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ABSTRACT
This paper focuses on the estimation of voltage sags in three-
phase power systems. Specifically, it proposes a new ap-
proach for estimating the amplitude and phase angle of the
sag based on the Unconditional Maximum Likelihood tech-
nique. As opposed to other techniques, this approach is well
suited for signals with amplitude and/or phase modulation
such as those encountered in smart grid applications. Sim-
ulation and experimental results illustrate the effectiveness of
the proposed approach.

Index Terms— Maximum Likelihood Estimation, Power
systems, Smart Grid Monitoring, Voltage sags.

1. INTRODUCTION

Analysis of electrical signals plays a key role in many engi-
neering applications. Application includes, for example, elec-
trical machines monitoring based on current signature analy-
sis [1] or smart-grid monitoring [2, 3]. From a signal pro-
cessing viewpoint, one particularity of the electrical signal
is its multidimensional nature. Indeed, electrical signals are
usually composed of three components called ”phases”. In
ideal conditions, each phase can be modelled by a simple sine
wave with constant amplitude and frequency (f0 = 60Hz in
the US) and 2π/3 phase-shift between consecutive phases.
In practical systems, many deviations can occur such as am-
plitude/frequency variations and three-phase unbalance [4].
In particular, three-phase unbalance can be composed of am-
plitude drops and phase angle-jumps. These phenomenona,
which are called voltage sags, can be damaging for electrical
machines or grid equipments. For this reason, the monitoring
of voltage sags is of main concern in modern power systems.

Several techniques have been proposed in the literature
for estimating the amplitude and phase angle parameters.
The IEEE 1564 standard recommends the use of the RMS
value [5]. Another simple and commonly used technique
is based on the Peak Voltage. Nevertheless, the Root Mean
Square (RMS) and Peak Voltage techniques assume noiseless
signals and do not provide any estimate of the phase angle
parameter. To overcome these limitations, several authors

propose to estimate the amplitude and phase angle from the
Discrete Fourier Transform (DFT) component at frequency
f0 [3, 4]. The main drawback is that this technique assumes
a constant and perfectly known frequency f0. For signals
with frequency offset, improvement can be obtained by using
extensions of the periodogram [6–11] but these techniques
do not perform well under non-stationary conditions. Un-
der non-stationary conditions, techniques based on adaptive
filtering have been proposed in [12, 13]. However, the afore-
mentioned techniques are suboptimal since they treat each
phase independently. In [14], a Maximum Likelihood (ML)
technique has been proposed for estimating the amplitude
parameters from the three-phase signal, but it is not suited
for systems with phase angle jumps. In [15], the system
parameters are estimated from the symmetrical components.
However, this technique assumes constant parameters and is
not suited for signals with amplitude/frequency variations.

In this paper, a new technique for estimating the sag am-
plitude and phase angle parameters is proposed. This tech-
nique corresponds to the Unconditional Maximum Likelihood
estimator for the Rayleigh fading sinusoid model. This paper
is organized as follows. Section 2 presents the three-phase
signal model, Section 3 describes the proposed estimator, and
Section 4 focuses on the simulation results.

2. THREE-PHASE SIGNAL MODEL

In three-phase systems, voltages (or currents) can be de-
scribed by the following equation (see [16])

xk[n] =
√

2dka[n] cos (φ[n] + ϕk) + bk[n] (1)

where xk[n] and bk[n] correspond to the voltage and noise in
the kth phase (k = 0, 1, 2). The components a[n] and φ[n]
correspond to the instantaneous scaling factor for the ampli-
tude and instantaneous phase offset, respectively. As com-
pared to other studies, these components are not assumed to
be constant or linear. The parameters dk ≥ 0 and ϕk corre-
spond to the amplitude and phase angle, respectively. Note
that under nominal conditions, ϕk = 2kπ/3 [16]. Using ma-



trix notations, (1) can expressed as

x[n] = H(Θ)α[n] + b[n] (2)

where:

• Θ = {d0, d1, d2, ϕ0, ϕ1, ϕ2} contains the amplitude
and phase angle parameters,

• x[n] and b[n] are 3× 1 column vectors defined as

x[n] =

 x0[n]
x1[n]
x2[n]

 b[n] =

 b0[n]
b1[n]
b2[n]

 , (3)

• H(Θ) is a 3× 2 matrix which is defined as

H(Θ) =

 d0 cos(ϕ0) −d0 sin(ϕ0)
d1 cos(ϕ1) −d1 sin(ϕ1)
d2 cos(ϕ2) −d2 sin(ϕ2)

 , (4)

• α[n] is a 2× 1 vector containing the direct and quadra-
ture components, i.e.

α[n] ,
√

2

[
a[n] cos(φ[n])
a[n] sin(φ[n])

]
. (5)

The goal of this paper is to estimate Θ from N measure-
ments without knowing α[n]. In order to estimate these pa-
rameters, we make use of the following assumptions:

• AS1) The additive noise is a zero-mean, white Gaussian
noise with covariance matrix E[b[n]bT [n]] = σ2I i.e.
b[n] ∼ N (0, σ2I).

• AS2) The instantaneous amplitude and phase are inde-
pendent of each other. Furthermore, a[n] is Rayleigh
distributed and φ[n] is uniformly distributed in [0, 2π(.
Under these assumptions, α[n] ∼ N (0, σ2

αI) [17, Ex-
ample 5.5]. Finally, without loss of generality, we as-
sume that the variance of the kth phase is only driven
by the amplitude dk i.e. σ2

α = 1.

3. AMPLITUDE AND ANGLE ESTIMATION.

In this section, we propose a two-step approach for estimat-
ing Θ. First, we estimate the mixing matrix H from X using
the Unconditional Maximum Likelihood estimator, then we
resort to the invariance principle of the Maximum Likelihood
to estimate Θ from Ĥ.

3.1. Estimation of H

3.1.1. Maximum Likelihood Estimation

Under AS1-AS2), it can be checked that x[n] ∼ N (0,R)
where R = HHT + σ2I. Therefore, the ML Estimates of
H and σ2 can be obtained by minimizing

L
(
X; H, σ2

)
= log (det(R)) + Tr

[
R−1R̂

]
(6)

where X , x[0], · · · , x[N − 1] and R̂ is the data covariance
matrix which is defined as

R̂ ,
1

N

N−1∑
n=0

x[n]xT [n]. (7)

Moreover, it is known that the minimum is reached at [18]

Ĥ = ÛΛ̂
1
2 V (8a)

σ̂2 = λ0 (8b)

where

• Λ̂ is a 2 × 2 diagonal matrix with diagonal elements
λ2 − λ0 and λ1 − λ0, where λ2 ≥ λ1 ≥ λ0 are the
eigenvalues of R̂,

• Û is a 3× 2 matrix containing the eigenvectors associ-
ated with the two largest eigenvalues of R̂,

• V is an arbitrary 2× 2 orthogonal matrix.

In the following paragraph, the orthogonal matrix V is de-
termined by adding constraints to the structure of Ĥ.

3.1.2. Determining the Orthogonal Matrix V

Let us define the 3× 2 matrix W as

W , ÛΛ̂
1
2 =

 w00 w01

w10 w11

w20 w21

 . (9)

As V is a 2×2 orthogonal matrix, V ∈ {V0(θ),V1(θ)}where

V0(θ) ,

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(10a)

V1(θ) ,

[
cos(θ) sin(θ)
sin(θ) − cos(θ)

]
. (10b)

To determine V, we impose two natural constraints on Θ (see
Fig.1).

• C1: The first phase corresponds to the reference phase
i.e. ϕ0 = 0.

• C2: The second phase belongs to [0 π] i.e. 0 ≤ ϕ1 ≤ π.

The second constraint, C2, is motivated by the fact that under
nominal conditions ϕ1 = 2π/3. Deviations from this value
are usually smaller than π/3 [19]. Using C1 and C2 in (8), it
can be shown that H(Θ) has the following structure

H(Θ) =

 × 0
× ≤ 0
× ×

 . (11)
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Fig. 1: Representation of dkejϕk in the complex plane. The
reference phase ϕ0 is set to 0 (constraint C1) and ϕ1 ∈ [0, π]
(constraint C2).

By imposing the constraint C1 on WV0(θ), we obtain θ̂ =
arctan(β)+kπ, where k = 1 ifw00 < 0 and k = 0 elsewhere,
and

β ,
w01

w00
. (12)

It can be verified that C1 leads to the same estimate when ap-
plied on WV1(θ). Using trigonometric identities [20, Part
1.624, identities (7) and (8)], V0(θ̂) and V1(θ̂) can be simpli-
fied as

V0(θ̂) =
sgn(w00)√

1 + β2

[
1 −β
β 1

]
(13a)

V1(θ̂) =
sgn(w00)√

1 + β2

[
1 β
β −1

]
(13b)

where sgn(.) is the sign function. The matrix indeterminacy
can be removed by using C2. Indeed, we obtain

V̂ =

{
V0(θ̂) if w11sgn(w00) ≤ w10sgn(w00)β

V1(θ̂) elsewhere.
(14)

3.2. Estimation of Θ

In this subsection, we resort to the invariance principle of the
Maximum Likelihood to estimate Θ. First, we derive an ex-
pression to compute Θ from H, then we use this expression to
estimate Θ from Ĥ.

Let us define ek the unit column vector which is ”1” in the
kth line and zero elsewhere. Using the definitions of H(Θ), it
can be shown that

eTk H(Θ) = [dk cos(ϕk) − dk sin(ϕk)]. (15)

Then, let us define the complex scalar zk as

zk , eTk H(Θ)

[
1
−j

]
(16)

where j is the imaginary unit. Using (15) in (16), it can be
readily checked that zk = dke

jϕk . Therefore, the value of the
amplitude and phase angle parameters can be computed as

dk = |zk| (17a)
ϕk = arg[zk] (17b)

where |.| and arg[.] correspond to the complex modulus and
argument, respectively. In practise zk is unknown and must
be replaced by its estimate in (17), where the estimate of zk
is given by

ẑk = eTk ÛΛ̂
1
2 V̂
[

1
−j

]
. (18)

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1. Simulation Results

Herein, the performances of the proposed approach are com-
pared with respect to those of the RMS technique. For each
technique, the Mean Square Error (MSE) is evaluated through
10000 Monte Carlo simulations. The unknown parameters
are arbitrary set to Θ = {1, 0.5, 1.8, 0o, 131.5o, 234.2o}.
The statistical performances are analysed for different data
lengths and signal-to-noise ratios (SNRs), where SNR=
10 log10(

∑2
k=0 d

2
k/(3σ

2)). The Cramer Rao bounds are
also computed. These bounds are derived from the inverse
of the Fisher information Matrix, I(Ω), where the (u, v)th

element of I(Ω) is given by [21]

[I(Ω)]uv =
N

2
Tr
[

R−1(Ω)
∂R(Ω)

∂Ωu
R−1(Ω)

∂R(Ω)

∂Ωv

]
, (19)

the set Ω = {d0, d1, d2, ϕ1, ϕ2, σ
2} contains the unknown pa-

rameters, and Ωu corresponds to the uth element of Ω. Note
that ϕ0 is excluded from Ω since it is assumed to be known.

In the following paragraphs, we only focus on the esti-
mation of the amplitude parameters, dk, since the RMS tech-
nique does not provide any estimate of the phase-angle pa-
rameters. Figure 2a shows the MSE and CRB versus SNR
for N = 100 samples. We observe that the MSE of the pro-
posed technique is close to the CRB even though it is known
that the Unconditional Maximum Likelihood is not efficient
at finite number of samples [22]. Furthermore, we note that
the proposed technique outperforms the RMS estimator for
low and moderate SNR. These two estimators seem to per-
form equally well as N increased. Theoretically, one can
show that these two estimators have similar expressions when
SNR→ ∞. Figure 2b presents the MSE and CRB versus N
when SNR= 20dB. We observe that the MSE and CRB are
really close in the asymptotic region, which corroborates the
fact that the Unconditional Maximum Likelihood reaches the
CRB when N →∞.
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Fig. 2: Comparison of the proposed technique and RMS one
for amplitude estimation.

4.2. Experimental Results

The proposed algorithm is applied to experimental three-
phase signals under dynamic conditions. Experimental sig-
nals come from the DOE/EPRI National Database of Power
System Events. The sampling rate is equal to Fe = 960Hz
and the nominal frequency is f0 = 60Hz. To track the vari-
ations of the amplitude and phase angle parameters, the data
covariance matrix in (7) is replaced by the sliding covariance
matrix R[n], which is defined as

R[n] ,
1

L

L−1∑
l=0

x[n− l]xT [n− l]. (20)

The window length is set to L = 32 samples. Regarding
the computational complexity, the most difficult task relies
on the eigenvalues decomposition of each covariance matrix
R[n]. However, it should be mentioned that this decomposi-
tion can be obtained in closed form as exposed in [14]. Fig-
ure 3a shows the voltage signal corresponding to the event
855 (lightning). To deeply characterize this voltage sag, Fig-
ures 3b and 3c present the amplitude and phase angle param-
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Fig. 3: Amplitude and phase angle estimation with experi-
mental signals.

eters obtained with the proposed technique. The RMS ampli-
tude estimates are also shown for comparison. We see that
the voltage sag both modifies the amplitude and the phase an-
gle parameters (≈ −10o). Furthermore, we observe that the
RMS amplitudes are slightly higher than those obtained with
the proposed technique.

5. CONCLUSION

This paper considers the problem of voltage sags estimation
in three-phase systems. It describes a new algorithm based on
the Unconditional Maximum Likelihood for estimating the
amplitude and phase angle parameters. This algorithm first
performs an eigenvalue decomposition of the data covariance
matrix, and then apply an orthogonal transformation. Simu-
lations show that the proposed technique performs well under
noisy conditions even for a small number of samples. Simula-
tions also show that the proposed technique outperforms the
RMS amplitude estimator recommended by the IEEE 1564
Standard. Finally, experimental simulation demonstrates that
the proposed estimator can be easily adapted to track the vari-
ations of the amplitude and phase angle parameters.
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