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Abstract

In this letter, the problem of nonnegative tensor decontjors is addressed. Classically, this problem
is carried out using iterative (either alternating or giplgeterministic optimization algorithms. Here, a
rather different stochastic approach is suggested. Intiaddihe ever-increasing volume of data requires
the development of new and more efficient approaches to leetalpirocess “Big data” tensors to extract
relevant information. The stochastic algorithm outlinetehcomes within this framework. Both flexible
and easy to implement, it is designed to solve the problerheP (Candecomp/Parafac) decomposition

of huge nonnegative 3-way tensors while simultaneouslylamato handle possible missing data.

Index Terms

Nonnegative Tensor Factorization (NTF); multi-linearediga; Candecomp/Parafac (CP) decomposi-

tion; stochastic optimization; Big data/tensors; missitaga

. INTRODUCTION

The problem of tensor decompositions has gained a growitegtadn from different scientific com-

munities due to its usefulness in various application figlstaitistics, psychometrics, neurosciences,
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chemometrics, numerical linear algebra, computer vislimguistics, numerical analysis, data mining,
biomedical engineering, (audio) signal processing, tefgounications and so on), see for example
[1][2][3][4] for an overview. It has given rise to many workser the recent years. In this letter, we focus
on one particular tensor decomposition known as the “Caabitolyadic” decomposition. It consists
of decomposing a tensor into a sum of rank-1 tensors. It caeitbher seen as a generalization of the
matrix Singular Value Decomposition (SVD) to tensors or acsgl case of another tensor decomposition
known as the Tucker decomposition [5] where the core terssoestricted to be “diagonal”’. Depending
on the considered community, different names have been Gsatbnical Polyadic, Candecomp, CanD,
Parafac (for PARAllel FACtor analysis), yet, the most p@vucronym remains CP.

Most algorithms suggested to tackle the CP decompositiobl@m rely on the use of a well-chosen
objective function and an iterative (either alternatinggbobal) deterministic optimization algorithm.
Direct solutions have been suggestedé¢op.the GRAM-DTLD method [6][7]. Here, instead, we suggest
a different stochastic optimization approach where ranéterates are used. This genetic like algorithm
might be considered as a special case of memetic algoritBif#.[In the case of CP decompositions,
we will emphasize all the advantages one can find in restgdtiis population-based search to the case
of two agents in the considered population. This will brirgyta clearly delineate the most important
milestones of the suggested approach.

Moreover, in a number of leading application areas of tenglike fluorescence spectroscopy [10][11]
or image processing (remote sensing and hyperspectralnm@tR]) for example) the data soughie

the constituent vectors of the loading matrices involvethasn CP decomposition) should be nonnegative
since they stand for intrinsically nonnegative physicahmfities (for example emission and excitation
spectra and concentrations in 3D fluorescence). It is theoreavhy we focus on the very important case
of nonnegative CP decomposition algorithms. Solutionsteseady been developed to take into account
this nonnegativity constraint (sexg. [3][13][14][15][16][17][18][19]). Their common denomator is
that they all rely upon deterministic optimization schemiEse simplest approach consists of iterative
alternating minimization schemes (or Alternating Nonriega_east Squares (ANLS) approaches) where
at each iteration the non-negativity constraint is impobgda projection on the feasible set. This
principle is used in the well-known NTF-ALS and NTF-HALS aftiihms [3]. The main advantage
of this nonnegativity constraint is that the low rank appmeation problem becomes well posed [20].
Its counterpart is that its level of difficulty might increasUnlike other methods, we opt for a direct
stochastic algorithm and explain how the nonnegativityst@int is ensured.

Another important aspect is that with our technologicalazaty to gather, record and store always more
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and more information, the volume of available data is cadily increasing. Indeed, advanced data
mining techniques are required to be able to extract retewdormation from this huge amount of data
within tolerable elapsed time. In the field of “Big Data”, tability to efficiently process and analyse large
data sets has become a key challenge. This is particulamdyfar tensors as proven by recent articles
on this topic (see [21] for an overview). However, very fewriighave been led on huge nonnegative
tensors. A first two-stages solution can be found in [22][@3lvhich the raw tensor is divided into sub-
tensors of smaller sizes simultaneously factorized thamldistributed computing. This approach is also
fast because Kronecker and Khatri-Rao products are avadddreplaced by Hadamard products and
multiplication of small matrices. In [24], to speed up thelmdl computational time, the authors suggest
a two-steps algorithm with a first stage dedicated to the ceagion of the original tensor thanks to a
Tucker3 decomposition. The stochastic algorithm outljrifete, falls within this “Big Data” framework
too. But we suggest a different approach to achieve redumamkgsing time. Instead of a dimensionality
reduction stage like in [24] or [25] (where “random fiberstarsed to approximate the unfolding of a
high-dimensional tensor in a given mode by a suitable samgpif its columns or rows), we are taking
into account the redundancy of information by focusing oeduced set of randomly chosen equations.
The main advantage of such an approach is to offer a highet tdvmodularity. Two problems can be
addressed with exactly the same algorithm i) the non neg&@®R decomposition (NCP) of tensors, and
ii) the NCP decomposition of tensors with possible missiogunknown, damaged or unreliable) data
[26][27][28]. For such problems, the classical “margimation” approach consists of ignoring unreliable
values. With standard approaches, this is achieved at thense of a modified binary weighted cost
function. In our case, the equations corresponding to ngsgalues are simply discarded.

This letter is organized as follows. First, the problem &tesi. The objective function as well as the
constraints that will be considered are introduced. ThanSeéction lll, the different aspects of the
suggested stochastic algorithm are detailed. In Sectigntd\éfficiency and gain in computation time
are emphasized on synthetic data and it is compared withlatdrapproaches. Finally, a conclusion is

drawn.

II. PROBLEM STATEMENT
A. The CP model

A tensor can be represented bylamode array in a chosen basis. Its ordercorresponds to the
number of indices of the associated arrayays or modes[7]). We focus on third-order tensors, say

A € RI*J*K Each entry of4 is then denoted by ;. Such tensors admit the following trilinear
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decomposition, also known as the triadic decompositior} 294 into a sum of rank-1 tensoise. for

all (i,j,k) eZ=1,.... 1] x[1,...,J] x[1,...,K] C N

R
Qijk = Y UipVjrtWy. 1)

r=1
The three involved matrice¥) = (u;) = [uj,ug,...,ugle RI*E V = (v;,) = [vi,va,...,VE]
€ RM*E W = (wy,) = [w1,Wa,...,wg] € REXE are called thdoading matriceswhoseR columns

are the so-calledoading factors R stands for a large enough integer corresponding to the numbe
of components involved in the sum. The minimufhthat can be found such that the above equality
remains valid is called the tensor rank and the decompasgithen named the Canonical Polyadic (CP)

decomposition ofA.

B. CP decomposition of 3-way arrays

A standard way to determine the three loading matride&/ and'W involved in the CP decomposition
consists of minimizing a well chosen objective functidghwith respect to these three matrices. The
following squared Euclidian distance between the tensdrisnapproximatiorni.e. the least squares loss

function, is frequently used: R

.F(U, V, W) = Z (aijk - Z uirvjrwkr)Q. (2)

(i,4,k)ET r=1
When performing the CP decomposition, the tensor rBnlk assumed to be known. The nonnegativity
constraint imposes that;, > 0, v;, > 0 andwy, > 0 for all 4, j, k, . For huge tensord, J and K tends
to become really high, consequently the calculation of dss lfunction may require large computational

times.

IIl. A NEW STOCHASTIC ALGORITHM TO SOLVE THE NONNEGATIVECP DECOMPOSITION PROBLEM
A. A partial objective function

One can see that the system described by Eq. (1) consist&ofequations with(7 +.J+ K') R unknowns.

If the rank R is relatively small compared tmin(I.J, JK, I K), wheremin(.) returns the smallest of all
the elements within brackets, then the number of unknowsmgisficantly small compared to the number
of equations. Starting from this observation, we suggegidas on a partial objective functiaRy which

is based on the use d¥ equations randomly chosen among theK available equations given by Eq.
(1). The value ofN should be large enough such that the inequdlity- J + K)R < N < IJK holds.

Then the following notations are introduced to desctke. For simplicity, we identify each equation
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with the corresponding inde, j, k) € Z. We denote byZy the index set of theV randomly chosen

equations:
In ={(i,j,k) € Z | equation(, j, k) is chosen. 3)

We also consider the vecter of size (I + J + K)R x 1:

vec{U}
x = | vec{V} (4)
vec{W}
where operatorec{-} is stacking the columns of a matrix into a vector. Finallye thartial objective
function writes: R
Fnx) = > (age— Y wirvjwg) 5)
(i,5,k)ETn r=1

Such an approach also constitutes a very simple way to hamellproblem of tensors factorization with
incomplete or missing data. These values are simply disdaashd cannot belong t6y. Finally, note
that whenN = IJK, Fy(-) is identical toF(,-,-).

B. The general principle of the algorithm

Memetic algorithms are based on an evolution of a populatiooandidates for the minimization of a
function. They are divided into a local search step wheré eaadidate searches around its location, and
a selection step where the global population is modified riicg to some rules like mutation or cloning.
Here we use a very simple approach based on only two candidduere only one will survive at the end
of each step. At the beginning of the search step, our catedisldocated at positios, then local search
is done at a positiot nearx. If Fy (%) < Fy(x) then the new position ig, if not the candidate stays
at positionx. In terms of memetic algorithmss is cloned, its clone goes to positichand then there
is a binary tournament betweenandx to determine who will survive. This technic requires onlyeon
evaluation of the objective function at each step insteashatfix inversion or computation of derivatives
for usual deterministic methods. The objective functioreslmot need to be regular like for gradient
methods which makes the algorithm highly flexible. Its ad&ph to other (possibly more complicated)

problems only involves a change of the cost function (novadrie).

C. Stochastic local search

There are obviously many ways to search around posttido create a new candidate We choose

here to modify at each step only one componenk @ build our candidate. This particular choice is
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motivated by a low cost computation dfy(x) thanks to the value of(x) as described in the next
section. This component is chosen uniformly at random antlea@/ + J + K) R elements ok that is in
the interval[1, (I +J + K)R]. It is modified thanks to a random varialdfe Without loss of generality,

if we suppose that the elemeanj,,, of x is chosen, thex is defined as follows

Uiore + Y if (i,7) = (i0,70),

.t | (i,7) = Gio, o) ©
Wip otherwise,

QA}J'T == Ujr’ (7)

Wy = Wy (8)

The non-negativity ofk is simply ensured thanks to (6) sinte| stands for the absolute value. The
crucial question is the choice of the law &f and of its parameters. As we want to search around the
current position, the law ot should be symmetric. We have chosen here to use a uniformriaam i
interval [—s,, s,,] which will depend on the iteration step denotedzblput not on a particular component
of x. To achieve an acceptable rate of convergence for our metteodounds, should be a decreasing
function of p. For usual stochastic algorithms like the stochastic gmdwith decaying step-size, it is

* 2 < oo the

proven that if the rate of decay is chosen a priori and veri§i€s ; s, = oo and szl 5

convergence to a local minimum is granted [30]. A frequentbed step-size is, = 1/p. Here our

approach is closer to deterministic methods as our stepndispenF, and gets smaller whefy gets

smaller. The computation of our step relies on two heusstiéirst, the quanti INT(X) indicates the

mean error that we have on each tejuyy;, — Zle uirvjrwEyr| Delonging toFy. Then, we can try to

improve our search using the following scaling. If we assuhsd all components ok are equali.e.

3 Z(i,j,k)eI Qijk
1JKR

this case, thanks to (1) we ha¥8, ; ez aijk = Y. x)er orer ™ = IJK Rr? (note that we also use

Ui = vjp = wy, = 7, then the solution of the minimization problemis= . Indeed in

the quantityr for our initialization). To modify for instance the law af; ., in a; ;i — Zle UjorVjr Wiy
we choose a random variabte such thaty v;,, wy,, is a uniform law in(—/Z5&) 1 /Ix0)) Finally,

thanks to the second heuristic the lawofis uniform in (—y/ 235 /72 [Ix09) /72y,
D. A low-cost computation of the objective function

The objective functionFy (x) can be computed in an inexpensive way thankgidx, x) = Fy(x) —
Fn(x). Regarding (6)x andx have only one different component agg (x, x) can be rewritten as the
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difference between the sum of all quadratic terms in (5) @ioirig ;... HenceGy (x, x) is equal to

R R
Z [(aijk - Zﬁir@jrﬁ}kr)Q — (@i — Zuirvjrwkr)2‘| =

(i,5,k)EIN r=1 r=1
R R
Z [(aiojk - Zﬁigrﬁjrﬁ)kr)Q — (@igj — Zuiorvjrwkr)Q] 9)
(j,k)el_]i\? r=1 r=1
whereZ = {(j,k) | (io, j, k) € Zy}. Factorizing each term in (9) and using,,, — w;,», = Au finally
leads to the following more compact form
On(X,Xx) = Z AUV j, Whry Vi kg (10)
(J,k)ETY
R ~ A N
where a;gjkr, = 2(@igjk — Y peq WigrVjrWir) — AUVjr, Wy, -

While each computation of the objective functidfi (x) based on its definition (5) requiré$(3R + 1

~—  —

arithmetic operations, computingy (x,x) requires only(3R + 6)card(I]i\‘}) operations, whereard(-

stands for the cardinal number of a set. Siffce = |J;_, Zi, we expectcard(Z%) to be close to

in average. Then, if an entry dJ (resp.V or W) is chosen, the complexity of each computation of

Fn(x) is divided by a factot (resp.J or K). Finally, to avoid roundoff errors, we propose to recongput

periodically the objective function after a large numberitefations M, (My < M if M is the total

number of iterations).
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E. Algorithm
Data: 3-way tensorA4, R tensor ranke stopping criterion, A/ max. number of iterations)/, for reevaluation,N number
of chosen equations
Result: Estimation ofx = vec{X}, X = (U, V, W) with U, V and W loading matrices involved in CP
decomposition of4d
Initialize: x > 0, calculate Fn (x), 7, p = 1;
while (Fn(x) > ¢) and (p < M) do
X=X
Choose indext uniformly at random in[1, (I + J + K)R]
Draw Y uniformly in (—\/F’j\,‘x) /72, \/F’j\,‘x) /%)
Update entryzy,,,, of x according toZy,,, = |rk, + Y,
if p mod My # 0 then
| Fn(X) = Fn(x)+Gn(X,%)

else
| CalculateFx (%) using definition (5)

end

if ]:N()A() < ]:N(X) then
I x=x

end

p=p+1
end

IV. COMPUTER SIMULATIONS ON SIMULATED DATA

In this section, we illustrate the behavior of the suggestigbrithm on data that have been numeri-
cally simulated. Then, we compare our results with classatgorithms of the literature[31][32][33].
We consider the case of loading matricds V, W composed ofR = 5 columns and respectively

I = J = K =100 rows. Their elements are drawn from the standard uniforrmilligion ¢/(0, 1). Thus,

a 100 x 100 x 100 nonnegative tensarl is generated. All simulations are performed using the same
initialization for x andx whose elements are generated according to a uniform disontt/(0, 27). The
step-sizeY follows a uniform Iawu(—\/@/ﬁ, INT(X)/TZ). The classical relative reconstruction
error £y = ”“ﬂ;ﬁ“

the suggested approach with classical algorithms of tkeealiire (Tab. 1). In order to be able to better

, Or Eigg = 10log(E4) (wWhere ||| # is the Frobenius norm) is used to compare

assess the behavior of our approach in Fig: 2, another error index is used:

Eaae = min 101og; <M> (11)
TESN

%11
where ||.||; stands for thel;-norm, vectorx defined as (4) is a solution of (1) a8}y is the set of

all permutationss of (1,...,N), thusx, def (Xo(1), - - - » Xo(v))- Moreover a normalization is applied

to any vectorx since we consideru, Y v, = = andw, = w,||u.|1]|v.|[1, for r =

— Tu i Vel
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1,...,N. It is greedier but guarantees the accuracy of the foundisenluThe algorithm is then stopped
when the number of iterationd/ is greater thari0” or when the minimum value of the two objective
functions min(Fy (x), Fn (%)) is smaller thane = 1071, The objective functions are reevaluated at
every M, = 2 x 10% iterations. First, our aim is to evaluate the impact on thiioled performance
of the numberN of equations involved in the considered partial cost functFy. The percentage of
chosen equations is equal %%’% We consider values oW corresponding to the following percentages:
(0.15%, 0.22%, 0.3%, 0.45%, 0.6%, 0.75%, 1.2%, 1.5%, 7.5%, 100%). Results are displayed on Fig. 1.
Moreover, for each value oV, 7 different random subsystems df equations involved it have been
considered. The results have been averaged over thoseeredifftrials. The best and worst performance
among those 7 runs are also plotted. This chart emphasieegrédat redundancy of information of the
considered problem. In fact, on this example, we were ableotee the CP decomposition problem
considering only0.45% of equations without too significant performance degraaea-83db were still
reached). As illustrated on Fig. 2, the computation timesthels on the percentage of considered equations.
By diminishing this percentage, the computation speed @improved. However, when less and less
equations are considered, the computation speed incragaes and finally when too few equations are
considered, the CP decomposition problem cannot be solwgai@ae. In this exampl€).6% offers the
best compromise between performance and computation speadly, in Tab. I, the proposed algorithm,
NTF-STO (with3% of equations), is compared with classical algorithms oflileeature (NTF-ALS, fast
NTF-HALS, Bro's N —way). It can be observed that the proposed algorithm becomes ommpetitive

when the tensor dimensions increase, but not for too higkstaret, it remains more general-purpose.

1 R | NTF-ALS fast NTF-HALS N —way NTF-STO
100 | 5 15s 2.76s 11s 216s
200 | 5 113s 8.74s 52s 383s
400 | 5 957s 46s 388s 1283s
500 | 5 1746s 99s 662s 1556s
100 | 10 32s 15s 20s 2508 s

TABLE I: Running time for the NTF-ALS, fast NTF-HALS, Bro® — way and our stochastic algorithm for

different sizesl = J = K of tensors, and a rankR = 5 (or 10). Stopping criteriumE; < le — 8 (7e — 7 for

fast-HALS which cannot reach the same level of performance)
V. CONCLUSION

We have presented a new approach based on a stochasticdhaigdo handle the nonnegative CP

decomposition of large three-way tensors. It can be seenvasyaspecial case of memetic algorithms.
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average
+ - min-max| ]

Error index (dB)

N *“0—4\_’\4
0.15 0.220.3 0.450.60.75 1.215 »75 100
Number of equations (%)

Fig. 1: Performance versu% of considered equations.
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Time (s)

Average error (dB)

Fig. 2: Performance versus computation speed for different péages of considered equations.

Computer simulations led on synthetic data have been pedvid emphasize the efficiency of this
approach both in terms of performance and computation timg ot for too high tensor ranks).
This version is not yet fully optimized and further works Mgbnsist in improvements in the step-size
choice and smart pre-stocking of certain quantities inedlin the cost function calculation to reduce
the computation time even further. It could also be germsdlio the factorization of nonnegatieway

arrays withL > 3 or to tackle more complicated factorization problems.
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