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ABSTRACT

This paper introduces and assesses a new technique to minimize
the memory footprints of Digital Signal Processing (DSP) applica-
tions specified with Synchronous Dataflow (SDF) graphs and imple-
mented on shared-memory Multiprocessor Systems-on-Chips (MP-
SoCs). In addition to the SDF specification, which captures data de-
pendencies between coarse-grained tasks called actors, the proposed
technique relies on two optional inputs abstracting the internal data
dependencies of actors: annotations of the ports of SDF actors, and
script-based specifications of merging opportunities between input
and output buffers of actors. An automated optimization process is
used to exploit these buffer merging opportunities and to minimize
the memory footprints of applications. Experimental results on a
computer vision application show a reduction of the memory foot-
print by 34% compared to state-of-the-art minimization techniques.

Index Terms— Dataflow, Memory, Buffer Merging

1. INTRODUCTION

Over the last decade, the popularity of data-intensive image and Dig-
ital Signal Processing (DSP) algorithms in embedded systems has
rapidly grown, with many applications in the automotive [1], the
multimedia and the telecommunication domains [2]. When devel-
oping data-intensive applications for embedded systems, addressing
the memory challenges is an essential task as it can dramatically im-
pact the quality and performance of a system. Indeed, the silicon
area occupied by the memory can be as large as 80% of a chip and
may be responsible for a major part of its power consumption [3].

This paper presents a new memory optimization technique for
applications specified with the Synchronous Dataflow (SDF) Model
of Computation (MoC). The SDF MoC models an application as a
directed graph of computational entities, called actors, that exchange
data through a network of First-In First-Out queues (FIFOs) [4].
Each time an actor is executed, or fired, it consumes and produces
a fixed quantum of data, called data token, on the FIFOs to which it
is connected. An example of SDF graph with 5 image processing
actors is given in Figure 1. Edges of this graph are labeled with their
consumption and production rates. The popularity of the SDF MoC
is due to its great analyzability and its natural expressivity of the par-
allelism of DSP applications which makes it particularly suitable to
exploit the parallelism offered by Multiprocessor Systems-on-Chips
(MPSoCs).

SDF actors are considered as “black boxes” within the model
whose internal behavior can be implemented in any programming
language. To simplify the description of this internal behavior, it
is convenient to assume that the memory consumed and produced
on each FIFO during the firing of an actor constitutes a contiguous

memory space called a buffer [5]. To reveal these buffers, an SDF
graph can be transformed into an equivalent single-rate graph where
each FIFO is replaced with single-rate FIFOs whose consumption and
production rates are equal (Figure 2). Each single-rate FIFO is a
buffer of fixed size accessed by two actors. In most SDF program-
ming frameworks [6, 7], memory optimization consists of graph-
level minimization of the memory allocated to the FIFOs [8, 9]. Be-
cause internal data dependencies of actors are generally unknown to
these frameworks, these dependencies cannot be used for optimiza-
tion purposes. In particular, because the order in which an actor
accesses its input and output buffers is unknown, these buffers are
assumed to contain valid data simultaneously, and must always be
allocated in non-overlapping memory spaces.

The purpose of the technique presented in this paper is to re-
lax this constraint by allowing the application developer to explic-
itly specify merging opportunities between input and output buffers
of actors. Examples of merging opportunities are presented in Fig-
ure 3. The purpose of Fork actors (Figure 3a), that are inserted during
single-rate transformations, is to distribute equal parts of the data re-
ceived in their input buffer to their output buffers. By allocating each
output buffer in its corresponding range from the input buffer, half
the memory allocated for this actor can be saved. A symmetrical op-
timization is possible for Join actors. The purpose of the Broadcast
actor (Figure 3b) is to copy the content of its input buffer into each
output buffer. By merging n output buffers with the input buffer, the
memory allocated for a Broadcast actor can be divided by n+1.

Previous work on buffer merging techniques for SDF graphs
is presented in Section 2. Section 3 introduces new graph anno-
tations enabling the specification of buffer merging opportunities,
and Section 4 presents the automated minimization process that uses
these opportunities. Finally, an experimental evaluation of the buffer
merging technique on a state-of-the-art computer vision application
is presented in Section 5.

2. RELATED WORK

To our knowledge, minimizing the memory footprint of SDF appli-
cations is usually achieved by using FIFO sizing techniques [8, 10]
that consist of finding a schedule that minimizes the memory space
allocated to each FIFO of an SDF graph. Contrary to the technique
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Fig. 3: Internal data dependencies of SDF actors.
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Fig. 2: Single-rate SDF graph derived from the SDF graph of Figure 1 (with w=8, h=9, and n=3).

presented in this paper, FIFO sizing techniques do not consider merg-
ing opportunities between input and output buffers.

Several solutions to broadcast data tokens can be found in the
literature. Non-destructive reads, or FIFO peeking, is a well-known
way to read data tokens without popping them from FIFOs, hence
avoiding the need for Broadcast actors [11]. Unfortunately, this tech-
nique cannot be applied without considerably modifying the under-
lying SDF MoC. Indeed, the use of FIFO peeking means that an actor
does not have the same behavior for all firings. Otherwise, tokens of
peeked FIFOs would never be consumed and would accumulate in-
definitely. Another solution to this issue is to use a single-writer,
multiple-readers FIFO that discards data tokens only when all read-
ers have consumed them [12]. The drawback of this solution is that
it also requires a modification of the SDF MoC semantics.

In [5], a technique is proposed to enable buffer merging for a
set of actors with pre-defined behavior. Contrary to the method pre-
sented in this paper, this technique does not allow buffer merging
for actors with a user-defined behavior. The allocation of input and
output buffers of an actor in overlapping memory spaces has been
studied in [13, 14]. In [13], an annotation system is introduced to
specify a relation between the number of data tokens produced and
consumed for a pair of input and output buffers of an actor. This re-
lation is then used jointly with scheduling information to enable the
merging of annotated buffers. In [14, 15], another annotation system
is introduced to specify buffers that may be used for in-place execu-
tion of actors. The advantage of these annotation-based techniques is
that no modification of the underlying SDF MoC is required. Despite
the fact that SDF FIFOs must be replaced with buffers to benefit fully
from these annotations, a regular SDF graph can still be obtained by
ignoring these annotations. The major drawback of these two anno-
tation systems is that they only allow pairwise merging of input and
output buffers. Hence, these annotation systems are unable to model
the behavior of Fork or Broadcast actors that require merging sev-
eral output buffers into a single input. Moreover, the optimization
technique presented in [13] relies on a monocore scheduling of the
application graph. The extension of this optimization technique to
multicore architectures and schedules is not straightforward.

Like existing annotation systems, the buffer merging technique
presented in this paper does not require any modification of the SDF
semantics. Contrary to existing techniques, this buffer merging tech-
nique can be used for any number of input and output buffers.

3. GRAPH ANNOTATIONS

In addition to the application single-rate SDF graph, the buffer merg-
ing technique presented in this paper relies on two additional inputs

abstracting the internal behavior of actors: a script-based specifica-
tion of mergeable buffers, and annotations of the ports of SDF actors.

3.1. Memory Scripts

The objective of memory scripts is to allow the application developer
to specify for a given actor which input buffer can be merged with
which output buffer, and what the relative position of the merged
buffers is. To this purpose, each actor of the SDF graph can option-
ally be associated with a memory script.

Memory scripts are interpreted at compile time for each actor of
the single-rate graph. For each actor, the script inputs are: a list of
the input buffers, a list of the output buffers, and a list of parameters
influencing the behavior of the actor. The script execution produces
a list of matches between the input and output buffers of the actor.
Each match associates a sub-range of bytes from an input buffer with
a sub-range of bytes from an output buffer. Applying a match con-
sists of merging the memory allocated to the two sub-ranges in a
unique address range of the memory.

Figure 4 presents the memory script associated with the Split
actor and illustrates the matches resulting from its execution. Mem-
ory scripts are written with a derivative of the Java language called
BeanShell [16]. Matches created for a Join actor and a Broadcast
actor are presented in Figure 5.

/* Input buffer: bIn
* Output buffer: bOut
* Parameters: h, w, n
*/
int s=w*(h/n+2);//Slice size
for(int i=0; i<n ;i++){
bOut.match( //Match source
i*s, //Start index in bOut
bIn, //Match destination
(i*h/n-1)*w,//Start index in bIn
s); //Matched range size

}

(a) Memory Script
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Fig. 4: Memory script for Split actor (with w=8, h=9, and n=3).

As illustrated in this example, it is possible to match a contigu-
ous sub-range of a buffer into non-contiguous sub-ranges, and to
match sub-ranges partially outside the original range of bytes of an-
other buffer. The original range of bytes of a buffer corresponds
to the bytes comprised between the first (index=0) and the last
(index=buffersize-1) bytes of this buffer, with buffersize the
production or consumption rate of the corresponding SDF port. Any
byte indexed outside this range does not belong to the original range
of bytes.



Although memory scripts offer great liberty for defining custom
matching patterns, a set of rules must be respected to ensure the cor-
rect behavior of an application.

R1. Both sub-ranges of a match must cover the same number of
bytes.

R2. A match can only be created between an input buffer and an
output buffer.

R3. A sub-range of bytes of an output buffer can not be matched
several times by overlapping matches.

R4. A match must involve at least one byte from the original range
of bytes of both buffers with which it connects.

R5. Only bytes within the original range of bytes of their buffer
can be matched with bytes falling outside the original range
of bytes of the matched buffer.

Rule R1 enforces the validity of the matches. It is impossible to al-
locate a contiguous sub-range of n bytes within a memory range of
m bytes if m 6= n. Rules R2 and R3 prevent scripts from generating
matching patterns that would result in a destination merge issue (cf.
Section 4.1). Rules R4 and R5 limit the creation of matches with
bytes falling outside of the original range of bytes of buffers. With-
out these rules, an input buffer could be merged completely out of
the original range of bytes of an output buffer, thus resulting in no
memory reuse between the two buffers.

3.2. Read-only Ports

As illustrated by the Split and the Broadcast actors, memory scripts
allow the creation of overlapping matches. Applying overlapping
matches results in merging several sub-ranges of output buffers in
the same input buffer. Hence, actors reading data from the merged
output buffers are accessing the same memory. To ensure the correct
behavior of the application, actors accessing the merged buffers must
not write in this shared memory. If one of the consumer actors does
not respect this condition, its corresponding output buffer should not
be merged and it should be given a private copy of the data.

By default, the most flexible actor behavior is assumed and all
actors are supposed to be both writing to and reading from all their
input buffers. This assumption forbids the application of overlapping
matches. A read-only annotation has been introduced, and can
be associated with any input ports of an SDF graph by its developer.
The actor possessing a read-only input port can only read data
from this port. Like a const variable in C, the content of a buffer
associated to a read-only port can not be modified during the
computation of the actor to which it belongs. In the SDF graph of
Figure 2, an r mark is associated with each read-only port.

4. MINIMIZATION PROCESS

The execution of memory scripts produces a list of matches that rep-
resent merging opportunities for the input and output buffers of ac-
tors. The purpose of the memory minimization process is to apply
as many of these matches as possible.

4.1. Potential Merging Issues

A match is said to be applicable if its application does not change
the behavior of the application. The 5 matching rules presented in
Section 3.1 are necessary conditions to ensure the applicability of a
created match. However, following these rules is not sufficient to
guarantee the applicability of the created matches.
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Fig. 5: Conflicts preventing the application of matches.

Figure 5 gives examples of matches that respect the rules pre-
sented in Section 3.1 but that can not be applied without corrupting
the application behavior.

Source merge issue: Matches with overlapping input sub-
ranges can be applied only if their output buffers are connected to
read-only ports. In Figure 5a, only one of the Broadcast matches can
be applied because neither actor A nor actor B have a read-only
input port. If both matches were applied, actors A and B would write
in the input buffer of the other and corrupt the application behavior.

Destination merge issue: A chain of matches cannot be applied
if it results in merging several input sub-ranges in overlapping output
sub-ranges. In Figure 5c, if all matches were applied, input buffers
of actors B and Join would be merged in range [0, 15[ and [10, 20[,
respectively, of the output buffer of the Join actor. In this scenario,
if actor A is fired after actor C, then actor A will partially overwrite
the data tokens produced by actor C, thus corrupting the application
behavior.

Division issue: As illustrated by the matches of actor Swap in
Figure 5b, contiguous sub-ranges of bytes can be matched with non-
contiguous ranges of bytes, thus requiring a division of the buffer to
apply these matches. A divided buffer remains accessible to an actor
only if the memory script of this actor matches all the sub-ranges of
this buffer into other buffers accessible by this actor. Hence, a buffer
can be divided into non-contiguous sub-ranges only if all actors ac-
cessing this buffer can still access all its sub-ranges. In Figure 5b,
for the matches to be applicable, either actor A or actor B should be
associated with a memory script dividing the swapped buffer in two.

4.2. Selection of Applicable Matches

The compile-time minimization process responsible for selecting the
matches to apply can be divided into the following steps:
1. Combine the results of the memory scripts for all actors into a

tree of buffers and matches.
2. Select a subset Msel of applicable matches of the tree that have

no conflict with each other.
3. Apply matches in Msel.
4. Remove from the tree all matches that were in conflict with

matches from Msel.



5. Repeat steps 2 to 4 until no match is applicable.
6. Allocate memory according to merging decisions.
Figure 6 gives an overview of the execution of the minimization pro-
cess for the single-rate SDF graph from Figure 2. Figure 6a presents
the match tree obtained by combining the 6 buffers and the 7 matches
associated to actors RGB2Gray, Split, and Fork. Since matches cre-
ated by the RGB2Gray and Fork actors are applicable and have no
conflicts, they can be applied during the first iteration of the mini-
mization process. The match tree with 2 merged buffers resulting
from their application is presented in Figure 6b. During the second
iteration of the process, matches created by the Split actor are ap-
plied. The result of the minimization process for this match tree is a
unique merged buffer of 222 bytes.

4.3. Static Memory Allocation of Merged Buffers

The static memory allocation of merged buffers in a shared-memory
is realized using a memory reuse technique for SDF graphs presented
in [9]. This technique relies on the construction of a Memory Exclu-
sion Graph (MEG) whose weighted vertices are the memory objects
that must be allocated in memory to support the execution of the ap-
plication. Two vertices are connected with an exclusion if they can
not be allocated in overlapping memory ranges.

Each memory object of the MEG presented in Figure 7a corre-
sponds to a single-rate FIFO of the SDF graph from Figure 2. Updat-
ing a MEG with results from the optimization process simply con-
sists of merging memory objects that correspond to merged buffers.
For example, in Figure 7b, memory objects a to f are merged into a
single memory object of 222 bytes as a result of the application of
matches for the match tree presented in Figure 6. Partial exclusions
are then added between the merged memory objects and the other
memory objects from the exclusion graph. In the example of Fig-
ure 7b, a partial exclusion is added between the first 88 bytes of the
merged memory object a-f and memory objects g, h, and i.

Figure 7c illustrates the MEG obtained when memory objects
g to j are merged according to matches associated to the Join ac-
tor. The allocation of this MEG requires 222 bytes of memory since
the exclusion between merged memory objects a-f and g-j is partial.
Without the buffer merging technique, the allocation of the original
MEG requires 288 bytes of memory. The allocation of the same
application with the FIFO sizing technique presented in [8] requires
480 bytes. The next Section presents experimental results using a
more complex computer vision application.

5. EXPERIMENTS

We implemented the buffer merging technique in the open-source
rapid prototyping framework PREESM [17], and applied it to the SDF
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specification of a state-of-the-art stereo-matching algorithm [18]. A
stereo-matching algorithm is a computer vision application whose
purpose is to extract the 3D information from a pair of 2D images.
All presented results are obtained for images of 450*375 pixels. The
SDF graph of this application contains 16 distinct actors, some of
which can be fired up to 60 times in parallel. The time spent by the
developer to write the scripts for this application is less than 30 min-
utes. The MEG of this application contains 1000 memory objects
requiring 1452 MB for their allocation without any optimization.

Technique [9] [8] Buff.
Merg.

[8] +
Brd. FIFO

[9] +
Buff. Merg.

Footprint 1256 MB 373 MB 170 MB 35 MB 23 MB

Table 1: Memory footprints for different allocation techniques.

Table 1 presents the memory footprints allocated for the mono-
core execution of the stereo-matching application with different op-
timization techniques. The first footprint is obtained by exploiting
only graph-level memory reuse opportunities [9]. The second and
the fourth footprints are obtained with a FIFO sizing technique [8].
For the fourth footprint, broadcast FIFOs were also used [12]. The
third and the fifth footprints were allocated using the new buffer
merging technique. The memory reuse opportunities offered by the
MEG [9] were exploited only for the fifth footprint. The results
presented in this table show the efficiency of the proposed buffer
merging technique which allocates 34% less memory than the best
combination of state-of-the-art techniques.

The buffer merging technique was also used to allocate mem-
ory for a mapping of the stereo-matching application on a quad-core
MPSoC. Despite the additional data parallelism in this scenario, only
28 MB of memory were allocated, which is less than the footprint al-
located by state-of-the-art techniques for a mono-core execution.

6. CONCLUSION

In this paper, we have proposed a new buffer merging technique to
minimize the memory footprints of DSP applications specified with
an SDF graph. Our technique is based on graph annotations that
allow the developer to specify merging opportunities between in-
put and output buffers of actors. Experiments on a computer vi-
sion application have shown that our technique results in a memory
footprint 34% smaller than state-of-the-art optimization techniques.
Future work on this subject will include the automated creation of
memory-scripts through an analysis of the source code of actors.
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