =
1
2

ˆ

dx

(
hµ2 − hµ

2

h

)
= Eδ µ , (191)

which is the expected result.

C Critical points of the mean-flow variational problem

In this Appendix, we compute the critical points of the mean-flow variational problem (100) stated in section 3. In a
first step, we solve an intermediate variational problem in order to show the factorization of the probability density ρ
with a Gaussian behavior for the divergence fluctuations. Knowing that, we solve in a second step the original variational
problem.

13 The divergent part of the velocity field can not be treated in the same way. Indeed, the operator ∆−1/2 is less smooth
than the operator ∆−1, and one can not derive φ = φm f by inverting µ = ∆1/2φ . One may want to use ζ = ∆φ , but the
result would be the same since ζ is not bounded (the field µ is characterized by fluctuations which are controlled by the
kinetic energy, and hence by the total energy, but this is not the case for ζ ).
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C.1 Intermediate variational problem

As the energy and the potential vorticity moments depend only on the coarse-grained fields h, h2, hµ , hµ2 and the local

potential vorticity moments
{

hqk

}
, we introduce an intermediate variational problem where these coarse-grained fields

are given as constraint:

max
ρ,
´

ρ=1

{
S [ρ ]

∣∣∣∣ h,h2,hµ,hµ2,
{

hqk

}
k≥1

"fixed"

}
. (192)

The idea of introducing the intermediate variational problem is to find a simpler ansatz for the probability density field ρ
. This ansatz will be used afterward into the general variational problem (100).

In order to compute the critical points of the variational problem (192), we introduce the Lagrange multipliers

αh (x) , αh2 (x) , αhµ (x) , αhµ2 (x) ,
{

αhq,k (x)
}

k≥0 and ξ (x) associated with the constraints h, h2, hµ, hµ2,
{

hqk
}

k≥1
and the normalization constraint, respectively. Using Eq. (89) and the first variations

∀δ ρ , δ S−
ˆ

dx

[
αhδ h+αh2δ h2 +αhµ δ hµ +αhµ2δ hµ2 +

+∞

∑
k=1

αhq,kδ hqk +ξ

ˆ

δ ρ

]
= 0, (193)

leads to

σh log

(
ρ

σ 2
h

)
+σh +ξ +αhσh +αh2σ 2

h +αhµ σhσµ +αhµ2σhσ 2
µ +

+∞

∑
k=1

αhq,kσhσ k
q = 0 (194)

We readily see from Eq. (194) that the probability density ρ factorizes into three decoupled probability densities ρq, ρh and ρµ
corresponding respectively to the probability densities of the potential vorticity, the height and the divergence:

ρ = ρq (x,σq)ρh (x,σh)ρµ

(
x,σµ

)
. (195)

Using the constraints µ =
´

dσµ σµ ρµ , µ2 =
´

dσµ σ 2
µ ρµ , as well as the normalization constraints

´

dσµ ρµ =
´

dσh ρh =
´

dσq ρq = 1, we get




ρq (x,σq) =

exp

(
−

+∞

∑
k=1

αhq,k (x)σ k
q

)

ˆ

dσ ,
q exp

(
−

+∞

∑
k=1

αhq,k (x)σ ,k
q

)

ρh (x,σh) =

σ 2
h exp

(
−αh2 (x)σh −

ξ (x)

σh

)

ˆ

dσ ,
h σ ,2

h exp

(
−αh2 (x)σ ,

h −
ξ (x)

σ ,
h

)

ρµ

(
x,σµ

)
=

exp

(
−1

2

(
σµ −µ (x)

)2

µ2 (x)−µ2 (x)

)

(2π)1/2
(

µ2 (x)−µ2 (x)
)1/2

. (196)

We could now re-inject these expressions into the main variational problem (100), but only factorization and the Gaussian
form of ρµ will be kept as an ansatz for ρ , which will simplify the computations. Thanks to this intermediate variational
problem, we now know that the critical points of the original variational problem must be of the form:

ρ
(
x,σh,σq,σµ

)
= ρh (σh,x)ρq (σq,x)

exp

(
− 1

2
(σµ−µ)

2

µ2−µ2

)

(2π)1/2
(

µ2 −µ2
)1/2

. (197)

The entropy defined in Eq. (89) is therefore (up to a constant):

S
[
ρh,ρq, µ̄ , µ̄2 − µ̄2

]
=−
ˆ

dxdσh σhρh log

(
ρh

σ 2
h

)
−
ˆ

dx h

ˆ

dσqρq log(ρq)+

ˆ

dx
h

2
log
(

µ2 −µ2
)
. (198)
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As a consequence of Eq. (197), the height field, the potential vorticity field and the divergence field are decorrelated.
This property allows to rewrite the energy defined in Eq. (93)

E
[
ρh,ρq,µ ,µ2 −µ2

]
= Em f

[
h,q,µ

]
+Eδ µ

[
h,µ2 −µ2

]
+Eδh

[
h,h2

]
, (199)

where 



Em f

[
h,q,µ

]
= 1

2

´

dx
(

hu2
m f +g

(
h+hb −1

)2
)

Eδ µ

[
h,µ2 −µ2

]
= 1

2

´

dx h
(

µ2 −µ2
)

Eδh

[
h,h2

]
= g

2

´

dx
(

h2 −h
2
) (200)

with um f = ∇⊥∆−1
(
qh− f

)
+∇∆−1/2µ . Similarly the potential vorticity moments (96) can be rewritten

∀k Zk

[
h,qk

]
=

ˆ

dx hqk (201)

where the coarse-grained moments are now defined as

hl =

ˆ

dσh σ l
hρh, qm =

ˆ

dσq σ m
q ρq. (202)

Thus, the general variational problem of the equilibrium theory given in Eq. (100) can be recast into a new variational

problem on the independent variables ρh (x,σh) , ρq (x,σq) , µ (x) and
[
µ2 −µ2

]
(x):

S (E,D) = max
ρh,ρq,µ ,µ2−µ2
´

ρh=1,
´

ρq=1

{
S
[
ρh,ρq,µ ,µ2 −µ2

]
| E
[
ρh,ρq,µ,µ2 −µ2

]
= E, ∀k Zk [ρh,ρq] = Zk

}
. (203)

C.2 Computation of the critical points

In this subsection, we compute the critical points of the variational problem defined in Eq. (203). We introduce the La-
grange multiplier β , {αk}k≥0 , ξq (r) and ξh (r) associated respectively with the energy, the potential vorticity moments
and the normalization constraints. Critical points of the variational problem (203) are solutions of

∀δ ρq,δ ρh,δ µ,δ
(

µ2 −µ2
)
, δS −β δE −

+∞

∑
k=0

αkδZk −
ˆ

dx

(
ξq

ˆ

δ ρq +ξh

ˆ

δ ρh

)
= 0. (204)

The first variations of the macrostate entropy S (198) are





δS
δρh

=−σh

(
log

(
ρh

σ2
h

)
+1

)
−σh

´

dσqρq log (ρq)+σh
1
2 log

(
µ2 −µ2

)

δS
δρq

=−h(log(ρq)+1)
δS
δ µ = 0

δS

δ
(

µ2−µ2
) = h

2
(

µ2−µ2
)

. (205)

First variations of the energy given in Eqs. (199) and (200) contain three contributions: δE = δEm f +δEδ µ +δEδh.
The first contribution is

δEm f =

ˆ

dx
[
Bm f δ h+

(
hum f

)
·δ um f

]
, (206)

where Bm f = u2
m f /2+g

(
h+hb −1

)
is the mean-flow Bernoulli function defined in Eq. (115). Then, using the Helmholtz

decompositions um f = ∇⊥ψm f +∇φm f and recalling that hum f = ∇⊥Ψm f +∇Φm f , two integrations by parts with the
impermeability boundary condition yield

δEm f =

ˆ

dx
[
Bm f δ h−Ψm f δ ∆ψm f −Φm f δ ∆φm f

]
. (207)
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Using ∆ψm f = hq− f and ∆1/2φm f = µ and the definition of the operator ∆1/2 leads to the final expression

δEm f =

ˆ

dx
[(

Bm f −qΨm f

)
δ h−hΨm f δ q−∆1/2Φm f δ µ

]
. (208)

Finally, we get: 



δE
δρh

= σh

(
Bm f −qΨm f +

µ2−µ2

2 +g
( σh

2 −h
))

δE
δρq

=−σqΨm f h

δE
δ µ̄ =−∆1/2Φm f

δE

δ
(

µ2−µ2
) = h

2

, (209)

First variations of the potential vorticity moments are

∀k ∈ N





δZk

δρh
= σhqk

δZk

δρq
= h̄σ k

q

δZk

δ µ = 0
δZk

δ
(

µ2−µ2
) = 0

, (210)

Injecting Eqs. (205), (209), and (210) in Eq. (204), and collecting the term in factor of δ
(

µ2 −µ2
)

leads to

µ2 −µ2 =
1
β
. (211)

Injecting Eq. (211) in the expression of ρµ given in Eq. (196) yields then

ρµ

(
x,σµ

)
=

(
β

2π

)1/2

exp

(
−1

2
β
(
σµ −µ (x)

)2
)
. (212)

Similarly, collecting the term in factor of δ ρq in Eq. (204) leads to

0 = h̄(log(pq)+1)−β σqΨm f h̄+
+∞

∑
k=0

αkh̄σ k
q +ξq, (213)

which, using the normalization constraint, leads to

ρq (x,σq) =
1
Gq

exp

(
β σqΨm f −

+∞

∑
k=1

αkσ k
q

)
, Gq =

ˆ

dσ ,
q exp

(
β σ ,

qΨm f −
+∞

∑
k=1

αkσ ,k
q

)
. (214)

Note that the sum inside the exponential is performed from k = 1 to k = +∞ . The Lagrange parameter ξq has been
determined using the normalization condition for the pdf.

Collecting the term in factor of δ ρh in Eq. (204) yields

−
(

log

(
ρh

σ 2
h

)
+1

)
−
ˆ

dσqρq log(ρq)−
1
2

log (β )−β

(
Bm f +

β−1

2
+g
(σh

2
−h
))

− ξh

σh

+β qΨm f − ∑
k≥0

αkqk = 0,

(215)
which, using Eq. (214), leads to

−
(

log

(
ρh

σ 2
h

)
+1

)
+ log (Gq)−

1
2

logβ −β

(
Bm f +

β−1

2
+g

(σh

2
−h

))
− ξh

σh

−α0 = 0. (216)

Using the fact that Gq and Bm f are fields depending only on x, and using the normalization constraint for the pdf ρh(x,σh),
Eq. (216) yields

ρh (x,σh) =
σ 2

h

Gh

exp

(
−β

g

2
σh −

ξh

σh

)
, Gh =

ˆ

dσ ,
h

σ 2
h exp

(
−β

g

2
σ ,

h
+

ξh

σ ,
h

)
. (217)

Injecting Eq. (217) back into Eq. (216) yields
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Bm f = β−1 log(GqGh)+gh+β−1
(
−α0 −

3
2
+

1
2

logβ

)
. (218)

One can notice that α0 the Lagrange parameter related to the conservation of the total mass appears only here. Thus the
last term β−1 (α0 −3/2+ log (β )/2) in Eq. (218) can be computed from the conservation of the total mass Z0 = Z0 and
will be denoted A0 in the following.

Collecting the terms in factor of δ µ in Eq. (204) leads to

Φm f = 0. (219)

D Global maximizers of the entropy of the large scale flow

We compute in this appendix an upper-bound for the macrostate entropy of the large scale flow defined in Eq. (130), for
a given set of potential vorticity moment constraints defined in Eq. (92) (and arbitrary energy), and then show that when
Z1 = f and hb = 0, this upper bound for the macroscopic entropy is reached by the rest state.

This upper bound is the solution of the following variational problem:

Sm f ,max = max
h,ρq
´

ρq=1

{
Sm f

[
h,ρq

] ∣∣ ∀k Zk

[
h,ρq

]
= Zk

}
. (220)

Introducing Lagrange parameters {γk}k≥0 associated with the potential vorticity moment constraints and the Lagrange
parameter ξ (x) associated with the normalization constraint, the cancellation of first variations yields

∀δ ρq,δ h, δSm f −
+∞

∑
k=0

γkδZk +

ˆ

dx ξ δ 1 = 0. (221)

The solution of this equation is

ρq =
exp−∑+∞

k=1 γkσk

´

dσ exp−∑+∞
k=1 γkσk

≡ ρglobal (σ ) (222)

where ρglobal depends only on the potential vorticity moments constraints {Zk}k≥1, and is independent from x and

h(x) = 1 (223)

Note that the states characterized ρq = ρglobal, h = 1 are solutions of the variational problem in Eq. (220), but this is
only a subclass of the solutions of the variational problem of the equilibrium theory given in Eq. (153), which includes
an additional energy constraint

We have shown in subsection (4.1) that for a given ρq, the large scale flow which is a solution (153) is obtained
by solving Eqs. (117) and (118) for Ψm f and h. Here we consider the particular case ρq = ρglobal and h = 1. One can
compute hqglobal =

´

dx σρglobal = Z1. We conclude that the large scale flow of the equilibrium state is also a global
entropy maximizer, i.e. a solution of (220) when

Z1 − f = ∆Ψm f , (224)

1
2

(
∇Ψm f

)2
+ghb = A2. (225)

where A2 = β logGq −A1 is a constant. We see that in the case (Z1 = f , hb = 0) , the solution of Eqs. (224) and (225) is
the rest state Ψm f = cst (with A2 = 0). We conclude that the maximum of the macroscopic entropy of the large scale flow
is reached by a flow at rest when there is no circulation (Z1 = f ) and no bottom topography (hb = 0).
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E Comparison with a Eulerian discrete model

The aim of this appendix is to discuss the construction of a possible invariant measure for the shallow water equations
through an Eulerian discretization. We prove that the obtained equilibrium states differ from the one obtained through
the semi-Lagrangian discretization used in the core of the paper. Moreover, we prove that the equilibrium states are not
stationary states of the shallow water equations and that the statistical equilibria are not stable through coarse-graining.

We define a purely Eulerian discrete model by considering the same uniform N ×N grid as for the semi-Lagrangian
model, but assuming that each node is now divided into a finer n× n uniform microscopic grid. A microscopic configu-
ration is given by the values of the fields (h,q,µ) for all the nodes of the microscopic grid:

ymicro ≡ {hIJ,i j,qIJ,i j,µIJ,i j}1≤I,J≤N
1≤i, j≤n

, (226)

where (I,J) and (i, j) correspond respectively to the position on the macroscopic grid and the position on the microscopic
grid within the macroscopic node.

Contrary to the semi-Lagrangian model, the Eulerian model has the desired property to possibly be compatible with
the formal Liouville theorem derived in Appendix A for the continuous dynamics (although no mathematical result exist).
However, the volume of fluid varies from one microscopic grid node to another in the Eulerian model, depending on the
value of the height hIJ,i j. By comparison, our semi-Lagrangian approach respects the Lagrangian conservation laws (the
height h is defined through the particle mass conservation). Because of the need to go through a discretization to build
the microcanonical measure, we see that both the Eulerian and the semi-Lagrangian approaches necessarily break part of
the geometric conservation laws of the continuous model. Hopefully rigorous mathematical proof of the convergence of
the measures of one of the discretized model to an invariant measure of the continuous equations will settle rigorously
this issue in a near future, however nobody seem to know how to attack this problem mathematically. We are thus led to
the conclusion that based on current knowledge, there is no clear mathematical or theoretical a priori argument to choose
either the Eulerian or the semi-Lagrangian discretization in order to guess the microcanonical measures. For now, the
use of one discrete model or another to guess the microcanonical measure of the continuous shallow water equations can
therefore only be justified a posteriori.

Let us now define the empirical density field as

dIJ(σh,σq,σµ )[ymicro] =
1
n

n

∑
i, j=1

δ (hIJ,i j −σh)δ (qIJ,i j −σq)δ (µIJ,i j−σµ ). (227)

One can now compute the entropy of the macrostates ρ = {ymicro | ∀I,J dIJ [ymicro] = ρIJ }, which, after taking first the
limit n → ∞ and then the limit N → ∞ leads to

SEul[ρ ] =−
ˆ

dxdσhdσqdσµ ρ(x,σh,σq,σµ) log

(
ρ(x,σh,σq,σµ)

σ 3
h

)
. (228)

This Eulerian macrostate entropy has to be compared with the macrostate entropy for the semi-Lagrangian discrete
model given in Eq. (89). We can switch from expression to the other by changing ρ into σhρ . We note that the two
entropies become equivalent at lowest order in the limit of weak height fluctuations and weak height variations. However,
in the general case, they are different, and therefore lead to different equilibrium states. In particular, is it straightforward
to show that because of the absence of the factor σh in the expression of this Eulerian macrostate entropy (228), the critical
points ρ(x,σh,σq,σµ ) of the microcanonical variational problem do not factorize. Consequently, small scale height and
velocity fluctuations of the equilibrium state are correlated. One can then show that those correlations are associated with
non-zero Reynolds stresses in the momentum equations. In particular, the equilibrium state of Eulerian model satisfies

J(Ψ ,q) =−J(Ψ ′,q′)− J(Φ ′,q′), (229)

where the r.h.s. is non-zero. If one removes those small scale fluctuations, the large scale flow is not a stationary state of
the dynamics since J(Ψ ,q) 6= 0. In other words, the equilibrium states of the Eulerian model are not stable by coarse-
graining, contrary to the equilibria of the semi-Lagrangian model. Moreover, Eq. (229) and the properties of stationary
states derived in subsection 2.2 imply that neither the potential vorticy field q nor the Bernoulli potential Bmf can sim-
ply be expressed as a function of Ψmf. As shown in subsection 4.3.1), the fact that Bmf is a function of Ψmf is essential
to prove that the equilibrium is characterized by geostrophic balance at lowest order in the Rossby number Ro, when
Ro → 0. Consequently, the proof of geostrophic balance derived in the framework of the semi-Lagrangian model does
not hold in the framework of the Eulerian model, unless the bottom topography is sufficiently small (hb ∼ Ro).

Let us finally argue that the stability by coarse-graining is a desirable physical property for the equilibrium states.
The first argument is a body of empirical observations. In either experiments, geophysical flows or numerical sim-

ulations flows governed by the shallow water equations (or the Navier-Stokes equations or the primitive equations in a
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shallow water regime) in the inertial limit (when they are subjected to weak forcing and dissipation, with a clear time scale
separation) do actually self-organize and form large scale coherent structures for which there is a gradual decoupling of
the flow large scales and small scales. A prominent example is the velocity field of Jupiter’s troposphere.

The second argument follows. Macrostates that evolve through an autonomous equation, must increase the Boltz-
mann entropy. This is a general result in statistical mechanics, which is a consequence of the definition of the macrostate
entropy as a Boltzmann entropy. Indeed as the Boltzmann’s entropy measure the number of microstates corresponding
to a given macrostate, it must increase for most of initial conditions. When there is furthermore a concentration property
(which is the case for the shallow water case, both the the Eulerian and sem–Lagrangian discretizations), the number
of initial conditions for which the entropy can decrease decays exponentially with N (N is often the number of parti-
cles in statistical mechanics, here the number of degrees of freedom of our discretization). As a consequence, the set
of equilibrium macrostates (entropy maxima) has to be stable through the dynamics for most initial conditions. In the
shallow water case, in statistical equilibrium, obtained either using the semi-Lagrangian or Eulerian discretization dis-
cussed above, the stream function concentrates close to a single field (the stream function fluctuations vanish in the large
N limit). As a consequence the macrostate stream function, which is a single field thanks to this concentration property,
has to be stationary for the dynamics. Those two properties, that follow from the definition of the Boltzmann entropy, are
actually verified for the equilibrium measure constructed from a semi-Lagrangian discretization, but not for the equilib-
rium measure constructed from a Eulerian discretization. For this reason, we conclude that the microcanonical measure
constructed from the purely Eulerian discretization is inconsistent with the shallow water dynamics.

We note moreover that the stability of the equilibrium macrostates through coarse graining ensures that the equilib-
rium states of the inviscid system are not affected by perturbations such as a weak small scale dissipation in momentum
equations. This property is not a-priori required for the invariant measure of the shallow-water equations. However It is
extremely interesting as it is a hint that this invariant measure may be relevant for non perfect flow in the inertial limit.

F Energy-Enstrophy ensemble

F.1 Computation of the critical points

In this Appendix, we compute the solutions of the variational problem (158) and describe the corresponding phase
diagram. Critical points of the variational problem (158) are computed through the variational principle:

∀δ ρg, δSm f ,g −
1

E f luct

δEm f ,g − γ2δZg2 − γ1δZg1 −
ˆ

dx ξ (x)

ˆ

dσq δ ρg = 0, (230)

where γ2,γ1 and ξ (x are Lagrange multipliers associated with the enstrophy conservation, the circulation conservation,
and the normalization respectively. Anticipating the coupling between the large scale quasi-geostrophic flow and the
small scale fluctuations, the temperature is denoted E f luct (the inverse temperature is the Lagrange parameter associated
with energy conservation).This yields

ρg (x,σq) =

√
1

2π
(
Z2 −Z2

) exp

[
− 1

2
(
Z2 −Z2

)
(

σq −
(

ψm f

E f luct

− γ1

)(
Z2 −Z2

))2
]

(231)

where we have introduced the enstrophy of the coarse-grained potential vorticity

Z2 ≡
ˆ

dxq2
g. (232)

Injecting (231) in Eq. (147) , using the mass conservation constraint given in Eq. (144) and the zero circulation constraint
Z1
[
qg

]
= 0 yields

qg = β̃ ψm f with β̃ ≡
(
Z2 −Z2

)

E f luct

. (233)

Note that β̃ is necessarily positive given that Z2 −Z2 ≥ 0. Injecting Eq. (233) in Eq. (149), the streamfunction can be
computed explicitly by solving

β̃ ψm f = ∆ψm f −
1

R2 ψm f +hb. (234)

In order to solve this equation, it is convenient to introduce the Laplacian eigenmodes of the domain D , with k ∈ N
+:

∆ek =−λ 2
k ek with ek = 0 on ∂D , (235)
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where the eigenvalues −λ 2
k are arranged in decreasing order. We assume those eigenvalues are pairwise distinct. We

also assume that the bottom topography is sufficiently smooth such that ∑k |hbk|2 λ 2
k < +∞. Then, given that β̃ > 0 , the

projection of the mean flow streamfunction on the Laplacian eigenmode ek(x) is obtained directly from Eq. (234):

ψk =
hbk

β̃ +λ 2
k +R−2

. (236)

We see that there is a unique solution ψm f for each value of β̃ . This solution is therefore the equilibrium state. All the large
scale flows associated with statistical equilibrium states of the shallow water system restricted to the energy-enstrophy
ensemble with zero circulation are obtained from Eq. (236) when varying β̃ from 0 to +∞.

F.2 Construction of the phase diagram

The problem is now to find which equilibrium state is associated with the constraints (E,Z2). In the following, we explain
how to find the equilibrium states associated with parameters (Em f ,Z2), and how to compute the temperature E f luc for
each of those states. It is then straightforward to obtained the total energy E = Em f +E f luc.

Injecting Eq. (236) in the expression of the quasi-geostrophic mean-flow energy defined in Eq. (150) yields

Em f =
1
2

+∞

∑
k=1

(
λ 2

k +R−2)
(

|hbk|
β̃ +λ 2

k
+R−2

)2

. (237)

The mixing energy Emix defined in Eq. (155) is recovered for β̃ = 0, given that Z1 = 0. In the range β̃ > 0, the energy
Em f is a decreasing function of β̃ , varying from Em f = Emix to Em f = 0, see Fig. 5-b and Fig. 5-d.

Injecting Eq. (236) in the expression of the macroscopic enstrophy given in Eq (232) yields

Z2 =
+∞

∑
k=1

|hbk|2
(

1− λ 2
k +R−2

β̃ +λ 2
k +R−2

)2

. (238)

The potential enstrophy Zb defined in Eq. (159) is recovered for β̃ =+∞. The macroscopic enstrophy Z2 is an increasing
function of β̃ , varying from Z2 = 0 (for β̃ = 0) to Z2 = Zb for (β̃ =+∞ ), see Fig. 5-a and Fig. 5-c.

Two expressions of the macroscopic enstrophy Z2 in terms of the parameters β̃ have been obtained: one is given by
Eq. (238), the other arises from the definition of β̃ in Eq. (233), which yields

Z2 = Z2 −E f luct β̃ . (239)

For given values of E f luct and Z2 , the values of β̃ and Z2 are obtained by finding the intersection between the

two curves defined in Eq. (238) and (239), respectively. Once β̃ is obtained, Eq. (237) gives directly the value of the
mean-flow energy Em f . The phase diagram presented in Fig. 2 is obtained numerically by using this procedure. Graphical
arguments presented in the following allow to understand the structure of this phase diagram.

F.3 Limit cases for the energy partition

Let us first note through Figs. 5-a and 5-c that β̃ is an decreasing function of E f luct . Indeed, β̃ is given by the intersection
between the solid curve representing the expression of Z2 given Eq. (238) and the dashed line representing the affine
expression of Z2 given Eq. (239) where −E f luct is the slope. Then we know that the total energy E = Em f (β̃ )+E f luct is
an increasing function of E f luct . Let us now consider different limit cases.

The limit E → ∞ with Z2 fixed: In this limit, we have also E f luct → ∞. and β̃ → 0 Hence, one gets from Eq. (237)
(see also Figs. 5-b and 5-d):

lim
E→+∞

Em f = Emix, lim
E→+∞

Em f

E
= 0. (240)
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Fig. 5: a) Variation of the macroscopic enstrophy Z2 over β̃ , case Z2 > Zb. b) Variation of the mean-flow energy Em f with

β̃ , case Z2 < Zb. c) Variation of the macroscopic enstrophy Z2 with β̃ , case Z2 < Zb. d) Variation of the mean-flow energy
Em f with β̃ , case Z2 < Zb.

The lowest E limit with Z2 < Zb fixed: In this limit, we have also E f luct → 0. One gets from Fig. 5-c that β̃ →
β̃max (Z2). Hence, Em f reaches a minimum admissible energy Emin (Z2) = Em f

(
β̃max (Z2)

)
. Then:

lim
E→Emin(Z2)

Em f

E
= 1. (241)

The limit E → 0 with Z2 > Zb fixed: In this limit, we have also E f luct → 0. One gets from Fig. 5-a that β̃ → ∞ and
that Z2 → Zb. Hence, from Eqs. (237) and (239), we obtain:





Em f = Cbβ̃−2 +o
(

β̃−2
)

β̃ ∼
E→0

(Z2 −Zb)E−1
f luct

, with Cb =
1
2

+∞

∑
k=1

|hbk|2
(
λ 2

k +R−2) . (242)

Here, Cb is a constant depending on the topography only. Thus we have Em f ∼ E2
f luctCb/(Z2 −Zb)

2, which leads to:

lim
E→0

Em f

E f luct

= 0, lim
E→0

Em f

E
= 0. (243)

The limit E → 0 with Z2 −Zb ∼ Cα Eα with α ≥ 0: In this limit, we have E f luct → 0. One gets from Fig. 5-a that

β̃ → ∞. Hence, from Eqs. (237) and (238), we obtain:





Em f = Cbβ̃−2 +o
(

β̃−2
)

Zb −Z2 = 4Cbβ̃−1 +o
(

β̃−1
) , (244)
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where Cb is defined in Eq. (242). From those two equations along with Eq. (239) and using Z2 −Zb ∼ Cα Eα , we can
extract:

β̃ ∼
E→0

Cα Eα +
√

C2
α E2α +20CbE

2E
. (245)

Now, we have to consider different cases for the value of α .
For α > 1/2, we have from Eq. (245) that β̃ ∼√

5CbE−1/2. Injecting this in Eq. (244), we gets:

lim
E→0

Em f

E
=

1
5

(246)

For α < 1/2, we have from Eq. (245) that β̃ ∼Cα Eα−1. Injecting this in Eq. (244), we gets:

lim
E→0

Em f

E
= 0 (247)

For α = 1/2, we have from Eq. (245) that β̃ ∼ C1/2E−1/2
(

1+
√

1+20Cb/C2
α

)
/2. Injecting this in Eq. (244), we

gets:

lim
E→0

Em f

E
=

2Cb/C2
α(

1+
√

1+20Cb/C2
α

)2 . (248)

Contrary to the previous cases, here, the partition of the energy depends on the bottom topography.
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