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Finite wordlength controller realisations using the specialised implicit form

Thibault Hilairea*, Philippe Chevrelb and James F. Whidbornec

aLIP6, Université Pierre et Marie Curie (Paris 6), CNRS, Paris, France; bIRCCyN, UMR CNRS 6597,
1 rue de la Noë, 44321 Nantes, France; cDepartment of Aerospace Science, Cranfield University,

Bedfordshire, MK43 0AL, UK

A specialised implicit state-space representation is introduced to deal with finite wordlength effects in controller
implementations. This specialised implicit form provides a macroscopic description of the algorithm to be
implemented. So, it constitutes a unifying framework, allowing to encompass various implementation forms,
such as the �-operator, the �Direct Form II transposed, observer-based and many other realisations usually
considered separately in the literature. Different measures quantifying the finite wordlength effects on the overall
closed-loop behaviour are defined in this new context. They concern both stability and performance. The gap
with the infinite precision case is evaluated classically through the coefficient sensitivity and roundoff noise
analysis. The problem of determining a realisation with minimum finite wordlength effects can subsequently be
solved using appropriate numerical methods. The approach is illustrated with an example.

Keywords: digital control; finite wordlength effects; digital controller implementation; optimal realisation

1. Introduction

When implemented in digital computing devices,

controllers are subjected to numerical degradations

due to the rounding and quantisation that occurs on

the variables and constants used to define the

controller. There are two main effects of this finite-

precision (often known as the Finite Word Length

(FWL) effects):

. Roundoff noise is the addition of noise into the

system resulting from the rounding of variables

before and after each arithmetic operation;

. Parameter errors are the quantisation of the

controller coefficients/parameters. They

degrade the performance and/or stability of

the controller.

For most low-order controllers, the FWL effects are

minor, but for higher order controllers, particularly

when fast sampling is used, the FWL effects can

become significant. For example, the stability of the

system can be compromised even by a small quantisa-

tion of the coefficients (Whidborne, Wu, and

Istepanian 2000).

However, it is well known that the FWL effects

are dependent upon the controller realisation. Hence

many papers deal with the problem of finding a

realisation that minimises the FWL effects in some

sense (see, for example, Gevers and Li (1993),

Istepanian and Whidborne (2001), Whidborne, Wu,

and Istepanian (2001) and references therein). It is also

well known that the FWL effects are dependent on the

operator used. The �-operator, for example, generally

has much better numerical properties than the usual

delay operator, q�1, for control systems with fast

sampling (Goodall 2001).

The problem of addressing the optimal realisation

for minimal FWL effects is usually addressed in the

state space (e.g. Thiele 1984; Gevers and Li 1993;

Whidborne et al. 2001). Briefly, if the controller is

Kð�Þ ¼ Cð�I� AÞ�1BþD, ð1Þ

where � is the transform of the chosen operator (e.g. �

or q-operator), the problem is to search over the set

CTð�I�T�1ATÞ�1TBþD : T a non-singular matrix
� �

to find a matrix T and corresponding controller

realisation with small FWL effects. The limitations

of this approach are that

. there are many realisations that cannot be

expressed in such a standard state space form;

. the search is restricted to a single operator.

The �-operator is more complex to implement than the

q-operator, so in some circumstances, it may be better

to have a mix of operators. These limitations may be
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overcome by using the specialised implicit form (SIF)

(Hilaire, Chevrel, and Trinquet 2005b) for the con-

troller. The SIF allows a formal and faithful macro-

scopic description of the numerical algorithm used to

implement the controller.

In order to determine the optimal realisation, some

measures of the roundoff noise and the closed-loop

coefficient sensitivity are required. A fair number of

these have been proposed over the years. The roundoff

noise is generally measured by the output noise

variance (e.g. Mullis and Roberts 1976; Hwang 1977;

Gevers and Li 1993). Measures of the input–output

performance (IO-performance) deterioration have

been proposed by Gevers and Li (1993). Stability can

be assessed using a probabilistic measure (Fialho and

Georgiou 1994), a measure based on a small-gain

theorem (Whidborne et al. 2000), �-analysis (Wu, Li,

Chen, and Chu 2008) or closed-loop pole sensitivity

measures (Li 1998; Whidborne et al. 2001; Wu, Chen,

Li, Istepanian, and Chu 2001; Ko and Yu 2003).

Ideally, the chosen measures should be comput-

ationally tractable but reasonably representative of

the actual perturbations that occur in implementation.

The SIF was originally proposed in Hilaire et al.

(2005b). In Hilaire, Chevrel, and Whidbarne (2007b)

the FWL filter problem (the open-loop case) is consid-

ered. In this article, some of the results of Hilaire et al.

(2007b) and Hilaire, Ménard, and Sentieys (2007c) are

extended to the FWL controller problem, that is the

closed-loop case. A closed-loop IO sensitivity measure

which extends that of Gevers and Li (1993) and a pole

sensitivity stability related measure (PSSM) are pro-

posed along with a closed-loop roundoff noise gain

(RNG) measure. All are suitable for use with the SIF

and are similar to those proposed for the FWL filter

realisation problem (Hilaire et al. 2007b). Note that

some preliminary results on FWL controller with the

SIF appeared in Hilaire, Chevrel, and Trinquet (2005a).

This article is organised as follows. In the next

section, the SIF is recalled, and a number of definitions

are given. The recently proposed �DFIIt realisation

(Li and Zhao 2004) is shown to be a particular case of

the SIF. In Section 2.2, the concept of equivalent

classes (potentially structured) of realisations is intro-

duced and illustrated with an example. Section 3

details, in a closed-loop context, the two sensitivity

measures and the roundoff noise measure. In Section 4,

an optimal design problem is introduced and it is

illustrated with an example in Section 5.

2. The SIF

Many controller/filter forms, such as lattice filters

and �-operator controllers, make use of intermediate

variables and hence cannot be expressed in the

traditional state-space form. The SIF has been

proposed in order to model a much wider class of

discrete-time linear time-invariant controller imple-

mentations than the classical state-space form.

The model takes the form of an implicit state-space

realisation (Aplevich 1991) specialised according to

J 0 0

�K In 0

�L 0 Ip

0

B

@

1

C

A

Tðkþ 1Þ

Xðkþ 1Þ

YðkÞ

0

B

@

1

C

A
¼

0 M N

0 P Q

0 R S

0

B

@

1

C

A

TðkÞ

XðkÞ

UðkÞ

0

B

@

1

C

A
,

ð2Þ

where J2Rl�l, K2Rn�l, L2Rp�l, M2Rl�n, N2Rl�m,

P2Rn�n, Q2Rn�m, R2Rp�n, S2Rp�m, T(k)2Rl,

X(k)2Rn, U(k)2Rm and Y(k)2Rp, and the matrix J

is lower triangular with 1’s on the main diagonal. Note

X(kþ 1) is the state-vector and is stored from one step

to the next, whilst the vector T plays a particular role

as T(kþ 1) is independent of T(k) (it is here defined

as the vector of intermediary variables). The particular

structure of J allows the expression of how the

computations are decomposed with intermediate

results that could be reused.

It is implicitly assumed throughout this article

that the computations associated with the realisation

(2) are executed in row order, giving the following

algorithm:

[i] J:Tðkþ 1Þ  M:XðkÞ þN:UðkÞ

[ii] Xðkþ 1Þ  K:Tðkþ 1Þ þ P:XðkÞ þQ:UðkÞ

[iii] YðkÞ  L:Tðkþ 1Þ þ R:XðkÞ þ S:UðkÞ:

ð3Þ

Note that in practice, steps [ii] and [iii] could be

exchanged to reduce the computational delay. Also

note that because the computations are executed in

row order and J is lower triangular with 1’s on the

main diagonal, there is no need to compute J�1.

Equation (2) is equivalent in infinite precision to

the classical state-space form

Tðkþ 1Þ

Xðkþ 1Þ

YðkÞ

0

@

1

A ¼

0 J�1M J�1N

0 AZ BZ

0 CZ DZ

0

@

1

A

TðkÞ

XðkÞ

UðkÞ

0

@

1

A ð4Þ

with AZ2R
n�n, BZ2R

n�m, CZ2R
p�n and DZ2R

p�m

where

AZ ¼ KJ�1Mþ P, BZ ¼ KJ�1NþQ, ð5Þ

CZ ¼ LJ�1Mþ R, DZ ¼ LJ�1Nþ S: ð6Þ

Note that (4) corresponds to a different parametrisa-

tion than (2) (the finite-precision implementation of

(4) will cause different numerical deterioration to
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that of (2)). The associated system transfer function is

given by

H : z�CZðzIn � AZÞ
�1BZ þDZ: ð7Þ

A complete framework for the description of all

digital controller implementations can be developed by

using the following definitions. For further details, see

Hilaire et al. (2007b).

Definition 2.1: A realisation R of a transfer matrix H

is entirely defined by the data Z, l, m, n and p.

Z2R(lþnþp)�(lþnþm) is partitioned according to

Z¼
4

�J M N

K P Q

L R S

0

B

@

1

C

A
ð8Þ

and l, m, n and p are the matrix dimensions given

previously. The notation used will beR :¼ (Z, l,m, n, p).

The notation Z is introduced to make the further

developments more compact ((41), (57), etc.).

Definition 2.2: RH denotes the set of realisations

described by (2) equivalent to the transfer function H,

that is to say with the same IO relationship. These

realisations are said to be IO-equivalent and IO-

equivalent to the transfer function H.

In order to encompass realisations with some

special structure (q or � state-space, direct forms,

cascades, lattice, etc.), a subset of realisations sharing

the same structure is defined.

Definition 2.3: A structuration S is a set of structured

realisations. That is realisations that share a common

structure with some coefficients and/or some dimen-

sions having been fixed a priori.

Some examples of structurations are given in the

next subsection.

Definition 2.4: R
S

H is the set of equivalent structured

realisations. Realisations from R
S

H are structured

according to S and are IO-equivalent to H:

R
S

H¼
4
RH \ S: ð9Þ

2.1 Some examples

2.1.1 �-realisations

Consider the �-state-space form

�½XðkÞ� ¼ A�XðkÞ þ B�UðkÞ

YðkÞ ¼ C�XðkÞ þD�UðkÞ

�

ð10Þ

with � ¼ q�1
D
, D2Rþ* and q is the shift operator

(Gevers and Li 1993).

This realisation should be implemented with the

following algorithm:

[i] T A�:XðkÞ þ B�:UðkÞ

[ii] Xðkþ 1Þ  XðkÞ þ D:T

[iii] YðkÞ C�:XðkÞ þD�:UðkÞ,

ð11Þ

where T is an intermediate variable. This could be

modelled with the SIF as

In 0 0

�DIn In 0

0 0 Ip
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@
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ð12Þ

2.1.2 Cascade decomposition

The cascade form is a common realisation for filter/

controller implementations. It generally has good

FWL properties compared to the direct forms and

requires less operations than fully parametrised state-

space realisations. The system is decomposed into a

number of lower order (usually first and second order)

subsystems connected in series.

Let us consider two realisations R1 and R2

connected in series as shown in Figure 1.

Assuming R1 and R2 to be defined by SIF matrices

(J1, K1, L1, M1, N1, P1, Q1, R1, S1) and (J2, K2, L2, M2,

N2, P2, Q2, R2, S2), and cascading them leads to the

realisation R :¼ (Z,m1, p1þ l1þ l2, n1þ n2, p2) with

Z ¼

�J1 0 0 M1 0 N1

L1 �I 0 R1 0 S1

0 N2 �J2 0 M2 0
..................................................
K1 0 0 P1 0 Q1

0 Q2 K2 0 P2 0
..................................................
0 S2 L2 0 R2 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

ð13Þ

from which definition of the corresponding structura-

tion S immediately follows. The outputs of R1 are

computed in the intermediate variable and then used

as the inputs of R2.

The main point is that this construction can

represent cascade systems without changing the

parametrisation.

Remark 1: The cascade structuration can be applied

to realisations that are structured differently (q and

�-state-space realisations, for example) and easily

extended to multiple cascaded systems.

U
1

Y
2

R
1

R
2

Y 1
 = U

2

Figure 1. Cascade form.
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2.1.3 � transposed direct-form II

Li and Hao (Li 2004; Li and Zhao 2004; Hao and Li

2005) have presented a new sparse structure called

�DFIIt. This is a generalisation of the transposed

direct-form II structure with the conventional shift and

the �-operator and is similar to that of Palaniswami

and Feng (1991). It is a sparse realisation (with 3nþ 1

parameters when n is the order of the controller),

leading to an economic (few computations) implemen-

tation that could be very numerically efficient. As we

will see later, this realisation has n extra degrees of

freedom that can be used to find an optimal realisation

within its particular structuration.

Let us define

�i : z�
z� �i

Di

, 14i4n ð14Þ

and

%i : z�
Y

i

j¼1

�j ðzÞ, 14i4n, ð15Þ

where (� i)14i4n and (Di4 0)14i4n are two sets of

constants. Let (ai)14i4n and (bi)04i4n be the coefficient

sets of the transfer function, using the shift operator

H : z�
b0 þ b1z

�1 þ � � � þ bn�1z
�nþ1 þ bnz

�n

1þ a1z�1 þ � � � þ an�1z�nþ1 þ anz�n
: ð16Þ

Therefore, H can be reparametrised with (�i)14i4n and

(�i)04i4n as follows:

HðzÞ ¼
�0 þ �1%

�1
1 ðzÞ þ � � � þ �n�1%

�1
n�1ðzÞ þ �n%

�1
n ðzÞ

1þ �1%
�1
1 ðzÞ þ � � � þ �n�1%

�1
n�1ðzÞ þ �n%

�1
n ðzÞ

:

ð17Þ

Denoting

Va¼
4

1
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C
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ð18Þ

the parameters (ai)14i4n, (bi)04i4n, (�i)14i4n and

(�i)04i4n are related (Hao and Li 2005) according to

Va ¼ 	�V�

Vb ¼ 	�V�,

�

ð19Þ

where 	¼
4 Qn

i¼1 Di and �2Rnþ1�nþ1 is a lower trian-

gular matrix whose i-th column is determined by the

coefficients of the z-polynomial
Qn

j¼i �jðzÞ for 14 i4 n

and with �nþ1,nþ1¼ 1.

Equation (17) can be, for example, implemented

with a transposed direct form II (Figure 2), and each

operator ��1i can be implemented as shown in Figure 3

(each %�1k is obtained by cascading the ��1i

� �

14i4k
).

Clearly, when � i¼ 0, Di¼ 1 (14 i4 n), Figure 2 is

the conventional transposed direct form II. When

� i¼ 1, Di¼D (14 i4 n), one gets the � transposed

direct form II. This form was first proposed as an

unification for the shift-direct form II transposed and

the �-direct form II transposed. It is now used to

exploit the n extra degrees of freedom given by the

choice of the parameters (� i)14i4n.

The corresponding algorithm is:

[i] YðkÞ �0UðkÞ þW1ðkÞ

[ii] WiðkÞ ��1i �iUðkÞ � �iYðkÞ þWiþ1ðkÞ
� �

[iii] WnðkÞ ��1n �nUðkÞ � �nYðkÞ
� �

:

ð20Þ

U(k)

Y (k)

β
n

β
i

β
n−1 β

1
β

0

ρ
n

−1 ρ
i+1
−1 ρ

i

−1 −1ρ
1

α
n

α
n−1

α
i

α
1

Figure 2. Generalised � direct form II.
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By introducing the intermediate variables needed to

realise the ��1i operator (according to ��1i ¼
1

q�1��i
Di,

with the multiplication by Di done last, see Figure 3),

Equations (21)–(23) become

T ¼
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Within the SIF framework, the �DFIIt form is

described by
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ð24Þ

Remark 2: Thanks to the SIF, there is no need to use

another operator unlike the shift operator.

A number of other examples of structurations are

given in Hilaire (2006). They illustrate the generality of

the SIF framework.

2.2 Equivalent classes

In order to exploit the potential offered by the SIF in

improving implementations, it is necessary to charac-

terise further the sets of equivalent system realisations.

We first note that the non-minimal realisations may

provide better implementations (the �-form can be seen

as a non-minimal realisation when written in the

implicit state-space form – with the shift operator).

Hence the notion of equivalence needs to be extended

by considering that the system state dimension does

not have to be invariant. The inclusion principle,

introduced by Šiljak and Ikeda (Ikeda, Šiljak, and

White 1984; Šiljak 1991) in the context of decentralised

control, is useful here as it allows the formalisation

of the equivalence and inclusion relations between two

system realisations.

These two notions have been extended to the SIF

in Hilaire et al. (2007b) in order to give a formal

description of equivalent classes. Although it may be of

practical interest to only consider realisations of

the same dimensions, where transformations from

one realisation to another is only a similarity

transformation.

This could be achieved with the following

proposition.

Proposition 2.5: Consider a realisation R :¼ (Z, l,m,

n, p). All the realisations ~R :¼ ð ~Z, l,m, n, pÞ with

~Z ¼

Y

U�1

Ip

0

B

@

1

C

A
Z

W

U

Im

0

B

@

1

C

A
ð25Þ

and U, W, Y are non-singular matrices, are equivalent

to R, and share the same complexity (i.e. generically the

same amount of computation).

It is also possible to just consider a subset of

similarity transformations that preserve a particular

structure, say cascade or delta. For example, if an

initial �-structured realisation R :¼ (Z0, n,m, n, p) is

given, the subset of equivalent �-structured realisation

is defined by

R
S�
H ¼

R :¼ ðZ, n,m, n, pÞn

Z ¼

U�1

U�1
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>

>

;

:

ð26Þ

Δ
i

γ
i

z−1

ρi
−1

Figure 3. Realisation of operator ��1i :
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This compact algebraic characterisation of equiva-

lent classes is particularly efficient when used to search

for an optimal structured realisation (Section 4).

3. Closed-loop measures

The quantisation of the coefficients and the roundoff

noise may have a negative impact on the closed-loop

system behaviour. Three measures that may be used to

evaluate this impact are described in this section.

3.1 Problem statement

Consider the plant P together with controller C

according to the standard form shown in Figure 4,

where W(k)2Rp1 is the exogenous input, Y(k)2Rp2 the

control input, Z(k)2Rm1 the controlled output and

U(k)2Rm2 the measured output.

The controller is defined as C :¼ (Z, l,m2, n, p2) and

the plant P as

P :¼

A B1 B2

C1 D11 D12

C2 D21 0

0

@

1

A, ð27Þ

where A2RnP�nP, B12R
nP�p1, B22R

nP�p2, C12

R
m1�nP, C22R

m2�nP, D112R
m1�p1, D122R

m1�p2,

D212R
m2�p1 and D222R

m2�p2 is assumed to be zero

only to simplify the mathematical expressions.

Note that open-loop results (filter modelling) may

be obtained as a particular case, with:

P :¼ 0 I

I 0

0

@

1

A: ð28Þ

The closed-loop system �S is then given by

�S ¼ Fl ðP, CÞ :¼
�A �B

�C �D

 !

, ð29Þ

where Fl(�, �) is the well-known lower linear fractional

transform (Zhou, Doyle, and Gloyer 1996) and

where �A2RnPþn�nPþn, �B 2 R
nPþn�p1 , �C 2 R

m1�nPþn

and �D 2 R
m1�p1 are such that

�A ¼
Aþ B2DZC2 B2CZ

BZC2 AZ

	 


,

�B ¼
B1 þ B2DZD21

BZD21

	 


, ð30Þ

�C¼ C1þD12DZC2 D12CZ

� �

, �D¼D11þD12DZD21:

ð31Þ

The closed-loop transfer function is

�H : z� �C zI� �A
� ��1

�Bþ �D: ð32Þ

3.2 Input–output sensitivity

In order to evaluate how much the quantisation of the

controller’s coefficients (due to FWL implementation)

affects the closed-loop transfer function, the sensitivity
@ �H
@Z

can be used. Before that, the nature of the

perturbation on each coefficient must made precise.

A coefficient’s quantisation depends both on its

value and its representation. First, if the value of a

coefficient is such that it will be quantised without

error (like 0, �1 or a power of 2), then, that parameter

makes no contribution to the overall coefficient sen-

sitivity and is called a trivial parameter. Hence we

introduce the weighting matrices WZ associated with

Z such that

WZð Þi,j¼
4 0 if Xi,j is exactly implemented,

1 otherwise.

�

ð33Þ

For a fixed-point representation, Z is perturbed to

Zy¼ZþWZ�D, where D represents the quantisation

error.

Remark 1: For floating-point representations, Z is

perturbed to Zy¼ZþWZ�Z�D (Wu, Chen,

Whidborne, and Chu 2003; Hilaire, Chevrel, and

Whidborne 2007a). The following measures can then

be easily extended to the floating-point (and block-

floating-point) case.

The closed-loop transfer function resulting from

the quantisation process is denoted by �Hy¼
4 �H

�

�

ZþWZ�D
.

For the single input single output (SISO) case, the

following is true 8z2C

�HyðzÞ � �HðzÞ ¼
X

i,j

Di,j

@ �HyðzÞ

@D

�

�

�

�

D¼0

þ o Dk k2max

� �

ð34Þ

and

�Hy � �H
�

�

�

�

2
� Dk kmax

@ �Hy

@D

�

�

�

�

D¼0

�

�

�

�

�

�

�

�

2

þ o Dk k2max

� ��

�

�

�, ð35Þ

P

m
1

m
2

C

p
1

p
2

W (k) Z (k)

U (k)Y (k)

S̄

Figure 4. Closed-loop control system.
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where k�k2 denotes the H2-norm. The wordlength can

be chosen so that kDkmax is sufficiently small, but if the

k@
�Hy

@D
jD¼0k2 term is made small by an appropriate choice

of realisation, then it is clear that a lower wordlength

can be used. The actual performance degradation can

be checked a posteriori.

It is easy to show that

@ �Hy

@D

�

�

�

�

D¼0

¼
@ �H

@Z
�WZ: ð36Þ

From (35) and (36), we define an IO-sensitivity

measure as follows:

Definition 3.1: Consider a realisation C :¼ (Z, l,m2,

n, p2). For the SISO case, the closed-loop transfer

function sensitivity, with respect to all the non-trivial

coefficients of C, is defined by

�MW
L2
¼
4 @ �H

@Z
�WZ

�

�

�

�

�

�

�

�

2

2

: ð37Þ

Remark 2: It is possible to include a frequency

weighting to emphasise certain frequency range

(Gevers and Li 1993) to ensure that the closed-loop

degradation is constrained over a given frequency

range.

This measure can be extended to the multiple input

multiple output (MIMO) case. It is also useful to

consider the contribution of each coefficient to the

overall sensitivity. The closed-loop transfer function

sensitivity matrix, denoted by � �H
�Z
, is the matrix of the

H2-norm of the IO-sensitivity of the transfer function
�H with respect to each coefficient Zi,j. It is defined by

� �H

�Z

	 


i,j

¼
4 @ �H

@Zi,j

�

�

�

�

�

�

�

�

2

: ð38Þ

It can be used to obtain a map of the sensitivity with

respect to each coefficient and help to choose a specific

fixed-point format for each coefficient. From the

properties of H2-norms, we get

��H

�Z

�

�

�

�

�

�

�

�

F

¼
@ �H

@Z

�

�

�

�

�

�

�

�

2

, ð39Þ

where k�kF is the Frobenius norm. Definition 3.1 can

now be stated for the general case.

Definition 3.2: The closed-loop IO-sensitivity mea-

sure is defined by

�MW
L2
¼
4

��H

�Z
�WZ

�

�

�

�

�

�

�

�

2

F

: ð40Þ

The IO-sensitivity @ �H
@Z

can be evaluated by the

following proposition.

Proposition 3.3:

@ �H

@Z
¼ �H1 ~

�H2, ð41Þ

where ~ is the operator defined by

A~B¼
4
VecðAÞ � Vec B>

� �� �>
, ð42Þ

Vec(�) is the classical operator that vectorises a matrix,

colorand �H1 and �H2 are defined by

�H1 : z� �C zI� �A
� ��1

�M1 þ �M2 ð43Þ

�H2 : z� �N1 zI� �A
� ��1

�Bþ �N2 ð44Þ

and

�M1 ¼
B2LJ

�1 0 B2

KJ�1 In 0

	 


, �N1 ¼

J�1NC2 J�1M

0 In

C2 0

0

B

@

1

C

A
,

ð45Þ

�M2 ¼ D12LJ
�1 0 D12

� �

, �N2 ¼

J�1ND21

0

D21

0

B

@

1

C

A
:

ð46Þ

The dimensions of �M1, �M2, �N1 and �N2 are, respectively,

(nþ nP)� (lþ nþ p2), m1� (lþ nþ p2), (lþ nþm2)�

(nþ nP) and (lþ nþm2)� p1.

Proof: The proof is based on the following lemma

and can be found in Hilaire and Chevrel (2008) and

Hilaire (2006).

Lemma 3.4: Let X be a matrix in R
p�l while G and H

are two transfer matrices independent of X with values in

C
m�p and C

l�n, respectively, and that are independent

of X. Then

@ðGXHÞ

@X
¼ G~H, ð47Þ

@ðGX�1HÞ

@X
¼ ðGX�1Þ~ ðX�1HÞ: ð48Þ

From (30), (5) and (6), it is possible to write

�A ¼
Aþ B2LJ

�1NC2 B2CZ

BZC2 AZ

	 


þ
B2

0

	 


S C2 0
� �

ð49Þ

and finally with Lemma 3.4

@ �H

@S
¼

B2

0

	 


~ C2 0
� �

: ð50Þ
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The other derivatives @ �H
@R
, @

�H
@Q
, . . . can be similarly

obtained and then gathered using

@

@Z
¼

� @
@J

@
@M

@
@N

@
@K

@
@P

@
@Q

@
@L

@
@R

@
@S

0

B

@

1

C

A
: ð51Þ

œ

Proposition 3.5: The closed-loop transfer function

sensitivity matrix
��H
�Z

can be computed as

��H

�Z

	 


i,j

¼ �H1Ei,j
�H2

�

�

�

�

2
ð52Þ

with

�H1Ei,j
�H2 :¼

�A 0 �B

�M1Ei,j
�N1

�A �M1Ei,j
�N2

�M2Ei,j
�N1

�C �M2Ei,j
�N2

0

B

@

1

C

A
ð53Þ

and Ei,j is the matrix of appropriate size with all elements

being 0 except the (i, j)-th element which is unity.

Proof: The proof is quite straightforward, and

comes from the definition of operator ~ in

Proposition 3.3. œ

Remark 3: In the SISO case, the problem becomes

simpler by noting that

��H

�Z

	 


i,j

¼ ð �H2
�H1Þi,j

�

�

�

�

�

�

2
ð54Þ

¼

�A 0 �B

�M1
�N1

�A �M1
�N2

�M2
�N1

�C �M2
�N2

0

B

B

@

1

C

C

A

i,j

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

: ð55Þ

The (lþ nþ 1)� (lþ nþ 1) H2-norm evaluations here

require only lþ nþ 1 Lyapunov equations to be solved

(instead of the (lþ nþ p)� (lþ nþm2) equations in the

MIMO case represented by (53)), so this expression is

preferred.

3.3 Pole sensitivity measures

The IO-sensitivity does not explicitly consider the

stability of the closed-loop system. To ensure that the

implementation is stable, the sensitivity of the poles

may be considered. We define the following pole

sensitivity measure.

Definition 3.6: Consider a controller realisation

C :¼ (Z, l,m2, n, p2). The closed-loop pole sensitivity

measure is defined by

��¼
4
X

nPþn

k¼1

@j �
kj

@Z
�WZ

�

�

�

�

�

�

�

�

2

F

, ð56Þ

where �
k
� �

14k4nPþn
denotes the poles of the closed-loop

system (the eigenvalues of �A).

The following lemma will be required next to

evaluate ��.

Lemma 3.7: Consider a differentiable function f :

R
m�n!C, and two matrices Y2Rm�n and X2Rp�q.

Let Y0, Y1 and Y2 be constant matrices with appropriate

dimensions. Then the following results hold:

. if Y¼Y0þY1XY2, then

@f ðYÞ

@X
¼ Y>1

@f ðYÞ

@Y
Y>2 ,

. if Y¼Y0þY1X
�1Y2, then

@f ðYÞ

@X
¼ � Y1X

�1
� �>@f ðYÞ

@Y
X�1Y2

� �>
:

Proof: See Li (1998). œ

The measure �� can be evaluated, thanks to the

following proposition and lemma.

Proposition 3.8:

@j �
kj

@Z
¼ �M>1

@j �
kj

@ �A
�N>1 , ð57Þ

where �M1 and �N1 are defined in Equations (45) and (46).

Proof: The proof is similar to the one used in

Proposition 3.3, by applying Lemma 3.7, instead of

Lemma 3.4. œ

Lemma 3.9: Let M2Rn�n be diagonalisable. Let

(
k)14k4n be its eigenvalues and (xk)14k4n the corre-

sponding right eigenvectors. Denote Mx ¼
4
(x1,

x2, . . . , xn) and My ¼ ð y1, y2, . . . , yn Þ ¼
4
M�Hx . Then

@
k

@M
¼ y �kx

>
k 8k ¼ 1, . . . , n ð58Þ

and

@j
kj

@M
¼

1

j
kj
Re 
 �k

@
k

@M

	 


, ð59Þ

where �* denotes the conjugate operation, Re(�) the real

part and �H the transpose conjugate operator.

Proof: See Wu et al. (2001). œ

Remark 4: Similarly to the IO-sensitivity matrix, (38),

a pole sensitivity matrix can be constructed to evaluate

the overall impact of each coefficient. Let �j �
j
�Z

denote

the pole sensitivity matrix defined by

�j �
j

�Z

	 


i,j

¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

nPþn

k¼1

@j �
kj

@Zi,j

	 
2
v

u

u

t : ð60Þ
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It can be computed from

@j �
kj

@Zi,j

¼
@j �
kj

@Z

	 


i,j

: ð61Þ

During the quantisation process, Z is perturbed to

Zy and the closed-loop eigenvalues �
k
� �

14k4nPþn
may be

outside the open unit disc. Therefore, it is crucial

to know when the FWL error will cause closed-loop

instability. On the basis of this consideration, a

stability related measure (Fialho and Georgiou 1994)

is defined as

�0ðZÞ ¼
4
inf
D

Dk kmax= realisation Zy makes the
�

closed-loop system unstable
�

: ð62Þ

This measure is not directly tractable (Fialho and

Georgiou 1994; Wu and Chen 2004), but can be

approximated with the following measure.

Definition 3.10: Consider a realisation C :¼ (Z, l,m2,

n, p2). The PSSM of C is defined by

�1ðZÞ ¼
4

min
14k4nPþn

1� �j
kj

WZk kF
@j �
kj
@Z
�WZ

�

�

�

�

�

�

F

: ð63Þ

This measure evaluates how a perturbation, D, of the

parameters, Z, can cause instability. It is determined by

how close the eigenvalues of �A are to the unit circle and

by how sensitive they are to the controller parameter

perturbation.

This measure is an extension to the SIF framework

of the sensitivity stability related measure originally

defined in the classical state-space framework (Li 1998)

and can be directly linked to an estimation of the

smallest wordlength required for the controller real-

isation to be implemented while preserving the closed-

loop stability (Wu et al. 2003).

3.4 Closed-loop roundoff noise analysis

Complementary to the other two measures, a mea-

sure of the roundoff noise in the generalised context

of the SIF is presented next. It extends the measure

proposed in Hilaire et al. (2007c) to the closed-

loop case.

3.4.1 Preliminaries

The first (�)- and second (�, )-order centred-

moments of a noise vector �(k) are denoted and

defined by

�� ¼
4
E �ðkÞ
� �

, ð64Þ

 � ¼
4
E �ðkÞ � ��
� �

�ðkÞ � ��
� �>

n o

, ð65Þ

�2� ¼
4
E �ðkÞ � ��
� �>

�ðkÞ � ��
� �

n o

¼ tr  �
� �

, ð66Þ

where E{�} and tr(�) are, respectively, the mean and the

trace operator.

The following lemma recalls the basic properties

of noise transmission through a linear system:

Lemma 3.11: Assume the input noise, U(k), to be such

that

E UðkÞ � �Uð Þ Uðk� l Þ � �Uð Þ>
� �

¼ d0,l U ð67Þ

where �i,j represents the Kronecker delta. Denote by Y

the resulting output of the transfer matrix G. If

(A,B,C,D) is a state-space realisation of G, the first-

and second-order moments of Y are given by

�Y ¼ Gð1Þ�U ð68Þ

�2Y ¼ tr  UðD
>Dþ B>WoBÞ

� �

, ð69Þ

where G(1) is the steady-state gain of G, given by

G(1)¼C(I�A)�1BþD and Wo is the observability

Gramian of G. Wo is the unique solution of the discrete

Lyapunov equation

Wo ¼ A>WoAþ C>C: ð70Þ

Proof: It is well known that �2Y ¼ kG’Uk
2
2, with ’U

the square root of  U (Papoulis 1991). The classical

formula linking the H2-norm to the Gramians is then

applied. œ

3.4.2 Roundoff noise analysis

Consider the realisation R :¼ (Z, l,m2, n, p2). By taking

into account the quantisation noise after each multi-

plication, the algorithm given by (3) becomes

[i] J:T�ðkþ 1Þ M:X�ðkÞ þN:UðkÞ þ �TðkÞ

[ii] X�ðkþ 1Þ K:T�ðkþ 1Þ þP:X�ðkÞ

þQ:UðkÞ þ �XðkÞ

[iii] Y�ðkÞ L:T�ðkþ 1Þ þR:X�ðkÞ þS:UðkÞ þ �YðkÞ,

ð71Þ

where �T, �X and �Y are, respectively, the noise sources

corrupting T, X and Y (�T is added on JT(kþ 1), so

J�1�T is added on T(kþ 1)).

Noise sources �T, �X and �Y depend on

. the way the computations are performed, the

order of the arithmetic operations, etc.

. the fixed-point representation of the inputs,

. the fixed-point representation of the outputs,
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. the fixed-point representation chosen for the

states and the intermediate variables,

. the fixed-point representation chosen for the

coefficients.

They are modelled as independent white noise,

characterised by their first- and second-order

moments.

Remark 5: The quantisation or roundoff process can

be considered as the addition of a noise, �. If "

represents the quantisation step, then (Widrow 1960)

��¼ 0 and ��¼ "
2/12 for roundoff, and ��¼ "/2 and

��¼ "
2/12 for truncation.

The noise is added through the controller and the

plant to the output Z(k) of the closed-loop system �S.

Denote the noise added to Z(k) by �0(k):

�0ðkÞ¼
4
Z �ðkÞ � ZðkÞ: ð72Þ

Definition 3.12: The output noise power �P is defined

as the power of �0(k)

�P¼
4
E �0

>
ðkÞ�0ðkÞ

n o

ð73Þ

Denote by � the vector stacking all the noise

sources

�ðkÞ¼
4

�TðkÞ

�XðkÞ

�YðkÞ

0

B

@

1

C

A
: ð74Þ

Proposition 3.13: The noise �0(k) corresponds to the

noise �(k) filtered through the transfer function �H1

defined in Equation (43) (the closed-loop system is then

equivalent to the system described in Figure 5). Hence,

we get

�P ¼ tr  � �M>2
�M2 þ �M>1

�Wo
�M1

� �� �

þ �>�0��0 , ð75Þ

where ��0 ¼ CZðI� AZÞ
�1 �M1 þ �M2

� �

��.

Proof: If XP denotes the state of the plant,

Equation (71) combined with the state-space

realisation of the plant leads to

XP

X

 !

ðkþ 1Þ ¼ �A
XP

X

 !

ðkÞ þ �BWðkÞ þ �M1�ðkÞ

ZðkÞ ¼ �C
XP

X

 !

ðkÞ þ �DWðkÞ þ �M2�ðkÞ:

8

>

>

>

>

>

<

>

>

>

>

>

:

ð76Þ

So, �H1 (cf. Equation (43)) appears explicitly as the

transfer function relating �(k) to Z(k) as stated in the

proposition. Therefore, P ¼ Ef�0>ðkÞ�0ðkÞg ¼ �2�0 þ

�>�0��0 and Lemma 3.11 gives the first- and second-

order moments. œ

Remark 6: Equation (75) is a good illustration of the

relationship between the work done in the hardware/

software (HW/SW) community and that done in the

control community. The former is based on the

accurate evaluation of the noise for particular

HW/SW fixed-point implementations on various

targets (DSP, FPGA) whereas the latter is based on

the search for good realisations with particular well-

conditioned structures. In the first case, only the

classical direct form is studied, whereas the actual

HW/SW impact is neglected in the second case.

The moments  � and �� depend only on the

HW/SW implementation, whereas the other terms

( �A, �C, �M1, �M2 and �Wo) depend only on the algorithm

used.

3.4.3 Roundoff noise gain

The closed-loop RNG is the output noise power in

a specific (and simplified) computational scheme: the

noise is assumed to appear only after each multiplica-

tion (roundoff after multiplication scheme). It is

modelled as a zero-mean centred, statistically indepen-

dent, white noise. Each noise source has the same

power �20 (determined by the wordlength chosen for

all the variables and coefficients).

Definition 3.14: The closed-loop RNG is defined as

�G¼
4

�P

�20
: ð77Þ

This measure has been studied for the open-loop

case by Mullis and Roberts (1976), Hwang (1977) and

Gevers and Li (1993) and has been established for

classical state-space realisations and some other

particular realisations. The particular computational

scheme considered gives the moments of �T, �X and �Y:

here they depend only on the number of non-trivial

parameters in the realisation.

+

H̄

ξ (k) ξ′ (k)

W (k) Z (k)

Z
∗ (k)

H̄
1

Figure 5. Equivalent system with noise extracted.
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Let us introduce the matrices dJ to dS. They are

diagonal matrices defined by

ðdXÞi,i¼
4 number of non-trivial parameters

in the i-th row of X

� �

: ð78Þ

The trivial parameters considered are 0, 1 and �1

because they do not imply a multiplication.

Step [i] of algorithm (3) is realised as follows (for

i2 {1, 2, . . . , l }):

Tiðkþ1Þ
X

n

j¼1

MijXj ðkÞþ
X

m

j¼1

NijUj ðkÞ�
X

j5i

JijTj ðkþ1Þ:

ð79Þ

Each multiplication by a non-trivial parameter implies

a quantisation noise. Since they are independent

centred white noise,  �T is given by

�T ¼ dM þ dN þ dJð Þ�20 ð80Þ

(J is a lower diagonal matrix with 1 on the diagonal. So

the number of non-trivial parameters on the i-th row is

equal to the number of non-trivial parameters of the

i-th row restricted to its subdiagonal part).

In the same way (steps [ii] and [iii]),

�Y ¼ dL þ dR þ dSð Þ�20 ð81Þ

 �X ¼ dK þ dP þ dQ
� �

�20 : ð82Þ

Proposition 3.15: The RNG is given by

�G ¼ tr dZ �M>2
�M2 þ �M>1

�Wo
�M1

� �� �

ð83Þ

where

dZ ¼

dJ þ dM þ dN

dK þ dP þ dQ

dL þ dR þ dS

0

B

@

1

C

A

ð84Þ

(dZ is also defined by Equation (78) applied on Z).

Proof: The noise sources �T, �X and �Y are zero mean

centred independent noises so �� is null and

 � ¼

�T

�X

�Y

0

B

@

1

C

A
ð85Þ

œ

4. Optimal design

For the implementation of a digital controller, it is

important to choose a realisation having low

FWL effects. Hence it is of interest to find an optimal

realisation in a sense to be defined.

Problem 4.1: The global optimal realisation problem

is to find the best realisation Ropt associated with the

transfer function H according to the criteria J

Ropt ¼ arg min
R2RH

J ðRÞ: ð86Þ

Due to the size of RH, this problem generally

cannot be solved practically. Hence the following

problem is introduced to restrict the search to some

particular structurations.

Problem 4.2: Consider some structurations (Si)14i4N.

The optimal structured realisation problem is to find

the optimal realisation RS

opt:

RS

opt ¼ argmin
R2R

Si
H

14i4N

J ðRÞ:
ð87Þ

Since the measure J could be non-smooth and/or

non-convex, the adaptive simulated annealing (ASA)

(Ingber 1996; Chen and Luk 1999) method has been

chosen to solve Problem 4.2. This method has worked

well for other optimal realisation problems (Wu et al.

2001).

If the equivalent structured realisations are

linked through the similarity transformation of

Proposition 2.5, the computation of the previously

defined FWL measures can be improved thanks to the

following proposition:

Proposition 4.3: If we consider two realisations Z0 and

Z1 such that

Z1 ¼ T 1Z0T 2, ð88Þ

where

T 1 ¼

Y

U�1

Ip

0

B

B

@

1

C

C

A

, T2 ¼

W

U

Im

0

B

B

@

1

C

C

A

ð89Þ

then the closed-loop measures of realisation Z1 can be

computed from those of Z0 according to

��H

�Z

	 


i,j

�

�

�

�

�

Z1

¼ �H1

�

�

Z0
T �11 Ei,jT

�1
2

�Hj2
�

�

Z0

�

�

�

�

�

�

2
, ð90Þ

@j �
kj

@Z

�

�

�

�

Z1

¼ T �>1
@j �
kj

@Z

�

�

�

�

Z0

T �>2 : ð91Þ
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Proof: The proof comes directly from

�H1

�

�

Z1
¼ �H1

�

�

Z0
T �11 , �H2

�

�

Z1
¼ T �12

�H2

�

�

Z0
: ð92Þ

œ

A Matlab toolbox (FWR Toolbox, available from

http://fwrtoolbox.gforge.inria.fr/) has been

specially developed to use the SIF and solve optimal

structured realisation problems with the previously

defined measures.

5. Example

The example is taken from Gevers and Li (1993,

pp. 236–237). The discrete time system to be controlled

is given by

Ap ¼

3:7156 �5:4143 3:6525 �0:9642

1 0 0 0

0 1 0 0

0 0 1 0

0

B

B

B

B

@

1

C

C

C

C

A

,

ð93Þ

Bp ¼ 1 0 0 0
� �>

, ð94Þ

Cp ¼ 0:1116 0:0043 0:1088 0:0014
� �

� 10�5:

ð95Þ

Remark 1: All the computations are performed with

Matlab double floating-point precision, but the results

are quoted only to 4 significants digits (which may be

insufficient to characterise the considered system). For

each different realisation, bold font is used to exhibit

non-trivial parameters (the weighting matrice WZ is

built accordingly).

The plant corresponds to the following standard

form (see (27))

P :¼

A Bp Bp

Cp 0 0

Cp 0 0

0

B

@

1

C

A
: ð96Þ

The initial realisation of the feedback controller is

designed to place the closed-loop poles at


1,2 ¼ 0:9844� 0:0357j, 
3,4 ¼ 0:9643� 0:0145j,

ð97Þ


5,6 ¼ 0:7152� 0:6348j, 
7,8 ¼ 0:3522� 0:2857j:

ð98Þ

The controller has the following transfer function

H : z�
38252z3� 101878z2þ 91135z� 27230

z4� 2:3166z3þ 2:1662z2� 0:96455zþ 0:17565
:

ð99Þ

Let us consider different realisations for this

controller. The realisations, Z1–Z11, are described

below. The values of the measures are shown in

Table 1. The realisations and corresponding sensitivity

matrices, �
�H

�Z
and �j �
j

�Z
, are given in the Appendix. Note

that only the bold values shown in the realisations are

considered, via the weighting matrix WZ.

State-space realisations:

Z1: Canonical form (corresponds to direct form II).

This realisation has the following results:

�MW
L2
¼ 1:9046eþ 7, �� ¼ 3:3562eþ 7,

�1 ¼ 1:8065e� 6, �G ¼ 1:186eþ 6
ð100Þ

Z2: The internally balanced state-space realisation is

often considered as a low sensitivity realisation (Gevers

and Li (1993) shows that the balanced realisations

Table 1. Example 1: FWL measures for different realisations.

�MW
L2

�� �1
�G �TO Nb. op.

Z1 1.9046eþ7 3.3562eþ7 1.8065e�6 1.186eþ6 3.6764eþ8 7þ 8�
Z2 3.6427eþ5 6.5007eþ5 7.4933e�6 3.6582eþ2 1.1387eþ5 19þ 24�
Z3 1.5267eþ3 1.6689eþ4 1.167e�4 1.7455eþ2 5.4111eþ4 19þ 24�
Z4 1.6272eþ3 2.7425eþ3 1.189e�4 1.1778eþ2 3.6512eþ4 19þ 24�
Z5 1.9474eþ13 1.2294eþ13 1.7244e�9 3.2261e�3 1.7239eþ10 19þ 24�
Z6 2.8696eþ3 4.5371eþ3 9.2351e�5 7.9809e�3 6.0078eþ0 19þ 24�

Z7 1.5342e�2 8.1051e�2 6.6047e�2 2.8082e�8 4.5466eþ0 11þ 12�
Z8 1.5341e�2 8.089e�2 6.6045e�2 4.217e�8 4.8783eþ0 11þ 16�
Z9 1.1388e�1 2.8203e�2 6.6159e�2 3.7783e�6 9.8937eþ1 11þ 16�
Z10 1.5342e�2 8.0015e�2 6.6052e�2 4.1742e�8 4.8371eþ0 11þ 16�
Z11 1.6065e�2 3.8802e�2 6.0413e�2 4.7451e�8 3.5597eþ0 11þ 16�
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minimises the L1/L2 sensitivity measure). It has the

following measure values:

�MW
L2
¼ 3:6427eþ 5, �� ¼ 6:5007eþ 5,

�1 ¼ 7:4933e� 6, �G ¼ 365:82:
ð101Þ

Despite it being fully parametrised (24 parameters), its

overall sensitivity is lower than the canonical form.

Z3: With the similarity

T 1 ¼

:

U�1

1

0

B

@

1

C

A
, T 2 ¼

:

U

1

0

B

@

1

C

A
ð102Þ

it is possible to consider all state-space equivalent

realisations, and find the �MW
L2
-optimal state-space

realisation Z3. Its closed-loop transfer function sensi-

tivity measure is �MW
L2
¼ 1526:7 and is much lower than

other state-space realisations.

Z4: It is also possible to consider the ��-optimal state-

space realisation. Then �� ¼ 2742:5.

Z5: �G-optimal state-space Z5. Here, �G is very low:
�G ¼ 0:0032261, but the other measures are quite poor:

�MW
L2
¼ 1:9474eþ 13, �� ¼ 1:2294eþ 13,

�1 ¼ 1:7244e� 9: ð103Þ

Even if the goal of this article is not multi-objective

optimal realisation, it is interesting to look for a

realisation that is good enough for the three measures
�MW
L2
, �� and �G. Let us denote

�TOðZÞ ¼
4

�MW
L2
ðZÞ

�M
W opt
L2

þ
��ðZÞ

��opt
þ

�GðZÞ

�Gopt
, ð104Þ

where �M
W opt
L2

is the optimal transfer function sensitiv-

ity value ( �M
W opt
L2

¼ �MW
L2
ðZ3Þ), ��

opt the optimal value

for the pole sensitivity ( ��opt ¼ ��ðZ4Þ) and �Gopt the

optimal RNG value ( �Gopt ¼ �GðZ5Þ).

Remark 2: This tradeoff measure is defined for this

example and this structuration (state-space). Clearly,

it is lower bounded by 3.

Z6: Tradeoff-optimal state-space Z6. With this mea-

sure, we aim to have a realisation that simultaneously

has low transfer function sensitivity, pole sensitivity

and RNG. The tradeoff measure is quite low

( �TO ¼ 6:0078), and the corresponding measures are:

�MW
L2
¼ 2869:6, �� ¼ 4537:1,

�1 ¼ 9:2351e� 5, �G ¼ 0:0079809:
ð105Þ

o direct forms II transposed: The realisation (24) is

considered with various values for (� i)14i4n. D is

chosen to be 2�3. Since there is no possibility here to use

similarity on Z like that proposed in Proposition 2.5,

the realisation matrix Z cannot be built from another

Z matrix: for (� i)14i4n given, the parameters (�i)14i4n

and (�i)04i4n have to be rebuilt from (19).

Z7: with �¼ (1 1 1 1)>, the direct form II with the

�-operator is obtained.

Z8: MLW
2
-optimal �DFIIt. The optimisation gives

� ¼ 0:29758 0:99939 0:99953 0:99977
� �>

:

ð106Þ

Z9: ��-optimal �DFIIt. The optimisation gives

� ¼ 0:35114 0:30858 0:66309 0:99856
� �>

:

ð107Þ

Z10: �G-optimal �DFIIt. The optimisation gives

� ¼ 0:93207 0:99335 0:99863 0:99963
� �>

:

ð108Þ

Z11: It is here also possible to apply a new tradeoff

measure, like the one in equation (104) (with new
�M
W opt
L2

, ��
opt and �Gopt values). The �TO-optimal real-

isation (Equation (A5)) is obtained with

� ¼ 0:99744 0:41349 0:8646 0:99346
� �>

: ð109Þ

and �TO ¼ 3:5597.

Table 1 gives all the measure values for the

realisation Z1–Z11. Realisations Z6 and Z11 are

interesting, low sensitivity, low roundoff noise realisa-

tions. Moreover Z11 requires fewer operations

(11 additions and 16 multiplications) than Z6. These

results are case dependent and some controllers may be

less sensitive in state-space forms than in �DFIIt form.

The pseudocode algorithms associated with realisa-

tions Z6 and Z11 are given by Algorithms 1 and 3 listed

in the Appendix. It is assumed that these realisations

are performed on a fixed-point 16-bit processor (the

additions are 32 bits, without guard bits for the

additions) and the input is in the interval [�10, 10]

(so 11 bits are given for the fractional part). Due to the

gain of the controller, the output has �5 bits for the

fractional part (the integer value coding for the output

must be multiplied by 26 to obtain the real value). The

binary point position is adjusted for each intermediate

variable, state and coefficient. So the fixed-point

algorithms of realisations Z6 and Z11 are given by

Algorithms 2 and 4.

6. Conclusions

The SIF is a powerful tool for controller implementa-

tion modelling. It provides a macroscopic description
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of the algorithm to be implemented, in the context of

embedded systems. Being more general than previous

forms, it allows, in a unified framework, the analysis

and design of particular realisations of linear con-

trollers. Different measures can give insight on the

quality of a given realisation: IO-sensitivity, pole

sensitivity, RNG, amount of computation, etc. All

have been defined in the new context of the SIF. Some

of them are worked out in a efficient way through the

use of Gramians and Lyapunov equations.

The SIF allows all possible linear realisations, not

necessarily of the same order, to be compared. Some

optimisations are computationally tractable, by

restricting the class of equivalent realisations to specific

subclasses or structures. This has been tested in

the case of classical state-space realisations, with

�-structures, etc. The sparse realisation proposed

recently in Li and Zhao (2004) has also been examined.

There are numerous areas for future work. First, it

would be of practical interest to make use of the SIF to

propose some practical realisations that are generically

good (sparse and faithful) in a given context. Second

is the modelling of internal delay, this being both

computational delay and communication time delay,

for example, when the controller algorithm has to be

split on different processors. Third is to take more

precisely into account HW/SW target, so linking the

present work more deeply with what is done in the

HW/SW community. Last, but not the least, improving

the optimisation process (cheap evaluation of the

measures, choice and tuning of the optimisation

solver, distance evaluation to the optimal optimum)

is still an important challenge, although the developed

Matlab toolbox, the FWR Toolbox, has been able to

provide interesting results in different situations.
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Appendix. Algorithms and numerical values Input: u : 16 bits integer
Output: y : 16 bits integer
Data: xn : array of four 16 bits integers
Data: xnp : array of four 16 bits integers
Data: Acc : 32 bits integer
begin

// compute xnp(1)
Acc ← xn(1) ∗ 16477;
Acc ← Acc + xn(2) ∗ −12633;
Acc ← Acc + xn(3) ∗ 6457;
Acc ← Acc + xn(4) ∗ −7047;
Acc ← Acc + u ∗ −498;
xnp(1) ← Acc >> 14;
// compute xnp(2)
Acc ← xn(1) ∗ −13976;
Acc ← Acc + xn(2) ∗ 18235;
Acc ← Acc + xn(3) ∗ 2562;
Acc ← Acc + xn(4) ∗ −14063;
Acc = Acc + u ∗ 748;
xnp(2) ← Acc >> 14;
// compute xnp(3)
Acc ← xn(1) ∗ −26423;
Acc ← Acc + xn(2) ∗ 22730;
Acc ← Acc + xn(3) ∗ 9504;
Acc ← Acc + xn(4) ∗ −15444;
Acc ← Acc + u ∗ 2241;
xnp(3) ← Acc >> 14;
// compute xnp(4)
Acc ← xn(1) ∗ −21277;
Acc ← Acc + xn(2) ∗ 24592;
Acc ← Acc + xn(3) ∗ −7956;
Acc ← Acc + xn(4) ∗ −1565;
Acc ← Acc + u ∗ 1950;
xnp(4) ← Acc >> 12;
// compute the output

Acc ← xn(1) ∗ 21996;
Acc ← Acc + xn(2) ∗ −2083;
Acc ← Acc + xn(3) ∗ −4531;
Acc ← Acc + xn(4) ∗ 22994;
y ← Acc >> 15;
// save the states

xn ← xnp
end

Algorithm 2: Fixed-point algorithm of realisation Z6.

Input: u : real
Output: y : real
Data: xn : array of four reals
Data: xnp : array of four reals
Data: Acc : real
begin

// compute xnp(1)
Acc ← xn(1) ∗ 1.0056699573;
Acc ← Acc + xn(2) ∗ −0.3855253273;
Acc ← Acc + xn(3) ∗ 0.7882084769;
Acc ← Acc + xn(4) ∗ −0.8602211557;
xnp(1) ← Acc + u ∗ −1991.2978135292;
// compute xnp(2)
Acc ← xn(1) ∗ −1.7060282729;
Acc ← Acc + xn(2) ∗ 1.1129704773;
Acc ← Acc + xn(3) ∗ 0.6255751647;
Acc ← Acc + xn(4) ∗ −3.4333411367;
xnp(1) ← Acc + u ∗ 5980.9414091468;
// compute xnp(3)
Acc ← xn(1) ∗ −0.8063580681;
Acc ← Acc + xn(2) ∗ 0.3468387941;
Acc ← Acc + xn(3) ∗ 0.5800952206;
Acc ← Acc + xn(4) ∗ −0.9426058134;
xnp(3) ← Acc + u ∗ 4482.5598405197;
// compute xnp(4)
Acc ← xn(1) ∗ −2.5973181092;
Acc ← Acc + xn(2) ∗ 1.5009691911;
Acc ← Acc + xn(3) ∗ −1.9422913020;
Acc ← Acc + xn(4) ∗ −0.3821356552;
xnp(4) ← Acc + u ∗ 15599.2014809957;
// compute the output

Acc ← xn(1) ∗ 1.3425518386;
Acc ← Acc + xn(2) ∗ −0.0635813666;
Acc ← Acc + xn(3) ∗ −0.5530485340;
y ← Acc + xn(4) ∗ 2.8068277711;
// save the states

xn ← xnp
end

Algorithm 1: Realisation Z6.
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Z1 ¼

.....................................................................
0 0 0 �0:17565 1

1 0 0 0:96455 0

0 1 0 �2:1662 0

0 0 1 2:3166 0
.....................................................................
38252 �13264 �22452 �13615 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

,

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Z2 ¼

.............................................................................................
0:11188 �0:54082 0:19539 �0:053116 203:18

0:54082 0:72159 0:1647 �0:034978 63:57

0:19539 �0:1647 0:76428 0:12977 �32:042

0:053116 �0:034978 �0:12977 0:71885 �4:1143
.............................................................................................

203:18 �63:57 �32:042 4:1143 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

ðA1Þ

Z3 ¼

...................................................................................
3:0771 1:9943 �3:5223 �0:81099 �8:6995

19:018 17:794 �28:317 �4:7792 �14:709

15:651 13:987 �22:86 �4:4711 �24:353

�11:38 �10:264 17:463 4:3055 19:502
...................................................................................

3953:9 3517:5 �5956:1 �1059:4 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

,

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

Input: u : 16 bits integer
Output: y : 16 bits integer
Data: xn : array of four 16 bits integers
Data: Acc : 32 bits integer
Data: T : array of four 16 bits integers
begin

// Intermediate variables

T ← xn;
// compute xn(1)
Acc ← T (1) ∗ −17601;
Acc ← Acc + T (2) << 13;
Acc ← Acc + xn(1) ∗ 16342;
Acc ← Acc + u ∗ 4781;
xn(1) ← Acc >> 14;
// compute xn(2)
Acc ← T (1) ∗ −18065;
Acc ← Acc + T (3) << 13;
Acc ← Acc + xn(2) ∗ 6775;
Acc ← Acc + u ∗ −2582;
xn(2) ← Acc >> 14;
// compute xn(3)
Acc ← T (1) ∗ −25826;
Acc ← Acc + T (4) << 12;
Acc ← Acc + xn(3) ∗ 16162;
Acc ← Acc + u ∗ 944;
xn(3) ← Acc >> 14;
// compute xn(4)
Acc ← T (1) ∗ −30395;
Acc ← Acc + xn(4) ∗ 32554;
Acc ← Acc + u ∗ 1061;
xn(4) ← Acc >> 15;
// compute the output

y ← T (1);
end

Algorithm 4: Fixed-point algorithm of realisation Z11.

Input: u : real
Output: y : real
Data: xn : array of four reals
Data: Acc : real
Data: T : array of four reals
begin

// Intermediate variables

T (1) ← xn(1) ∗ 0.125;
T (2) ← xn(2) ∗ 0.125;
T (3) ← xn(3) ∗ 0.125;
T (4) ← xn(4) ∗ 0.125;
// compute xn(1)
Acc ← T (1) ∗ −8.5940609251;
Acc ← Acc + T (2);
Acc ← Acc + xn(1) ∗ 0.9974440349;
xn(1) ← Acc + u ∗ 306012.0144582504;
// compute xn(2)
Acc ← T (1) ∗ −35.2839059945;
Acc ← Acc + T (3);
Acc ← Acc + xn(2) ∗ 0.4134893631;
xn(2) ← Acc + u ∗ −660870.6659178101;
// compute xn(3)
Acc ← T (1) ∗ −201.7634931054;
Acc ← Acc + T (4);
Acc ← Acc + xn(3) ∗ 0.9864594697;
xn(3) ← Acc + u ∗ 966164.3351972550;
// compute xn(4)
Acc ← T (1) ∗ −237.4643508571;
Acc ← Acc + xn(4) ∗ 0.9934647479;
xn(4) ← Acc + u ∗ 1086873.2436256856;
// compute the output

y ← T (1);
end

Algorithm 3: Realisation Z11.
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