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A boundary value problem for conjugate conductivity
equations

S. Chaabi, S. Rigat and F. Wielonsky

April 27, 2015

Abstract

We give explicit integral formulas for the solutions of planar conjugate con-
ductivity equations in a circular domain of the right half-plane with conductivity
σ(x, y) = xp, p ∈ Z∗. The representations are obtained via a Riemann-Hilbert prob-
lem on the complex plane when p is even and on a two-sheeted Riemann surface
when p is odd. They involve the Dirichlet and Neumann data on the boundary of
the domain. We also show how to make the conversion from one type of conditions
to the other by using the so-called global relation. The method used to derive our
integral representations could be applied in any bounded simply-connected domain
of the right half-plane with a smooth boundary.

Keywords: Boundary value problem, Riemann-Hilbert problem, Lax pair
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1 Introduction and main results

We seek explicit integral expressions for real-valued solutions of the Neumann/Dirichlet
problem for the following two conductivity equations, considered in a bounded simply
connected domain Ω of the right half-plane H = {(x, y) ∈ R2, x > 0},

Div (σ∇u) = 0, Div
( 1

σ
∇v
)

= 0, (1.1)

for the particular case of conductivity σ(x, y) = xp, p ∈ Z. For a general conductivity
σ(x, y) > 0, x ∈ H, the two equations are conjugate in the following sense. If the function
u satisfies the first equation in (1.1) then the differential form −σ∂yudx+σ∂xudy is closed,
so by applying Poincaré theorem in the simply connected Ω, there exists a function v such
that

∂xv = −σ∂yu, ∂yv = σ∂xu. (1.2)

Then, v solves the second equation in (1.1). Conversely, for such a v, the differential form
σ−1∂yvdx − σ−1∂xvdy is closed and there exists a function u that satisfies (1.2) and the
first equation in (1.1). Moreover, letting

ν = (1− σ)/(1 + σ) ∈ R,
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we have that (1.2) is equivalent to the so-called conjugate Beltrami equation,

∂f = ν∂f, (1.3)

for the complex-valued function f = u + iv in Ω. This equation differs substantially from
the classical and extensively studied Beltrami equation ∂f = ν∂f . The link between
the conductivity equations (1.1) and (1.3) was used in [3] to investigate the Dirichlet to
Neumann map. For a detailed study of the conjugate Beltrami equation (1.3) see e.g. [4].

When σ = 1, the equations in (1.1) reduce to the Laplace equation and (1.2) to the
Cauchy-Riemann equations. When σ differs from 1, we may speak, by analogy, of a σ-
harmonic function u and a ν-holomorphic function f . For the conductivity σ(x, y) = xp,
p ∈ N∗, the equations in (1.1) rewrite as

∆u+
p

x
∂xu = 0, (1.4)

∆v − p

x
∂xv = 0. (1.5)

These equations are particular case of the general elliptic equation

∆u+
α

x
∂xu = 0, α ∈ R, (1.6)

which is the topic of the so-called generalized axially symmetric potential theory (GASPT),
see [29]. The name comes from the relation with the Laplacian in spaces of higher dimen-
sions. For instance, let (r, ϕ, z) denotes the usual cylindrical coordinates in R3, Ω be a
domain in the (x, z)-plane, and Ω′ ⊂ R3 be the domain obtained by rotation of Ω about
the z-axis. Then, u(r, z) is a solution of ∆u(r, z) + r−1∂ru(r, z) = 0 in Ω if and only if
u(r, z) is harmonic in Ω′. Actually, a similar relation holds for the more general equation
(1.4) when p ∈ N∗. Indeed, if r = (x21 + · · · + x2p+1)

1/2 and U(x1, . . . , xp+2) = u(r, xp+2)
then one checks easily that

∆U(x1, . . . , xp+2) = ∆u(r, xp+2) +
p

r
∂ru.

When considering a domain Ω with some simple geometry, this link with the Laplacian
allows one to get explicit bases of solutions via the method of separation of variables.
For instance, toroidal harmonics (i.e. Legendre functions with half-integer degrees, see
e.g. [19]) give a complete set of solutions to (1.6) when α = ±1, cf. [2,22,26]. The fact that
generalized Legendre functions can be used to solve (1.6) for complex values of α appears
in [6, 7].

The GASPT theory has been investigated by many authors, among whom Weinstein
[28–31], Vekua [27], Gilbert [12–15], Henrici [16–18], Mackie [21], Ranger [23]. Equation
(1.6) is related to a variety of problems in physics. In particular, when p = 1, equation
(1.4) can be interpreted as the linearized version of the Ernst equation in the case of a
static spacetime. In [20], this equation was studied in the unbounded domain consisting
of the exterior of the real segment (0, ρ0) in the right half-plane H and was related to the
relativistic gravitational field produced by a rotating disk of matter. Equation (1.5) with
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p = 1 is related to the behavior of plasma in a tokamak. The goal of this device, which
has a toroidal geometry, is to control location of the plasma in its chamber by applying
magnetic fields on the boundary. From an assumption of axial symmetry, the problem is
reduced to a plane section. Then, it follows from the Grad-Shafranov equation, a second-
order elliptic nonlinear partial differential equation, see [5, 24], that the magnetic flux in
the vacuum between the plasma and the circular boundary of the chamber satisfies the
homogeneous equation (1.5). Note, that in this instance, the conductivity equation (1.5)
takes place in an annular domain, that is a doubly connected domain.

Another interesting feature of equation (1.6) is that it satisfies recurrence and symmetry
relations with respect to the coefficient α. Namely, denoting by (Eα) the equation (1.6),
the following holds:

u(x, y) solves (Eα) if and only if x−1∂xu(x, y) solves (Eα+2), (1.7)

u(x, y) solves (Eα) if and only if xα−1u(x, y) solves (E2−α), (1.8)

see e.g. [30]. Finally, note that, since equation (1.6) is elliptic, we know, by general results,
see e.g. [11], that the Dirichlet problem with datas on the boundary ∂Ω of the domain has
a unique solution, which is C∞ in Ω.

In the present paper, we will stick, for simplicity, to the case of a domain Ω being the
open disk Da = D(a, 1), lying in the right half-plane H, with a > 1 a point on the positive
real axis. As briefly explained at the end of Section 3, the approach used to derive our
integral representations could be adapted to a general Jordan domain Ω in H bounded by
a smooth curve.

The first results of our study are the following Theorems 1.1 and 1.3, which give explicit
integral representations for the solutions of equation (1.6) when α is an even and odd
negative integer respectively. The method of proof follows the general scheme of the so-
called unified transform method, see [8]. It uses a Lax pair, from which one may define a
function φ(z, k) depending on a spectral parameter k, and which can be characterized as
the solution of a specific singular Riemann-Hilbert problem in the k-plane. Solving this
Riemann-Hilbert problem leads to the seeked integral representations.

In the sequel, for z inside the disk Da, we denote by zr the point on the circle Ca =
C(a, 1) which has the same imaginary part as z and lies to its right.

Theorem 1.1. Let u be a solution of the equation

∆u+ αx−1∂xu = 0, α = −2m, m ∈ N,

in the domain Da with smooth tangential and (outer) normal derivatives ut and un on the
boundary Ca. Then u admits the integral representation

u(z) = − 1

π
Im

ˆ
(z,zr)

(
(k − z)(k + z)

)m
J(z, k)dk + 2Re (ar) + u(zr), z ∈ Da, (1.9)

where integration is on the segment (z, zr), and the quantity ar can be explicitly computed
in terms of the tangential derivatives along Ca of ut and un, up to order m− 1, at zr. The
function J(z, k) is given by

J(z, k) = −
ˆ
Ca
W (z′, k),
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where W (z, k) is the differential form

W (z, k) =
(
(k − z)(k + z)

)−m−1
((k + z)uz(z)dz + (k − z)uz(z)dz) (1.10)

=
(
(k − z)(k + z)

)−m−1
((k − iy)ut(z) + ixun(z)) ds, (1.11)

with z = x+ iy and ds the length element on Ca.

Remark 1.2. In the particular case α = m = 0, equation (1.6) is Laplace equation and
the solutions u are simply the functions harmonic in Da. In this case, the expression in
the right-hand side of (1.9) simplifies to

1

π
Im

ˆ
(z,zr)

ˆ
Ca
W (z′, k)dk + u(zr) =

1

π
Im

ˆ
(z,zr)

ˆ
Ca

(
uz(z)

k − z
dz +

uz(z)

k + z
dz

)
dk + u(zr)

=
1

π
Im

ˆ
(z,zr)

−2iπuz(k)dk + u(zr) = −
ˆ
(z,zr)

ux(x)dx+ u(zr)

which is indeed u(z). Note that in the second equality we have applied Cauchy formula to
the analytic function uz(z).

Theorem 1.3. Let u be a solution of the equation

∆u+ αx−1∂xu = 0, α = −2m+ 1, m ∈ N,

in the domain Da with smooth tangential and (outer) normal derivatives ut and un on the
boundary Ca. Then u admits the integral representation

u(z) = − 1

2π
Im

ˆ
Ca

(
(k − zr)(k + zr)

)m
J(z, k)√

(k − z)(k + z)
dk + u(zr), z ∈ Da, (1.12)

where integration is on the circle Ca, oriented counter-clockwise. The square root in the
denominator has a branch cut along the segment (−z, z). Integration starts at zr where
the square root is taken to be positive, and its determination is chosen so that it remains
continuous along the path of integration. The function J(z, k) is explicitly given in terms
of the tangential and normal derivatives ut and un and their derivatives of order up to
m− 1 along the boundary Ca. It can be written as a sum,

J(z, k) = J0(zr, k) +

ˆ
W̃ (z′, k), k ∈ Ca, (1.13)

see (3.16)–(3.23) for a precise definition of J(z, k). The path of integration in the above
integral is the subarc from zr to k on Ca. It lies in {Im z ≥ Im zr} when Im k ≥ Im zr and

in {Im z ≤ Im zr} when Im k ≤ Im zr. The definitions of J0 and the differential form W̃
involve the square root

λ(z′, k) =
√

(k − z′)(k + z′),

with a branch cut along the segment (−z′, z′). We choose the determination of λ(zr, k) that
behaves like k (resp. −k) at infinity when Im k ≥ Im zr (resp. Im k ≤ Im zr) and then keep
a continuous determination of λ(z′, k) when z′ moves along the path of integration.
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Remark 1.4. Making use of the symmetry principles (1.7) and (1.8), one deduces easily
from Theorems 1.1 and 1.3 similar integral representations for the solutions of (1.4), that
is in the case of a positive integer coefficient α.

The second result concerns the correspondance between the Dirichlet and Neumann
data ut and un. Having a Lax pair is equivalent to the existence of a closed differential
form. By Poincaré lemma, this leads to the vanishing of an integral on a closed contour,
the so-called global relation. In the present case, it will follow from results in Section 2
thatˆ
Ca

[(k − z)(k + z)]α/2−1((k − iy)ut(z) + ixun(z))ds = 0, k ∈ C \ (Da ∪ D−a). (1.14)

It is sometimes conjectured that there always exists at least one global relation (i.e. a
Lax pair) that allows for the recovering of one type of boundary values from the other
one. In the case of an even coefficient α, we show that, indeed, this correspondance can
be performed explicitly from such a relation.

Theorem 1.5. Assume α = −2(m − 1), m ∈ N∗, and ut is a given function in L2(Ca).
Let un be a function in L2(Ca) such that the global relation (1.14) holds true. Then, un is
unique and can be explicitly recovered from that relation. A similar statement holds when
α = 2(m + 1), m ∈ N. In that case, (1.14) does not allow the reconstruction of un. A
relation that works is obtained by integrating another differential form, see (2.6).

Remark 1.6. Making use of the equation conjugate to (1.6), that is changing α into −α,
we derive the converse reconstruction of the Dirichlet data ut from the Neumann data un,
still when α ∈ 2Z is an even coefficient. In Theorem 1.5, it is actually not necessary to
assume smoothness of the functions ut and un on the boundary circle Ca. Hence, we only
assume these functions to be L2 on Ca.

Apparently, the reconstruction of un from (1.14), or a similar relation, is not completely
straightforward. It may be conjectured that the reconstruction of un should be possible by
an integral transform, like one of the Abel type, see e.g. [25]. We were not able to find such
an integral transform in the present case. Our method uses rather the symmetry involved
in the problem and the property of a particular linear differential equation stemming from
the computation of a contour integral by Cauchy formula.

In Section 2 we recall the notion of Lax pairs and compute such pairs for the equation
(1.6). We also briefly discuss the use of a Lax pair, or the related global relation, in deriving
an explicit correspondance between Dirichlet and Neumann data in the simple case of the
Laplace equation. The study of two specific Riemann-Hilbert problems, leading to the
proofs of Theorems 1.1 and 1.3, is performed in Sections 3. The proof of Theorem 1.5 is
displayed in Section 4.

2 Lax pairs and closed differential forms

A Lax pair for a partial differential equation P (u) = 0 is a pair of ordinary differential
equations, for a function φ related to u, which are compatible precisely when P (u) = 0.
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The general equation (1.6) admits such a Lax pair. Indeed, writing (1.6) with respect to
the complex variables z and z, we get

uzz +
α

2(z + z)
(uz + uz) = 0, (2.1)

and a possible way to find a Lax pair is by rewriting (2.1) in the form

(f(z, z)uz)z + (g(z, z)uz)z = 0, (2.2)

where the functions f and g have to be determined. Expanding (2.2) and comparing with
(2.1), we get

fz =
α

2(z + z)
(f + g), gz =

α

2(z + z)
(f + g). (2.3)

Differentiating the first equation with respect to z, the second one with respect to z, and
adding, we obtain

(f + g)zz =
α

2(z + z)
((f + g)z + (f + g)z)−

α

(z + z)2
(f + g),

so that f + g satisfies the adjoint equation of (2.1) (see e.g. [9, Chapter 7] for the notion
of the adjoint equation). We seek solutions in the form

(f + g)(z, z) = (z + z)A(z)B(z).

Plugging that in the previous equation leads to

(z + z)AzBz = (α/2− 1)(ABz + AzB),

and thus
−(α/2− 1)A/Az + z = k = (α/2− 1)B/Bz − z,

where k may be any complex number. It is a new, additional parameter in the problem, the
so-called spectral parameter. Solving for the two equations, we get, as possible solutions,

A(z) = (k − z)α/2−1, B(z) = −(k + z)α/2−1.

In view of (2.3), we may thus choose for f and g,

f(z, z) = (k − z)α/2(k + z)α/2−1, g(z, z) = −(k − z)α/2−1(k + z)α/2.

Hence, (2.1) is equivalent to(
(k + z)α/2−1(k − z)α/2uz

)
z
−
(
(k + z)α/2(k − z)α/2−1uz

)
z

= 0.

This last equation is equivalent to the compatibility of the two ordinary differential equa-
tions

φz(z, k) = (k + z)α/2(k − z)α/2−1uz(z), φz(z, k) = (k + z)α/2−1(k − z)α/2uz(z), (2.4)

which thus gives a Lax pair for (2.1). Equivalently, we may express the property of the
Lax pair as the closedness of a differential form.
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Proposition 2.1. The function u satisfies (2.1) in a bounded, simply connected domain
Ω of H if and only if the differential form

z 7→ W (z, k) =
[
(k − z)(k + z)

]α/2−1[
(k + z)uz(z)dz + (k − z)uz(z)dz

]
(2.5)

is closed in Ω. Note that, when α ∈ 2N∗, the differential form has no singularities in Ω
and k can be any complex number. Otherwise, for α ∈ R \ 2N∗, W (z, k) has either a pole
or a branch point at k and −k, so that k should lie outside Ω and −Ω.

Making use of the symmetry relation (1.8), we derive a second Lax pair, namely

φz(z, k) = (k + z)1−α/2(k − z)−α/2((z + z)α−1u)z(z)

= (k + z)1−α/2(k − z)−α/2(z + z)α−2[(z + z)uz(z) + (α− 1)u(z)],

φz(z, k) = (k + z)−α/2(k − z)1−α/2((z + z)α−1u)z(z)

= (k + z)−α/2(k − z)1−α/2(z + z)α−2[(z + z)uz(z) + (α− 1)u(z)],

and the related closed form

z 7→ W (z, k) =
[
(k − z)(k + z)

]−α/2
xα−2

·
[
(k + z)(2xuz(z) + (α− 1)u(z))dz + (k − z)(2xuz(z) + (α− 1)u(z))dz

]
. (2.6)

This second differential form will be useful in Section 4.
We end this section with a brief discussion on the possible use of a Lax pair for the

derivation of an explicit correspondance between different types of boundary data. It is
easy to check that not all Lax pairs can achieve this goal. For instance, if we consider (2.4)
when m = 0, we get

φz(z, k) = uz(z)/(k − z), φz(z, k) = uz(z)/(k + z),

which is a Lax pair for the Laplace equation ∆u = 0. If we choose as a domain Ω the unit
disk D, the differential form W (z, k) from Proposition 2.1 is closed in D and thus we get,
in terms of the tangent and normal derivatives ut and un on the unit circle,

ˆ
∂D

xun(z)

(k − z)(k + z)
ds =

ˆ
∂D

(y + ik)ut(z)

(k − z)(k + z)
ds, k ∈ C \ D. (2.7)

Assume that the tangent derivative ut is known, hence also the integral in the right-hand
side, equal to some function ψ(k). Decomposing the real function xun(z) = g(z) + g(1/z),
with g(z) analytic in D, g(0) ∈ R, it is readily checked that (2.7) rewrites as

g(1/k)− g(−1/k) = kψ(k),

which allows one to recover only the half of g, namely the imaginary parts of its even
Taylor coefficients and the real parts of the odd ones.

On the contrary, when considering the domain Da = D(a, 1) instead of D, we will see
in Section 4 that the Lax pair in (2.4) is sufficient to recover the Dirichlet to Neumann
correspondance.
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3 Characterization by a Riemann–Hilbert problem

The goal of this section is to prove Theorems 1.1 and 1.3.

3.1 Case of a negative even integer coefficient α = −2m, m ∈ N
Proof of Theorem 1.1. The differential form W (z, k) rewrites as

W (z, k) =
(
(k − z)(k + z)

)−m−1(
(k + z)uz(z)dz + (k − z)uz(z)dz

)
. (3.1)

Equations (2.4) can be written as dφ = W and we thus construct a function φ of the form

φ(z, k) =

ˆ z

zr

W (z′, k), (3.2)

where the path of integration needs to be defined. For k such that Im k ≥ Im z, we integrate
from zr to z following the lower part Clow of the circle Ca and then the segment from zl to
z. For k such that Im k ≤ Im z, we integrate from zr to z following the upper part of the
circle Cup and then again the segment from zl to z, see Figure 1. This defines φ(z, k) as an

a

z

zl

−z

−a

Cup

0

zr

Clow

∆z

Figure 1: The paths of integration γ1 and γ2 from zr to z, respectively along Cup and Clow
for the definition (3.2) of φ(z, k).

analytic function of k outside of the line ∆z through z and −z where it may possibly have
a jump. We remark from (3.1) and (3.2) that the function k 7→ φ(z, k) has poles of order
m at k ∈ {−zr,−z, z, zr} if m > 0 and logarithmic singularities if m = 0. It also satisfies
the symmetry relation

φ(z,−k) = −φ(z, k). (3.3)

In the sequel, we use the notations φ+(z, k) and φ−(z, k) for the limit values of φ(z, k)
when k tends to the left and right of a given arc, according to its orientation. The fact
that the differential form W (z′, k) is closed in the disk Da when k lies outside of that disk
implies that there is no jump

J(z, k) := φ+(z, k)− φ−(z, k),
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of φ(z, k) on the part of ∆z outside of Da and −Da. For k inside the disks, we have

J(z, k) = −
ˆ
Ca
W (z′, k), k ∈ (z, zr) ∪ (−zr,−z),

J(z, k) = 0, k ∈ (zl, z) ∪ (−z,−zl).

For computing the jump on (−zr,−z), we have used the symmetry (3.3). For the jump
on (zl, z), we have deformed the two paths of integration into the segment (zr, z) which
is possible by closedness of the differential form W (z′, k). Note that k 7→ J(z, k) has
no singularity in z and zr. In z it is clear, while in zr, it can be seen by performing m
integrations by parts of W (z′, k) on the closed contour Ca, see also [10, Section 4.4] for a
similar computation. Concerning the function k 7→ φ(z, k), as said before, it has poles of
order m at {z, zr,−z,−zr} if m > 0 and logarithmic singularities if m = 0. Moreover, at
infinity, it behaves like

φ(z, k)→ k−2m−1(u(z)− u(zr)), as k →∞.

If m > 0, we renormalize the problem at infinity by defining

φ̃(z, k) = ((k − z)(k + z))mφ(z, k), (3.4)

J̃(z, k) = ((k − z)(k + z))mJ(z, k). (3.5)

Then, the function k 7→ φ̃(z, k) behaves like k−1(u(z)− u(zr)) at infinity and is regular at
z and −z, except for logarithmic singularities when m = 0. It still has polar singularities
at zr and −zr. Let us denote by φ̃zr,−zr(z, k) its polar part at these points, that is the sum

of the terms of negative degrees in the Laurent expansions of φ̃(z, k) at zr and −zr. The

function φ̃− φ̃zr,−zr is analytic outside of the segments (z, zr) and (−zr,−z) where it has

the jump J̃(z, k). It has at most logarithmic singularities at {z, zr,−z,−zr} and vanishes
at infinity.

These properties completely determine the function φ̃ − φ̃zr,−zr . Indeed, if there were
another function with these properties, their difference would be entire and vanishing at
infinity, hence the zero function. Thanks to the Plemelj formula, we have an integral
expression for φ̃(z, k)− φ̃zr,−zr(z, k), namely,

φ̃(z, k)− φ̃zr,−zr(z, k) =
1

2iπ

ˆ
(−zr,−z)∪(z,zr)

J̃(z, k′)

k′ − k
dk′. (3.6)

Denoting by ar and a−r the residues of φ̃(z, k) at k = zr and k = −zr respectively, and
equating the coefficients of k−1 in the expansion of (3.6) at infinity, we get

u(z)− u(zr) = ar + a−r −
1

2iπ

ˆ
(−zr,−z)∪(z,zr)

J̃(z, k′)dk′

= 2Re (ar)−
1

π
Im

ˆ
(z,zr)

J̃(z, k′)dk′,
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where we have used the symmetry relation φ̃(z,−k) = −φ̃(z, k). It remains to show that
the residue ar can be explicitly computed from the knowledge of the derivatives ut and un
on Ca. From (3.4), it is sufficient to know the polar part of φ(z, k) at zr. To compute this
polar part, we first rewrites W (z, k), defined in (3.1), by expressing the complex derivatives
in terms of the tangential and (outer) normal derivatives on the circle Ca,

uzdz =
1

2
(ut + iun)ds, uzdz =

1

2
(ut − iun)ds, (3.7)

with ds the length element on Ca. We get, with z = x+ iy ∈ Ca,

W (z, k) =
(
(k − z)(k + z)

)−m−1
((k − iy)ut(z) + ixun(z)) ds,

= (k − z)−m−1w(z, k)dz

where
w(z, k) := (k + z)−m−1 ((k − iy)ut(z) + ixun(z)) τ−1(z)

and τ(z) denotes the unit vector tangent to Ca at the point z. Let us set

∂̃tf := τ−1(z)∂tf (3.8)

for a function f on Ca. Because of analiticity,

∂z(k − z)−j−1dz = ∂t(k − z)−j−1ds = ∂̃t(k − z)−j−1dz, j = m− 1, . . . , 0.

Hence, performing m integrations by parts on the integral in (3.2), we obtain

φ(z, k) = c0
[
(k − z′)−mw(z′, k)

]z
zr

+ · · ·

+ cm−1

[
(k − z′)−1∂̃(m−1)t w(z′, k)

]z
zr
− cm−1

ˆ z

zr

(k − z′)−1∂̃(m)
t w(z′, k)dz′, (3.9)

where
cj = (−1)jΓ(m− j)/Γ(m+ 1), j = 0, . . . ,m− 1.

The polar part of φ(z, k) at zr can be read in the bracketed terms in (3.9) as

−c0
m−1∑
j=0

∂
(j)
k w(zr, zr)

j!(k − zr)m−j
− · · · − cm−1

∂̃
(m−1)
t w(zr, zr)

k − zr
,

where ∂k denotes the operator of differentiation with respect to the variable k. This finishes
the proof of Theorem 1.1.

3.2 Case of a negative odd integer coefficient α = −2m+ 1, m ∈ N
Proof of Theorem 1.3. The differential form (2.5) now rewrites as

W (z, k) =
(
(k − z)(k + z)

)−m−1/2(
(k + z)uz(z)dz + (k − z)uz(z)dz

)
. (3.10)
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The novelty with respect to the even coefficient case is that W (z, k) involves the square
root

λ(z, k) =
√

(k − z)(k + z)

which, as a function of k, is defined on a Riemann surface Sz of genus 0, consisting of
two copies of C, denoted by Sz,1 for the upper sheet, and by Sz,2 for the lower sheet. The
two sheets are glued together along a branch cut from z to −z, that we choose to be the
horizontal segment (−z, z). We denote by λ1 and λ2 the determination of the square root
λ, as a function of k, on the upper and lower sheets of Sz where we assume that

λ1(z, k) = k(1 +O(1/k)), as k →∞1 on the upper sheet Sz,1, (3.11)

λ2(z, k) = −k(1 +O(1/k)), as k →∞2 on the lower sheet Sz,2. (3.12)

We also denote by W1 and W2 the values of the differential form W corresponding to the
determinations λ1 and λ2 of the square root. For future use, we remark that the function
λ(z, k) and the differential form W (z, k) satisfy the following symmetry relations:

λ(z,−k) = −λ(z, k), W (z,−k) = W (z, k). (3.13)

As in the previous section, we construct a function φ of the form

φ(z, k) =

ˆ z

zr

W (z′, k), (3.14)

where the path of integration needs to be defined. Similarly to the method applied in [20],
we define, for each z, the function k → φ(z, k) as a map from the Riemann surface Sz
to C. The path of integration in (3.14) is chosen to be γ1 when k ∈ Sz,1 and γ2 when
k ∈ Sz,2, see Figures 2 and 3. Note that, when k lies outside of the convex hull of the two

a

z

zrzl

−z

−a

I I
Cup

0

Figure 2: Orientation of contours and path of integration γ1 (solid line) for the definition
(3.14) of φ(z, k) on the upper sheet Sz,1. The path starts at zr, goes along the upper part
Cup of the circle Ca to zl and then follows the horizontal segment up to z. The choice of
the determination of the square root λ at the initial point zr of the path γ1 depends on
the region which contains k.
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a

z

zrzl

−z

−a

II II Clow

0

Figure 3: Orientation of contours and path of integration γ2 (solid line) for the definition
(3.14) of φ(z, k) on the lower sheet Sz,2. The path starts at zr, goes along the lower part
Clow of the circle Ca to zl (thus describes Clow clockwise) and then follows the horizontal
segment up to z. The choice of the determination of the square root λ at the initial point
zr of the path γ2 depends on the region which contains k.

symmetric circles, the branch cut from z′ to −z′ never intersects k as z′ goes from zr to
z along γ1 or γ2. For such k, we may therefore use the same determination of the square
root λ(z′, k) for computing the integral (3.14). When k lies inside one of the circles (i.e.
regions I and II in Figures 2 and 3), the branch cut intersects k once. Hence, for k ∈ Sz,1
lying in the upper part of one of the two circles, we use the determination of the square
root λ2(z

′, k) on the first part of integration, before the crossing, and the determination
λ1(z

′, k) after the crossing, and conversely for k ∈ Sz,2 lying in the lower part of one of
the two circles. Finally, when k lies between the two circles, the branch cut intersects k
twice, so that, in this case, we start integration with the determination of the square root
λ(z′, k) corresponding to k, then change to the other determination after the first crossing,
and come back to the first determination after the second crossing.

The function φ(z, k) is an analytic function of k ∈ Sz outside of arcs where it has jumps.
Note that, in view of (3.10), it has poles of order m at k ∈ {z, zr,−z,−zr}.

As in the previous section, φ+(z, k) and φ−(z, k) denote the limit values of φ(z, k) when
k tends to the left and right of a given contour, according to its orientation. Let us compute
the jumps,

J(z, k) = φ+(z, k)− φ−(z, k),

of the function φ(z, k) on the different arcs shown in Figures 2 and 3. As in the previous
section, we denote by Cup the part of the circle Ca = C(a, 1) above the segment (zl, zr) and
by Clow the part of the circle Ca below that segment. For k on one of the two circles, we
denote by k̃ the other point on the circle with the same imaginary part, that is, we have

k̃ − a = −(k − a), k ∈ Ca
k̃ + a = −(k + a), k ∈ −Ca.

To compute the jumps J(z, k) we first rewrites W (z, k), defined in (3.10), in terms of ds,
the length element on Ca. By the same computation as the one in the previous section, we

12



now get, with z = x+ iy ∈ Ca,

W (z, k) =
(
(k − z)(k + z)

)−m−1/2
((k − iy)ut(z) + ixun(z)) ds,

= (k − z)−m−1/2w(z, k)dz

where
w(z, k) := (k + z)−m−1/2 ((k − iy)ut(z) + ixun(z)) τ−1(z)

and τ(z) still denotes the unit vector tangent to Ca at the point z. Performing m inte-
grations by parts on the integral in (3.14), we obtain in a similar way as in the previous
section,

φ(z, k) = c0
[
(k − z′)−m+1/2w(z′, k)

]z
zr

+ · · ·

+ cm−1

[
(k − z′)−1/2∂̃(m−1)t w(z′, k)

]z
zr
− cm−1

ˆ z

zr

(k − z′)−1/2∂̃(m)
t w(z′, k)dz′, (3.15)

where
cj = (−1)jΓ(m− 1/2− j)/Γ(m+ 1/2), j = 0, . . . ,m− 1,

and the operator ∂̃tf is still defined by (3.8). The bracketed terms contain the polar parts
of φ(z, k), of degree m, at z and zr. Note that the last integral converges when k ∈ Ca.
Assume k ∈ Sz,1 and lies on the right half of Cup. Then, from the above definition of φ, we
derive that

J(z, k) = J0
1 (zr, k) +

ˆ k

zr

W̃1(z
′, k),

with

J0
1 (zr, k) = 2

m−1∑
j=0

cj(k − zr)j−m+1/2∂̃
(j)
t w1(zr, k), (3.16)

W̃1(z
′, k) = 2cm−1(k − z′)−1/2∂̃(m)

t w1(z
′, k)dz′, (3.17)

where the subscript 1 in the above expressions means that we use the determination λ1 of
the square root to evaluate them. The jumps on the left half of Cup on Sz,1 and on Clow
on Sz,2 can be computed in the same way. The jumps on −Cup and −Clow can be derived
from the symmetry relation satisfied by φ(z, k),

φ(z,−k) = φ(z, k).

The result is as follows. For k ∈ Sz,1,

J(z, k) = J0
1 (zr, k) +

ˆ
(zr,k)

W̃1(z
′, k), k on the right half of Cup, (3.18)

J(z, k) = J0
1 (zr, k) +

ˆ
(zr,k̃)

W̃1(z
′, k)−

ˆ
(k̃,k)

W̃1(z
′, k), k on the left half of Cup, (3.19)

J(z, k) = J(z,−k), k on − Cup, (3.20)
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where the path of integration (a, b) in each of the above integrals is the subarc of Cup from
a to b, in the positive direction. For k ∈ Sz,2, we have

J(z, k) = J0
2 (zr, k) +

ˆ
(zr,k)

W̃2(z
′, k), k on the right half of Clow,

(3.21)

J(z, k) = J0
2 (zr, k) +

ˆ
(zr,k̃)

W̃2(z
′, k)−

ˆ
(k̃,k)

W̃2(z
′, k), k on the left half of Clow, (3.22)

J(z, k) = J(z,−k), k on − Clow, (3.23)

where (a, b) in each of the integrals denotes the subarc of Clow from a to b, in the negative
direction.

Note that the above jumps take place on two open contours on the Riemann surface
Sz. The first one starts at zr,1 on the first sheet, follows the circle Ca, goes through the
cut at zl and finishes at zr,2 on the second sheet. The second one start at −zr,1 on the
first sheet, follows the circle −Ca, goes through the cut at −zl and finishes at −zr,2 on the
second sheet. Note also that the jump on the first contour is continuous at zl (compare
(3.19) and (3.22) at k = zl), and, by symmetry, the same is true of the jump on the second
contour at −zl.

It follows, simply from the definition (3.14) of φ(z, k) and the choice of the determina-
tions, that, on each sheet, φ(z, k) has no jumps on (z, zr) and (−zr,−z). On the branch
cut (−z, z) of the Riemann surface Sz there is also no jumps. Indeed, on the part (−zl, zl),
k is not close from the paths of integration and we can use the definition (3.14) to compute
the jumps. One has

φ+
1 (z, k)− φ−2 (z, k) =

ˆ z

zr

W+
1 (z′, k)−

ˆ z

zr

W−
2 (z′, k) = 0,

φ−1 (z, k)− φ+
2 (z, k) =

ˆ z

zr

W−
1 (z′, k)−

ˆ z

zr

W+
2 (z′, k) = 0,

where we have deformed the original paths of integration γ1 and γ2 into the segment (zr, z),
which is possible since the differential form W (z, k) is closed. When k ∈ Sz,1 is on the −
side of (zl, z) or k ∈ Sz,2 is on the + side of (zl, z), we may deform both paths γ1 and γ2
into the segment (zr, z) and we get

φ−1 (z, k)− φ+
2 (z, k) =

ˆ z

zr

W−
1 (z′, k)−

ˆ z

zr

W+
2 (z′, k) = 0.

Finally, when k ∈ Sz,1 is on the + side of (zl, z) or k ∈ Sz,2 is on the − side of (zl, z), we
deform both paths γ1 and γ2 into the segment (zr, k) followed by the segment (k, z). Here
k is closed from the paths of integration, so we use (3.15) to compute the jumps. We get

φ+
1 (z, k) = −1

2

ˆ k

zr

W̃−
1 (z′, k)− 1

2

ˆ z

k

W̃+
1 (z′, k)

= −1

2

ˆ k

zr

W̃+
2 (z′, k)− 1

2

ˆ z

k

W̃−
2 (z′, k) = φ−2 (z, k),
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where we note that the bracketed terms in (3.15) do not contribute to the jumps.
For completeness, let us remark that, if we would consider φ(z, k) as a function on

one of the two sheets only, e.g. Sz,1, then it would have a jump on the segment (−zl, zl),
considered as an arc on Sz,1, namely

ˆ
Cup

W̃1(z
′, k), k ∈ (−zl, zl).

On the second sheet Sz,2, a jump would also occurs,

−
ˆ
Clow

W̃2(z
′, k), k ∈ (−zl, zl),

which is actually opposite to the previous one.
The term J0(zr, k) has a polar singularity of order m at k = zr so that the jumps

(3.18)–(3.23) have polar singularities of order m at either zr or −zr. Hence, instead of
φ(z, k), we consider

φ̃(z, k) =
(
(k − zr)(k + zr)

)m
φ(z, k),

whose jumps
J̃(z, k) =

(
(k − zr)(k + zr)

)m
J(z, k) (3.24)

are regular (and lie on the same contours as those of φ(z, k)). From the definitions of W
and φ, and in view of (3.11)–(3.12), we have

lim
k→∞1

φ̃(z, k) =

ˆ z

zr

du = u(z)− u(zr), (3.25)

lim
k→∞2

φ̃(z, k) = −
ˆ z

zr

du = u(zr)− u(z), (3.26)

so that, in particular,
φ̃(z,∞1) = −φ̃(z,∞2). (3.27)

Next, the function k → φ̃(z, k) remains bounded near the four endpoints zr,1, zr,2, −zr,1,
−zr,2 of the two contours where the jumps (3.18)–(3.23) take place. Indeed, near zr,1,

W (z, k) is of order (k − zr,1)−m−1/2 and consequently φ̃(z, k) is of order (k − zr,1)1/2. The
same fact holds true near the three other points. As a last remark, let us mention that
φ̃(z, k) has poles of order m at z and −z since this holds true for φ(z, k). We denote by

φ̃z,−z(z, k) the sum of its polar parts at z and −z.
The jumps (3.24), the relation (3.27) between the values at infinities and the bound-

edness near the endpoints completely characterize the function φ̃− φ̃z,−z on Sz. Indeed, if
there are two such functions, then their difference would be analytic on the compact Rie-
mann surface Sz, hence constant. Since it would also satisfy the relation (3.27), it could
only be the zero function. An explicit expression can be given for the unique solution of
the Riemann-Hilbert problem defined by the previous conditions (jumps, relation between
the values at ∞1 and ∞2, and boundedness near the endpoints), namely
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φ̃(z, k)− φ̃z,−z(z, k) =
1

4iπ

ˆ
Cup∪−Cup

J̃(z, k′)

(
λ(z, k)

λ1(z, k′)
+ 1

)
dk′

k′ − k

+
1

4iπ

ˆ
Clow∪−Clow

J̃(z, k′)

(
λ(z, k)

λ2(z, k′)
+ 1

)
dk′

k′ − k
, (3.28)

where the contours of integration are oriented as in Figures 2 and 3. In the first integral
k′ ∈ Sz,1 and in the second integral k′ ∈ Sz,2. Let us check that the expression in (3.28)

satisfies the characterizing properties of φ̃ − φ̃z,−z. Indeed, it defines an analytic function
of k on Sz outside of the two contours Cup ∪Clow and −Cup ∪−Clow. Thanks to the Plemelj
formula, we see that it has the right jumps on these contours. Because of (3.11)–(3.12), it
also satisfies relation (3.27). From the formulas (3.18), (3.20), (3.21), (3.23), we get that

J̃(z, k′) vanishes at the endpoints of the two contours. Hence, the expression in (3.28)
remains bounded near these endpoints, see [1, Lemma 7.2.2] for details.

Making use of (3.25), we deduce from (3.28), where we rename k′ as k, that

u(z)− u(zr) = − 1

4iπ

ˆ
Cup∪−Cup

J̃(z, k)

λ1(z, k)
dk − 1

4iπ

ˆ
Clow∪−Clow

J̃(z, k)

λ2(z, k)
dk

= − 1

2π
Im

ˆ
Cup

J̃(z, k)

λ1(z, k)
dk − 1

2π
Im

ˆ
Clow

J̃(z, k)

λ2(z, k)
dk

= − 1

2π
Im

ˆ
Ca

J̃(z, k)√
(k − z)(k + z)

dk.

Note that the polar part φ̃z,−z does not give any contribution in the above computation as
k tends to infinity. In the second equality we have used the first identity in (3.13) and the
fact that

J̃(z,−k) = J̃(z, k).

In the last expression, we integrate along the circle Ca oriented counter-clockwise, starting
at zr with the determination of the square root that behaves like k at infinity. At k = zl,
the determination changes so that the square root remains continuous along the path of
integration. This finishes the proof of Theorem 1.3.

The method used in the proofs of Theorems 1.1 and 1.3 could be applied in case of a
general, bounded, simply-connected domain Ω in the right half-plane H. For the definition
of the corresponding function φ(z, k), in particular the paths of integration γ1 and γ2, one
could replace the points zr (resp. zl) by e.g. a point ωr (resp. ωl) on the boundary of Ω
of smallest (resp. largest) abscissa (hence independant of z). The segment (zl, z) may be
replaced with any path from ωl to z. In case of an even coefficient α, another path from
ωr to z can be fixed to obtain a path from ωr to ωl that separates Ω into a lower and an
upper part.
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4 The Dirichlet-Neumann map for the case of an even

coefficient α

This section is devoted to the proof of Theorem 1.5. Theorems 1.1 and 1.3 give an ex-
pression of the solution to (1.5), and in particular of the jump J(z, k), in terms of its
tangential and normal derivatives on the boundary of the disk Da. In practice, only one
type of boundary data is usually known and it is thus important to determine if this
information is sufficient for computing the solution.

Using the link (3.7) between complex and directional derivatives, the global relation,
derived from Proposition 2.1 and Poincaré lemma,

ˆ
Ca

[(k − z)(k + z)]α/2−1((k + z)uz(z)dz + (k − z)uz(z)dz) = 0,

can be rewritten asˆ
Ca

[(k − z)(k + z)]α/2−1((y + ik)ut(z)− xun(z))ds = 0, (4.1)

for k ∈ C\ (Da∪D−a). We first show that, when α is an even negative integer, (4.1) allows
one to recover the Neumann data un from the Dirichlet data ut.

4.1 Case of an even negative integer coefficient α

Proof of Theorem 1.5 when α = −2(m− 1), m ∈ N∗. Equivalently to recovering the Neu-
mann data un, we may recover the function

f(z) := (x+ a)un(z + a), z ∈ T, (4.2)

from the relation
ˆ
T

zm−1f(z)

(z − (k − a))m(z + (k + a)−1)m
dz =

ˆ
T

zm−1(y + ik)ut(z + a)

(z − (k − a))m(z + (k + a)−1)m
dz, (4.3)

where k ∈ C \ (Da ∪ D−a) and we integrate on T instead of Ca.
Now, we set

µ := −1/(k + a), ϕ(z) :=
−z

1 + 2az
.

The map ϕ is involutive and sends µ to 1/(k − a). Moreover, k ∈ C \ (Da ∪ D−a) is
equivalent to the fact that µ (or ϕ(µ)) belongs to the annulus

A := D \D
(
−2a

4a2 − 1
,

1

4a2 − 1

)
,

so that (4.3) can be rewritten

ˆ
T

zm−1f(z)

(1− ϕ(µ)z)m(z − µ)m
dz =

1

µ

ˆ
T

zm−1(µy − i(aµ+ 1))ut(z + a)

(1− ϕ(µ)z)m(z − µ)m
dz, µ ∈ A. (4.4)
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The functions f(z), ut(z+a), yut(z+a) are real-valued in L2(T), so they can be decomposed
as

f(z) = g1(z)+g1(1/z), ut(z+a) = g2(z)+g2(1/z), yut(z+a) = g3(z)+g3(1/z), (4.5)

with gi(z) holomorphic on D and gi(1/z) holomorphic on C \ D for i = 1, 2, 3. Note that
the imaginary parts of g1(0), g2(0), g3(0) can be chosen at will in the decompositions (4.5).
For i = 1, 2, 3, let hi(z) := zm−1gi(z), and

Φi(µ) :=

ˆ
T

zm−1gi(z)

(1− ϕ(µ)z)m(z − µ)m
dz =

2iπ

(m− 1)!

(
hi(z)

(1− ϕ(µ)z)m

)(m−1)

(µ), µ ∈ A.

(4.6)
It is clear that the functions Φi are analytic in A. Since

1− ϕ(µ)µ = (µ2 + 2aµ+ 1)/(1 + 2aµ),

one derives from the second expressions in (4.6) that the Φi extend analytically to D, except
at the point z1, where we denote by z1 and z2 the two roots of z2 + 2az + 1 = 0,

z1 = −a+
√
a2 − 1 ∈ D, z2 = ϕ(z1) = −a−

√
a2 − 1 ∈ C \ D.

At the point z1, the functions Φi have a polar singularity of order at most 2m− 1. We also
note that the Φi have a zero of order at least m at −1/2a.

Next, from the fact that ϕ is involutive, follows that, for any function g(z) on T,

ˆ
T

zm−1g(1/z)

(1− ϕ(µ)z)m(z − µ)m
dz = −

ˆ
T

zm−1g(z)

(1− µz)m(z − ϕ(µ))m
dz.

Therefore, the relation (4.4) can be rewritten as

Φ1(µ)−Φ1(ϕ(µ)) = Φ3(µ)−Φ3(ϕ(µ))− i(a+ 1/µ)(Φ2(µ)−Φ2(ϕ(µ))), µ ∈ A. (4.7)

Note that g2(0) = 0 since the Fourier coefficient of ut(z+a) of order 0 vanishes. In view of
(4.6), this entails that Φ2(0) = 0 so that the function Φ2(µ)/µ is analytic at 0. Multiplyimg
both sides of the equation by

S(µ) = (µ− z1)2m−1(µ− z2)2m−1/(2aµ+ 1)m,

and rearranging terms, we get

S(µ)(Φ1(µ)− Φ3(µ) + i(a+ 1/µ)Φ2(µ))

= S(µ)(Φ1(ϕ(µ))− Φ3(ϕ(µ)) + i(a+ 1/µ)Φ2(ϕ(µ))).

The function on the left-hand side is analytic in D. Moreover, the function ϕ maps A onto
itself and sends the inner disk D onto C \D with the inner circle of A onto the unit circle
T. Also, −1/2a and ∞ map each others by ϕ. Hence, the term on the right-hand side
is analytic in C \ D and has a polar singularity of order 2m − 2 at infinity. Equating the
left-hand side to the part in the right-hand side that is analytic in D, we get

S(µ)Φ1(µ) = S(µ)Ψ(µ) + P2m−2(µ), Ψ(µ) := Φ3(µ)− i(a+ 1/µ)Φ2(µ),
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where Ψ(µ) is a known function depending on ut, and P2m−2(µ) is a polynomial of degree
at most 2m− 2, that depends on both ut and un, (hence is unknown). Making use of the
second expressions in (4.6) of the Φi functions and applying Leibniz rule on the (m− 1)-th
derivatives, we readily obtain that h1(z) satisfies the differential equation of order m− 1,

m−1∑
p=0

αpz
m−1−p(z2 + 2az + 1)ph

(p)
1 (z) = H(z) + P2m−2(z), (4.8)

where

αp = (−1)m−1+p
(2m− p− 2)!

(m− p− 1)!p!
, p = 0, . . . ,m− 1,

and H(z) is a known function, analytic in D, that is given in terms of h2(z) and h3(z) by

H(z) =
m−1∑
p=0

αpz
m−1−p(z2 + 2az + 1)p(h

(p)
3 (z)− i(a+ 1/z)h

(p)
2 (z)).

By Lemma 4.1 which, for convenience, we have stated and proved after the present proof,
there exists a unique solution P̃2m−2(z), polynomial of degree at most 2m − 2, to the
differential equation

m−1∑
p=0

αpz
m−1−p(z2 + 2az + 1)pP̃

(p)
2m−2(z) = P2m−2(z).

Hence, h1(z)− P̃2m−2(z) coincides with the solution h(z), analytic at z1, of the differential
equation

m−1∑
p=0

αpz
m−1−p(z2 + 2az + 1)ph(p)(z) = H(z).

Note that the function h(z) can be explicitely computed as a series expansion around z1,
see Lemma 4.1. We know that h1(z) vanishes at the origin with order m− 1, hence it can
be written as

h1(z) = zm−1(h̃(z) + P̃m−1(z)),

where h̃(z) is known and P̃m−1(z) is some polynomial of degree at most m− 1. From the
link between f(z) and h1(z) follows that

zm−1f(z) = zm−1(h̃(z) + h̃(1/z)) +Q2m−2(z),

where
Q2m−2(z) = zm−1(P̃m−1(z) + P̃m−1(1/z))

is a polynomial of degree at most 2m− 2. From the global relation (4.4) and the fact that

h̃(z) is known, we derive that the following integral is also known for µ ∈ A,

S(µ)

2iπ

ˆ
T

Q2m−2(z)

(1− ϕ(µ)z)m(z − µ)m
dz =

S(µ)

(m− 1)!

(
Q2m−2(z)

(1− ϕ(µ)z)m

)(m−1)

(µ)

=
1

(m− 1)!

m−1∑
p=0

αpµ
m−1−p(µ2 + 2aµ+ 1)pQ

(p)
2m−2(µ)
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Consequently, Q2m−2(z) solves a differential equation of the type (4.9) with a second mem-
ber which is necessarily a polynomial, hence analytic at z1. From Lemma 4.1, we know
that Q2m−2 is uniquely determined and can be recovered from this equation. Therefore,
P̃m−1(z), h1(z), g1(z), and finally f(z) are also uniquely recovered.

Lemma 4.1. Let H(z) be a function analytic in a neighborhood of z1. There exists at most
one solution h(z) of the differential equation

m−1∑
p=0

αpz
m−1−p(z2 + 2az + 1)ph(p)(z) = H(z), (4.9)

which is analytic in a neighborhood of z1. Moreover, if H(z) = P2m−2(z) is a polynomial
of degree at most 2m − 2, then the solution h(z) exists and is also a polynomial of degree
at most 2m− 2.

Proof. The two roots z1 and z2 of z2 +2az+1 are regular singular points of the differential
equation (4.9). We rewrite it in a neighborhood of z1 = −a+

√
a2 − 1 ∈ D, leading to

m−1∑
p=0

αp(z + z1)
m−1−p(z + β)pzph̃(p)(z) = H(z + z1),

where β = 2
√
a2 − 1 and h̃(z) = h(z + z1). Denoting by

∞∑
k=0

akz
k the series expansion of h̃

in a neighborhood of 0, we have

zph̃(p)(z) =
∞∑
k=p

k . . . (k − p+ 1)akz
k

and therefore

m−1∑
p=0

αp(z + z1)
m−1−p(z + β)p

∞∑
k=p

k . . . (k − p+ 1)akz
k = H(z + z1). (4.10)

We compute the coefficient of zn in the left-hand side of (4.10) which equals

1

n!

(
m−1∑
p=0

αp(z + z1)
m−1−p(z + β)p

∞∑
k=p

ak
k!

(k − p)!
zk

)(n)

(0).

By Leibniz rule we get

1

n!

m−1∑
p=0

αp
∑

k1+k2+k3=n

1

k1!k2!k3!

(m− 1− p)!
(m− 1− p− k1)!

zm−1−p−k11

p!

(p− k2)!
βp−k2ak3

(k3!)
2

(k3 − p)!
,

where we adopt the convention that 1/q! = 0 if q is a negative integer. Taking into account
the definition of αp, this simplifies to

1

n!

m−1∑
p=0

(−1)p(2m− p− 2)!

(
β

z1

)p ∑
k1+k2+k3=n

k3!z
−k1
1 β−k2

k1!k2!(m− 1− p− k1)!(p− k2)!(k3 − p)!
ak3 .
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Let us write k3 = n − ` where ` is a new index. Then k1 + k2 = ` in the previous sum.
Since k1 ≤ m−p−1 and k2 ≤ p, we deduce that ` takes its values in the set {0, . . . ,m−1}.
We thus obtain

1

n!

m−1∑
`=0

(n− `)!an−`
m−1∑
p=0

(−1)p(2m− p− 2)!

(n− `− p)!

(
β

z1

)p ∑
k1+k2=`

z−k11 β−k2

k1!k2!(m− 1− p− k1)!(p− k2)!
,

or writing k1 = k − p and k2 = p+ `− k in terms of a new index k,

1

n!

m−1∑
`=0

an−`
(n− `)!
β`

m−1∑
p=0

(−1)p
(2m− p− 2)!

(n− `− p)!

m−1∑
k=0

(β/z1)
k

(k − p)!(`+ p− k)!(m− 1− k)!(k − `)!
.

Interchanging the two last sums, we obtain

m−1∑
`=0

an−`β
n
` , n ≥ 0,

where an = 0, n < 0, and we have set, for ` ∈ {0, . . . ,m− 1},

βn` :=
(n− `)!
n!β`

m−1∑
k=0

(β/z1)
k

(m− 1− k)!(k − `)!

m−1∑
p=0

(−1)p(2m− p− 2)!

(k − p)!(n− `− p)!(`+ p− k)!
. (4.11)

If ` = 0, the second sum in (4.11) equals

m−1∑
p=0

(−1)p(2m− p− 2)!

(k − p)!(n− p)!(p− k)!
= (−1)k

(2m− k − 2)!

(n− k)!
,

and

βn0 =
m−1∑
k=0

(−β/z1)k(2m− k − 2)!

(m− 1− k)!k!(n− k)!
6= 0,

since β/z1 < 0. The nonvanishing of the coefficients βn0 implies that each coefficient an,
n > 0, is uniquely determined whence the first assertion of the lemma.

Next, in order to prove the vanishing of all coefficients an, n ≥ 2m − 1, when the
right-hand side is a polynomial of degree at most 2m− 2, it is sufficient to show that

βnN+1 = · · · = βnm−1 = 0, N ∈ {0 . . . ,m− 2}, n = 2m− 1 +N. (4.12)

Let N be fixed in {0 . . . ,m− 2} and ` ∈ {N + 1, . . . ,m− 1}. From our convention on the
factorials of negative integers, the second sum in (4.11) actually simplifies to

k∑
p=k−`

(−1)p(2m− p− 2)!

(k − p)!(n− `− p)!(`+ p− k)!
= (−1)k−`

∑̀
p=0

(−1)p(2m− k + `− p− 2)!

(`− p)!p!(n− k − p)!

= (−1)k−`
∑̀
p=0

(2m− k + `− p− 2)!

(2m− 1 +N − k − p)!
(−1)p

p!(`− p)!
.
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The last expression equals the derivative of order `− (N + 1) of the polynomial

(−1)N+1−`
∑̀
p=0

x2m−k+`−p−2

p!(`− p)!

taken at x = −1. Thanks to the binomial identity, this polynomial rewrites as

(−1)N+1−`x2m−k−2(1 + x)`/`!.

We then get
m−1∑
p=0

(−1)p(2m− p− 2)!

(k − p)!(n− `− p)!(`+ p− k)!
= 0

which shows (4.12).

4.2 Case of an even positive integer coefficient α

Here we assume α = 2(m + 1), m ∈ N. First, let us check that the global relation (4.1)
does not allow the reconstruction of un in this case. Indeed, integrating on T instead of
Ca, the part involving un in (4.1) now equals

ˆ
T

(z − (k − a))m(z + 1/(k + a))mf(z)

zm+1
dz (4.13)

where f is defined by (4.2) and k ∈ C \ (Da ∪D−a). With the definitions of g1, µ, ϕ and A
as in the previous case, we let, for µ ∈ A,

Φ1(µ) :=

ˆ
T

(z − µ)m(1− ϕ(µ)z)mg1(z)

zm+1
dz =

2iπ

m!
((z − µ)m(1− ϕ(µ)z)mg1(z))(m)(0),

(4.14)
so that, as before, (4.13) can be rewritten as Φ1(µ)−Φ1(ϕ(µ)). Since this expression only
involves the derivatives of g1 at 0 of order up to m, it does not contain enough information
to reconstruct g1(z) and a fortiori the function f(z).

Proof of Theorem 1.5 when α = 2(m+ 1), m ∈ N. Expressing the closed differential form
(2.6) in terms of the directional derivatives, thanks to (3.7), and integrating along Ca, we
now obtainˆ

Ca

((y + ik)xut(z)− x2un(z)− (2m+ 1)(zz + iyk)u(z))x2m

(k − z)m+1(k + z)m+1
ds = 0,

for k ∈ C \ (Da ∪ D−a). Since we assume that u and ut are known on the boundary Ca of
the domain, our problem is to recover un from the knowledge, for k ∈ C \ (Da ∪ D−a), of
the integral ˆ

Ca

x2m+2un(z)

(k − z)m+1(k + z)m+1
ds,

which is precisely what was done in the previous case (except that the definition (4.2) of
the function f there has to be replaced with f(z) = (x+ a)2m+2un(z + a)).
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