How modular structure can simplify tasks on networks: parameterizing graph optimization by fast local community detection
Résumé
By considering the task of finding the shortest walk through a Network, we find an algorithm for which the run time is not as O(2n), with n being the number of nodes, but instead scales with the number of nodes in a coarsened network. This coarsened network has a number of nodes related to the number of dense regions in the original graph. Since we exploit a form of local community detection as a preprocessing, this work gives support to the project of developing heuristic algorithms for detecting dense regions in networks: preprocessing of this kind can accelerate optimization tasks on networks. Our work also suggests a class of empirical conjectures for how structural features of efficient networked systems might scale with system size.