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Abstract

In this letter, the problem of nonnegative tensor decompositions is addressed. Classically, this problem

is carried out using iterative (either alternating or global) deterministic optimization algorithms. Here, a

rather different stochastic approach is suggested. In addition, the ever-increasing volume of data requires

the development of new and more efficient approaches to be able to process “Big data” tensors to extract

relevant information. The stochastic algorithm outlined here comes within this framework. Both flexible

and easy to implement, it is designed to solve the problem of the CP (Candecomp/Parafac) decomposition

of huge nonnegative 3-way tensors while simultaneously enabling to handle possible missing data.

Index Terms

Nonnegative Tensor Factorization (NTF); multi-linear algebra; Candecomp/Parafac (CP) decomposi-

tion; stochastic optimization; Big data/tensors; missingdata

I. INTRODUCTION

The problem of tensor decompositions has gained a growing attention from different scientific com-

munities due to its usefulness in various application fields(statistics, psychometrics, neurosciences,
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chemometrics, numerical linear algebra, computer vision,linguistics, numerical analysis, data mining,

biomedical engineering, (audio) signal processing, telecommunications and so on), see for example

[1][2][3][4] for an overview. It has given rise to many worksover the recent years. In this letter, we focus

on one particular tensor decomposition known as the “Canonical Polyadic” decomposition. It consists

of decomposing a tensor into a sum of rank-1 tensors. It can beeither seen as a generalization of the

matrix Singular Value Decomposition (SVD) to tensors or a special case of another tensor decomposition

known as the Tucker decomposition [5] where the core tensor is restricted to be “diagonal”. Depending

on the considered community, different names have been used: Canonical Polyadic, Candecomp, CanD,

Parafac (for PARAllel FACtor analysis), yet, the most popular acronym remains CP.

Most algorithms suggested to tackle the CP decomposition problem rely on the use of a well-chosen

objective function and an iterative (either alternating orglobal) deterministic optimization algorithm.

Direct solutions have been suggested tooe.g.the GRAM-DTLD method [6][7]. Here, instead, we suggest

a different stochastic optimization approach where randomiterates are used. This genetic like algorithm

might be considered as a special case of memetic algorithms [8][9]. In the case of CP decompositions,

we will emphasize all the advantages one can find in restricting this population-based search to the case

of two agents in the considered population. This will bring us to clearly delineate the most important

milestones of the suggested approach.

Moreover, in a number of leading application areas of tensors (like fluorescence spectroscopy [10][11]

or image processing (remote sensing and hyperspectral imaging [12]) for example) the data sought (i.e.

the constituent vectors of the loading matrices involved inthe CP decomposition) should be nonnegative

since they stand for intrinsically nonnegative physical quantities (for example emission and excitation

spectra and concentrations in 3D fluorescence). It is the reason why we focus on the very important case

of nonnegative CP decomposition algorithms. Solutions have already been developed to take into account

this nonnegativity constraint (seee.g. [3][13][14][15][16][17][18][19]). Their common denominator is

that they all rely upon deterministic optimization schemes. The simplest approach consists of iterative

alternating minimization schemes (or Alternating Nonnegative Least Squares (ANLS) approaches) where

at each iteration the non-negativity constraint is imposedby a projection on the feasible set. This

principle is used in the well-known NTF-ALS and NTF-HALS algorithms [3]. The main advantage

of this nonnegativity constraint is that the low rank approximation problem becomes well posed [20].

Its counterpart is that its level of difficulty might increase. Unlike other methods, we opt for a direct

stochastic algorithm and explain how the nonnegativity constraint is ensured.

Another important aspect is that with our technological capacity to gather, record and store always more
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and more information, the volume of available data is continually increasing. Indeed, advanced data

mining techniques are required to be able to extract relevant information from this huge amount of data

within tolerable elapsed time. In the field of “Big Data”, theability to efficiently process and analyse large

data sets has become a key challenge. This is particularly true for tensors as proven by recent articles

on this topic (see [21] for an overview). However, very few works have been led on huge nonnegative

tensors. A first two-stages solution can be found in [22][23]in which the raw tensor is divided into sub-

tensors of smaller sizes simultaneously factorized thanksto distributed computing. This approach is also

fast because Kronecker and Khatri-Rao products are avoidedand replaced by Hadamard products and

multiplication of small matrices. In [24], to speed up the global computational time, the authors suggest

a two-steps algorithm with a first stage dedicated to the compression of the original tensor thanks to a

Tucker3 decomposition. The stochastic algorithm outlined, here, falls within this “Big Data” framework

too. But we suggest a different approach to achieve reduced processing time. Instead of a dimensionality

reduction stage like in [24] or [25] (where “random fibers” are used to approximate the unfolding of a

high-dimensional tensor in a given mode by a suitable sampling of its columns or rows), we are taking

into account the redundancy of information by focusing on a reduced set of randomly chosen equations.

The main advantage of such an approach is to offer a higher level of modularity. Two problems can be

addressed with exactly the same algorithm i) the non negative CP decomposition (NCP) of tensors, and

ii) the NCP decomposition of tensors with possible missing (or unknown, damaged or unreliable) data

[26][27][28]. For such problems, the classical “marginalization” approach consists of ignoring unreliable

values. With standard approaches, this is achieved at the expense of a modified binary weighted cost

function. In our case, the equations corresponding to missing values are simply discarded.

This letter is organized as follows. First, the problem is stated. The objective function as well as the

constraints that will be considered are introduced. Then, in Section III, the different aspects of the

suggested stochastic algorithm are detailed. In Section IV, its efficiency and gain in computation time

are emphasized on synthetic data and it is compared with standard approaches. Finally, a conclusion is

drawn.

II. PROBLEM STATEMENT

A. The CP model

A tensor can be represented by aL-mode array in a chosen basis. Its orderL corresponds to the

number of indices of the associated array (ways or modes[7]). We focus on third-order tensors, say

A ∈ R
I×J×K . Each entry ofA is then denoted byaijk. Such tensors admit the following trilinear
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decomposition, also known as the triadic decomposition [29] of A into a sum of rank-1 tensorsi.e. for

all (i, j, k) ∈ I = [1, . . . , I]× [1, . . . , J ]× [1, . . . ,K] ⊂ N
3:

aijk =

R∑

r=1

uirvjrwkr. (1)

The three involved matricesU = (uir) = [u1,u2, . . . ,uR]∈ R
I×R, V = (vjr) = [v1,v2, . . . ,vR]

∈ R
J×R, W = (wkr) = [w1,w2, . . . ,wR] ∈ R

K×R are called theloading matrices, whoseR columns

are the so-calledloading factors. R stands for a large enough integer corresponding to the number

of components involved in the sum. The minimumR that can be found such that the above equality

remains valid is called the tensor rank and the decomposition is then named the Canonical Polyadic (CP)

decomposition ofA.

B. CP decomposition of 3-way arrays

A standard way to determine the three loading matricesU, V andW involved in the CP decomposition

consists of minimizing a well chosen objective functionF with respect to these three matrices. The

following squared Euclidian distance between the tensor and its approximationi.e. the least squares loss

function, is frequently used:

F(U,V,W) =
∑

(i,j,k)∈I

(aijk −

R∑

r=1

uirvjrwkr)
2. (2)

When performing the CP decomposition, the tensor rankR is assumed to be known. The nonnegativity

constraint imposes thatuir ≥ 0, vjr ≥ 0 andwkr ≥ 0 for all i, j, k, r. For huge tensors,I J andK tends

to become really high, consequently the calculation of the loss function may require large computational

times.

III. A NEW STOCHASTIC ALGORITHM TO SOLVE THE NONNEGATIVECP DECOMPOSITION PROBLEM

A. A partial objective function

One can see that the system described by Eq. (1) consists ofIJK equations with(I+J+K)R unknowns.

If the rankR is relatively small compared tomin(IJ, JK, IK), wheremin(.) returns the smallest of all

the elements within brackets, then the number of unknowns issignificantly small compared to the number

of equations. Starting from this observation, we suggest tofocus on a partial objective functionFN which

is based on the use ofN equations randomly chosen among theIJK available equations given by Eq.

(1). The value ofN should be large enough such that the inequality(I + J +K)R ≤ N ≤ IJK holds.

Then the following notations are introduced to describeFN . For simplicity, we identify each equation
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with the corresponding index(i, j, k) ∈ I. We denote byIN the index set of theN randomly chosen

equations:

IN = {(i, j, k) ∈ I | equation(i, j, k) is chosen}. (3)

We also consider the vectorx of size (I + J +K)R× 1:

x =




vec{U}

vec{V}

vec{W}


 (4)

where operatorvec{·} is stacking the columns of a matrix into a vector. Finally, the partial objective

function writes:
FN (x) =

∑

(i,j,k)∈IN

(aijk −

R∑

r=1

uirvjrwkr)
2 (5)

Such an approach also constitutes a very simple way to handlethe problem of tensors factorization with

incomplete or missing data. These values are simply discarded and cannot belong toIN . Finally, note

that whenN = IJK, FN (·) is identical toF(·, ·, ·).

B. The general principle of the algorithm

Memetic algorithms are based on an evolution of a populationof candidates for the minimization of a

function. They are divided into a local search step where each candidate searches around its location, and

a selection step where the global population is modified according to some rules like mutation or cloning.

Here we use a very simple approach based on only two candidates where only one will survive at the end

of each step. At the beginning of the search step, our candidate is located at positionx, then local search

is done at a position̂x nearx. If FN (x̂) ≤ FN (x) then the new position iŝx, if not the candidate stays

at positionx. In terms of memetic algorithms,x is cloned, its clone goes to position̂x and then there

is a binary tournament betweenx and x̂ to determine who will survive. This technic requires only one

evaluation of the objective function at each step instead ofmatrix inversion or computation of derivatives

for usual deterministic methods. The objective function does not need to be regular like for gradient

methods which makes the algorithm highly flexible. Its adaptation to other (possibly more complicated)

problems only involves a change of the cost function (no derivative).

C. Stochastic local search

There are obviously many ways to search around positionx to create a new candidatêx. We choose

here to modify at each step only one component ofx to build our candidatêx. This particular choice is
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motivated by a low cost computation ofFN (x̂) thanks to the value ofFN (x) as described in the next

section. This component is chosen uniformly at random amongthe (I+J+K)R elements ofx that is in

the interval[[1, (I + J +K)R]]. It is modified thanks to a random variableY . Without loss of generality,

if we suppose that the elementui0r0 of x is chosen, then̂x is defined as follows

ûir =





|ui0r0 + Y | if (i, r) = (i0, r0),

uir otherwise,
(6)

v̂jr = vjr, (7)

ŵkr = wkr. (8)

The non-negativity of̂x is simply ensured thanks to (6) since| · | stands for the absolute value. The

crucial question is the choice of the law ofY and of its parameters. As we want to search around the

current position, the law ofY should be symmetric. We have chosen here to use a uniform law in an

interval [−sp, sp] which will depend on the iteration step denoted byp but not on a particular component

of x̂. To achieve an acceptable rate of convergence for our methodthe boundsp should be a decreasing

function of p. For usual stochastic algorithms like the stochastic gradient with decaying step-size, it is

proven that if the rate of decay is chosen a priori and verifies
∑∞

p=1 sp = ∞ and
∑∞

p=1 s
2
p < ∞ the

convergence to a local minimum is granted [30]. A frequentlyused step-size issp = 1/p. Here our

approach is closer to deterministic methods as our step depends onFN and gets smaller whenFN gets

smaller. The computation of our step relies on two heuristics. First, the quantity
√

FN (x)
N

indicates the

mean error that we have on each term|aijk −
∑R

r=1 uirvjrwkr| belonging toFN . Then, we can try to

improve our search using the following scaling. If we assumethat all components ofx are equali.e.

uir = vjr = wkr = τ , then the solution of the minimization problem isτ =
3

√∑
(i,j,k)∈I

aijk

IJKR
. Indeed in

this case, thanks to (1) we have
∑

(i,j,k)∈I aijk =
∑

(i,j,k)∈I

∑R
r=1 τ

3 = IJKRτ3 (note that we also use

the quantityτ for our initialization). To modify for instance the law ofui0r0 in ai0jk −
∑R

r=1 ui0rvjrwkr

we choose a random variableY such thatY vjr0wkr0 is a uniform law in(−
√

FN (x)
N

,

√
FN (x)

N
). Finally,

thanks to the second heuristic the law ofY is uniform in (−

√
FN (x)

N
/τ2,

√
FN (x)

N
/τ2).

D. A low-cost computation of the objective function

The objective functionFN (x̂) can be computed in an inexpensive way thanks toGN (x̂,x) = FN (x̂)−

FN (x). Regarding (6),̂x andx have only one different component andGN (x̂,x) can be rewritten as the
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difference between the sum of all quadratic terms in (5) containing ui0r0 . HenceGN (x̂,x) is equal to

∑

(i,j,k)∈IN

[
(aijk −

R∑

r=1

ûir v̂jrŵkr)
2 − (aijk −

R∑

r=1

uirvjrwkr)
2

]
=

∑

(j,k)∈I
i0
N

[
(ai0jk −

R∑

r=1

ûi0r v̂jrŵkr)
2 − (ai0jk −

R∑

r=1

ui0rvjrwkr)
2

]
(9)

whereI i0
N = {(j, k) | (i0, j, k) ∈ IN}. Factorizing each term in (9) and usingûi0r0 −ui0r0 = ∆u finally

leads to the following more compact form

GN (x̂,x) =
∑

(j,k)∈I
i0
N

∆uvjr0wkr0αi0jkr0, (10)

whereαi0jkr0 = 2(ai0jk −
∑R

r=1 ûi0rv̂jrŵkr)−∆uvjr0wkr0 .

While each computation of the objective functionFN (x̂) based on its definition (5) requiresN(3R+1)

arithmetic operations, computingGN (x̂,x) requires only(3R + 6)card(I i0
N ) operations, wherecard(·)

stands for the cardinal number of a set. SinceIN =
⋃I

i=1 I
i
N , we expectcard(I i0

N ) to be close toN
I

in average. Then, if an entry ofU (resp.V or W) is chosen, the complexity of each computation of

FN (x̂) is divided by a factorI (resp.J or K). Finally, to avoid roundoff errors, we propose to recompute

periodically the objective function after a large number ofiterationsM0 (M0 ≪ M if M is the total

number of iterations).
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E. Algorithm
Data: 3-way tensorA, R tensor rank,ǫ stopping criterion,M max. number of iterations,M0 for reevaluation,N number

of chosen equations

Result: Estimation ofx = vec{X}, X = (U,V,W)T with U, V andW loading matrices involved in CP

decomposition ofA

Initialize: x ≥ 0, calculateFN (x), τ , p = 1;

while (FN(x) ≥ ǫ) and (p ≤ M ) do
x̂ = x

Choose indexk uniformly at random in[[1, (I + J +K)R]]

Draw Y uniformly in (−
√

FN (x)
N

/τ 2,
√

FN (x)
N

/τ 2)

Update entrŷxkp+1 of x̂ according tox̂kp+1 = |xkp + Y |;

if p mod M0 6= 0 then
FN (x̂) = FN (x) + GN (x̂,x)

else
CalculateFN (x̂) using definition (5)

end

if FN (x̂) ≤ FN (x) then
x = x̂

end

p = p+ 1

end

IV. COMPUTER SIMULATIONS ON SIMULATED DATA

In this section, we illustrate the behavior of the suggestedalgorithm on data that have been numeri-

cally simulated. Then, we compare our results with classical algorithms of the literature[31][32][33].

We consider the case of loading matricesU, V, W composed ofR = 5 columns and respectively

I = J = K = 100 rows. Their elements are drawn from the standard uniform distribution U(0, 1). Thus,

a 100 × 100 × 100 nonnegative tensorA is generated. All simulations are performed using the same

initialization forx andx̂ whose elements are generated according to a uniform distribution U(0, 2τ). The

step-sizeY follows a uniform lawU(−

√
FN (x)

N
/τ2,

√
FN (x)

N
/τ2). The classical relative reconstruction

error E1 = ‖A−Ã‖F

‖A‖F
, or E1dB = 10 log10(E1) (where‖.‖F is the Frobenius norm) is used to compare

the suggested approach with classical algorithms of the literature (Tab. 1). In order to be able to better

assess the behavior of our approach in Fig. 1& 2, another error index is used:

E2dB = min
σ∈SN

10 log10

(
‖xσ − x̃‖1

‖x̃‖1

)
(11)

where ‖.‖1 stands for thel1-norm, vectorx̃ defined as (4) is a solution of (1) andSN is the set of

all permutationsσ of (1, . . . , N), thusxσ
def
= (xσ(1), . . . ,xσ(N)). Moreover a normalization is applied

to any vectorx since we consider:ur = ur

‖ur‖1
, vr = vr

‖vr‖1
, and wr = wr‖ur‖1‖vr‖1, for r =
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1, . . . , N . It is greedier but guarantees the accuracy of the found solution. The algorithm is then stopped

when the number of iterationsM is greater than107 or when the minimum value of the two objective

functionsmin(FN (x),FN (x̂)) is smaller thanǫ = 10−16. The objective functions are reevaluated at

everyM0 = 2 × 104 iterations. First, our aim is to evaluate the impact on the obtained performance

of the numberN of equations involved in the considered partial cost function FN . The percentage of

chosen equations is equal to100N
IJK

. We consider values ofN corresponding to the following percentages:

(0.15%, 0.22%, 0.3%, 0.45%, 0.6%, 0.75%, 1.2%, 1.5%, 7.5%, 100%). Results are displayed on Fig. 1.

Moreover, for each value ofN , 7 different random subsystems ofN equations involved inFN have been

considered. The results have been averaged over those 7 different trials. The best and worst performance

among those 7 runs are also plotted. This chart emphasizes the great redundancy of information of the

considered problem. In fact, on this example, we were able tosolve the CP decomposition problem

considering only0.45% of equations without too significant performance degradation (−83db were still

reached). As illustrated on Fig. 2, the computation time depends on the percentage of considered equations.

By diminishing this percentage, the computation speed can be improved. However, when less and less

equations are considered, the computation speed increasesagain, and finally when too few equations are

considered, the CP decomposition problem cannot be solved anymore. In this example,0.6% offers the

best compromise between performance and computation speed. Finally, in Tab. I, the proposed algorithm,

NTF-STO (with3% of equations), is compared with classical algorithms of theliterature (NTF-ALS, fast

NTF-HALS, Bro’sN −way). It can be observed that the proposed algorithm becomes more competitive

when the tensor dimensions increase, but not for too high ranks. Yet, it remains more general-purpose.

I R NTF-ALS fast NTF-HALS N − way NTF-STO

100 5 15s 2.76s 11s 216s

200 5 113s 8.74s 52s 383s

400 5 957s 46s 388s 1283s

500 5 1746s 99s 662s 1556s

100 10 32s 15s 20s 2508 s

TABLE I: Running time for the NTF-ALS, fast NTF-HALS, Bro’sN − way and our stochastic algorithm for

different sizesI = J = K of tensors, and a rankR = 5 (or 10). Stopping criterium:E1 < 1e− 8 (7e− 7 for

fast-HALS which cannot reach the same level of performance).

V. CONCLUSION

We have presented a new approach based on a stochastic algorithm to handle the nonnegative CP

decomposition of large three-way tensors. It can be seen as avery special case of memetic algorithms.
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Computer simulations led on synthetic data have been provided to emphasize the efficiency of this

approach both in terms of performance and computation time (but not for too high tensor ranks).

This version is not yet fully optimized and further works will consist in improvements in the step-size

choice and smart pre-stocking of certain quantities involved in the cost function calculation to reduce

the computation time even further. It could also be generalized to the factorization of nonnegativeL-way

arrays withL > 3 or to tackle more complicated factorization problems.
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