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Abstract
We review recent theoretical works that enable the accurate evaluation of the
mean first passage time (MFPT) of a random walker to a target in confinement
for Markovian (memory-less) and non-Markovian walkers. For the Markovian
problem, we present a general theory which allows one to accurately evaluate
the MFPT and its extensions to related first-passage observables such as
splitting probabilities and occupation times. We show that this analytical
approach provides a universal scaling dependence of the MFPT on both the
volume of the confining domain and the source target distance in the case of
general scale-invariant processes. This analysis is applicable to a broad range
of stochastic processes characterized by length scale-invariant properties, and
reveals the key role that can be played by the starting position of the random
walker. We then present an extension to non-Markovian walks by taking the
specific example of a tagged monomer of a polymer chain looking for a target
in confinement. We show that the MFPT can be calculated accurately by
computing the distribution of the positions of all the monomers in the chain at
the instant of reaction. Such a theory can be used to derive asymptotic relations
that generalize the scaling dependence with the volume and the initial distance
to the target derived for Markovian walks. Finally, we present an application
of this theory to the problem of the first contact time between the two ends of a
polymer chain, and review the various theoretical approaches of this non-
Markovian problem.
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1. Introduction

How long does it take for a drunkard to go from a given bar to another one? This time is
known in the random walk literature as a first passage time (FPT) and it has generated a
considerable amount of work for many years [1 3]. The importance of FPT relies on the fact
that many physical properties, including fluorescence quenching [4], neuron dynamics [5] or
resonant activation [6] to name a few, are controlled by first passage events. More recently,
FPTs have regained interest in the context of random search strategies [7 11].

Generically, one might consider the problem of a random walker whose position tr( )
evolves stochastically with time t in a confined domain and ask for the first passage properties
of tr( ) to one (or several) targets. A target can represent a critical level to reach before another
event is triggered or another molecule with which the walker will react. First passage
properties depend on (i) the properties of the stochastic process, often described by the
propagator ∣P tr r( , )0 , which is the probability to be observed at position r at time t given an
initial position r0, and (ii) the geometrical parameters of the problem such as the initial
distance to the target, its size, or the size and the shape of the confining domain.

Unfortunately, explicit determinations of FPT are mostly limited to simple geometries
such as 1D and spherically symmetric problems [1, 2]. The determination of FPT for random
walks in realistic confined geometries is not just a theoretical challenge in its own right. It is
actually a very relevant issue involved as soon as molecules diffuse in confined media. For
example, as biomolecules diffuse through a cell they undergo a series of transformations at
precise regions of the cell. An estimate of the time needed to go from one point to another is
then an essential step in the understanding of the kinetics of the whole process.

The mean first passage time (MFPT) 〈 〉T quantifies the time needed to reach a specific
target site, and as such, has clear applications in the context of search processes. It has another
interpretation: assume that random walkers are injected at a rate q at position r0 in a confined
domain and that these walkers are absorbed at a given target site in the domain. The average
number of walkers in the domain in a stationary state is then simply given by 〈 〉q T [12, 13].
The MFPT is a complex quantity, which results from averaging trajectories characterized by a
broad range of time scales. Some trajectories reach the target almost directly and contribute to
very short time scales whereas other trajectories first hit the domain boundary before reaching
the target and can be shown to contribute to much longer time scales [14]. Even if the full
distribution of the FPT was derived asymptotically in [14], we will focus on the MFPT in this
review.

An important aspect of the problem is the potential existence of memory effects for some
random walks, for which the future trajectories are not determined uniquely by the position of
the walker at initial time, but depends also on the past trajectory. Such non-Markovian
dynamics are found in many examples of particles moving stochastically in complex fluids
[15 17] or molecules bound to fluctuating extended structures, as in the model of a tagged
monomer of a polymer chain [18], which seems to be observed for example in the motion of
chromatin fibers [19 21]. The key question then arises of how the memory properties of the
random walk influence the MFPT, and of how to take them into account quantitatively.

In this review, we present important advances in the analysis of FPT statistics that have
been obtained in the last decade. Section 2 is devoted to the case of Markovian (memory-less)
random walks. We present first a general theory which allows one to accurately evaluate the
MFPT for regular random walks in bounded domains. We then briefly mention extensions of
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these results to related first-passage observables such as splitting probabilities and occu-
pation times. We next show that this analytical approach provides a universal scaling
dependence of the MFPT on both the volume of the confining domain and the source
target distance in the case of general scale-invariant processes. This analysis is applicable
to a broad range of stochastic processes characterized by length scale-invariant properties.
Section 3 presents an extension of these results to a specific example non-Markovian
process, in which a reactive monomer of a Rouse chain looks for a target in a confined
domain. We show that the calculation of the MFPT requires the determination of the
distribution of the conformation of the full chain at the instant of encounter with the target.
Such a theory can be used to derive general asymptotic formulas of the MFPT that take
into account the behaviors of the walk at different time scales. Last, section 4 presents the
related question of determining the mean cyclization time of a polymer. This problem can
in fact be seen as an MFPT problem for a chain confined in an effective volume of diameter
of the order of the polymer gyration radius. This problem has been studied intensively and
we review briefly the different approaches available in the literature, highlighting the
importance of non-Markovian effects.

Let us finally stress that we will consider in this review only MFPTs of random walks in
confinement. For a recent review of first-passage processes in absence of confinement, and in
particular persistence properties of non-equilibrium processes, the reader is referred to [22].

2. First-passage observables of Markovian processes

2.1. Discrete random walks on regular lattices

In this first section we consider the case of discrete time random walks on discrete
structures, discussed for example in [12]. We introduce both the relevant physical
observables (FPTs, occupation times, splitting probabilities) as well as the tools used to
determine them (pseudo-Green functions, exact expressions in the case of rectangular
domains, large volume asymptotic expansions in the case of arbitrary domains). The
formalism is introduced for general graphs, but explicit results are derived in this section
for regular Euclidean lattices. The cases of fractal structures and complex networks will be
presented in the forthcoming sections. Note that the case of continuous-time random walks
(CTRWs) can easily be derived from the formalism introduced in this section. Its analysis
can be found in [23, 24].

2.1.1. Mean-FPTwith a single target. We consider a discrete-time random walk on a discrete
lattice of N sites, and we note wxy the probability to jump from site y to site x in one step,
which satisfies

∑ =w 1, (1)
x

xy

where the sum goes over all the sites x of the lattice. Let ∣P x y( )n be the probability to be at
time n at site x knowing that initially the walker was at site y, ∣F x y( )n the probability to visit
site x for the fist time at time n knowing that initially the walker was at site y and P(x) the
stationary probability to be at site x. We first derive an exact expression of the mean first-
passage time 〈 ∣ 〉x yT( ) from site y to site x (see figure (1) ) in terms of pseudo-Green functions
of the problem, which will be used all along this section.
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Expression in terms of the pseudo-Green function. The starting point is the renewal equation
[25]

∑=
=

−P x y F x y P x x( ) ( ) ( ), (2)n

k

n

k n k

0

where we have used the usual conventions that ∣ =F x y( ) 00 and δ∣ =P x y( ) x y0 , and assumed
that ≠x y. This equation is obtained by partionning over the first time k the site x is visited,
and writing that the walker has to come back at site x in the −n k remaining steps to be still at
site x at time n. Laplace transforming this temporal convolution equation, we get

=



F x s y
P x s y

P x s x
( , )

( , )

( , )
, (3)

where we have introduced the discrete Laplace transforms

∑ ∑≡ ≡
=

∞
−

=

∞
− P x s y P x y F x s y F x y( , ) ( )e and ( , ) ( )e . (4)

n

n
sn

n

n
sn

0 0

It is useful to consider the small Laplace variable s expansions of these quantities:

∑= + −

= + + + →

=

∞
− { }[ ]P x s y P x P x y P x

P x

s

P x
H o s

( , ) ( ) ( ) ( ) e

( ) ( )

2
(1), ( 0), (5)

n

n
sn

xy

0

Figure 1. Schematic of the problem. A searcher starts at y and performs a discrete
random walk in a confined domain, which contains a target site x.

4



where

∑≡ −
=

∞

[ ]H P x y P x( ) ( ) , (6)xy

n

n

0

and

= − +F x s y s x y o sT( , ) 1 ( ) ( ). (7)

Expanding equation (3) at first order in s leads to

= −( )x y
P x

H HT( )
1

( )
. (8)xx xy

This equation, which will play a key role in this section, has been obtained by Noh and Rieger
in the physics literature [26], and also seems to be known in the mathematics literature (see
[27] and references therein). Several comments are in order:

(i) A first important property of the H function resulting directly from its definition (6) and
the normalization of ∣P x y( )n and P(x) is that

∑ =H 0. (9)
x

xy

A second useful property resulting from the detailed balance hypothesis and shown in
[24] is that

=H P y H P x( ) ( ). (10)xy yx

(ii) This H function actually admits a simple physical interpretation. It can be conveniently
obtained by first writing a backward equation for Pn

∑=+P x y w P x z( ) ( ), (11)n

z

zy n1

resulting from a partition of the first step of the walk, and the trivial equation

∑=P x w P x( ) ( ). (12)
z

zy

Summing over n the difference of equations (11) and (12) gives:

∑ δ− − = −( )w H H P x( ), (13)
z

zy xz xy xy

which indicates that H is actually a pseudo-Green function (see [28]) of the operator
involved in the lhs of equation (13), which is a discrete Laplacian. Physically, it
corresponds to the stationary solution of a discrete diffusion equation in the presence of a
uniformally distributed sink term.

(iii) Expression (8) of the MFPT can be shown using equation (13) to verify the classical
backward equation :

∑− − =w x z x yT T( ( ) ( ) ) 1 (14)
z

zy

with boundary condition 〈 ∣ 〉 =x xT( ) 0.
(iv) The so-called Kac formula [27] is easily derived from this formalism since the mean first

return time to site x can be written
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∑

∑

= +

= +
−

=

x w x z

w
H H

P x

P x

T T( ) 1 ( )

1
( )

1

( )
, (15)

r

z

zx

z

zx
xx xz

where the first line is a backward equation for the mean return time similar to
equation (14), and equations (8) and (13) have been used successively.

(v) The global MFPT [29 31], defined as the MFPT averaged over the initial position of the
random walk (with the stationary weight) can be written as:

∑

∑

∑

≡

= −

= −

=

( )

x x y P y

P x
H H P y

H

P x P x
H P x

H

P x

T T( ) ( ) ( )

1

( )
( )

( )

1

( )
( )

( )
(16)

y

y

xx xy

xx

y

yx

xx

where we have used successively the symmetry relation of the pseudo-Green function (9)
and the relation (10).

Finally, we stress that equation (8) is exact and general. However, since it involves the
a priori unknown H function, it remains somehow formal at this stage. In the following, we
show how explicit expressions of the MFPT can be obtained. Unless otherwise explicitly
stated, we will assume that the stationary probability P(x) is uniform

=P x
N

( )
1

, (17)

which is the case as soon as the probabilities w are symmetrical (i.e. =w wxy yx for all x and y).
Here, N is the total number of sites that the walker can reach in the graph.

Exact calculation of the MFPT: the case of rectangular domains. In the particular case of a
rectangular domain, exact expressions of the pseudo-Green function H can be obtained, both
for periodic and reflecting boundary conditions [13, 32]. In turn, using equation (8), this
provides exact expressions for the MFPT (and for several other first-passage observables as
we will show later). We recall in this section how these exact expressions are obtained in 2D
in the case of periodic boundary conditions (see [13, 32] for the 3D case and for reflecting
boundary conditions).

Let us consider a domain, with X sites in the x direction, Y sites in the y direction. In this
case, =′w 1 4r r, if r and ′r are nearest neighbors and zero elsewhere. We decompose H into a
Fourier sum:

∑ ∑ π π= ′ +′
=

−

=

−

H a
m x

X

n y

Y
r( ) exp

2 i 2i
, (18)

m

X

n

Y

mnr r,

0

1

0

1

⎜ ⎟⎛
⎝

⎞
⎠
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where the coordinates of r are x y z( , , ) and the coordinates of ′r are ′ ′ ′x y z( , , ). If we
substitute this into equation (13), we obtain an explicit expression of ′a r( )mn , which leads to

∑ ∑=
+

− +δ

π π

π π′
=

−

=

− − ′ − ′( )
( )

H
N

1 exp

1 cos cos
. (19)

m

X

n

Y m x x

X

n y y

Y

m

X

n

Y

r r,

0

1 1 2 i ( ) 2i ( )

1
2

2 2
m0

Large volume asymptotics of the MFPT. In the case of general confining domains, exact
expressions of the pseudo-Green function H are not available. However, large volume
asymptotics of the MFPT can be obtained. As we show, they provide accurate expressions
even for reasonably small systems and allow us to give first answers to the questions raised
above concerning the influence of geometrical parameters on MFPTs.

Actually, even if formal, equation (8) is very well suited to large volume asymptotics of
the MFPT. In the following, we consider two prescriptions for this large volume limit: the
case when the volume goes to infinity with the constraint that both the target and the starting
points of the walk remain infinitely distant from any point of the boundary (target and starting
points ‘in the bulk’); the case when the volume goes to infinity with the constraint that both
the target and the starting points of the walk remain close to a single planar boundary of the
domain.

We first consider the case when the target and the starting points are in the bulk.
In this case, (8) leads to

∑= −
→∞ =

∞
∞ ∞[ ]x y

N
P x x P x y

T
lim

( )
( ) ( ) , (20)

N
n

n n
0

where ∣∞P x y( )n stands for the propagator on an infinite lattice. Using standard large distance
expressions of these quantities [25], we finally obtain for hypercubic lattices:

Γ
π

= − −
−

+
−→∞ − −

x y

N
G

d

x y
o

x y

T
lim

( )
(0)

( 2 1)

2

1 1
(21)

N d d d0 2 2 2

⎛
⎝⎜

⎞
⎠⎟

if >d 2, and

π π
γ

π
= − + + +

→∞

x y

N
x y o

T
lim

( ) 2
ln

3
ln 2

2
(1) (22)

N

if d = 2. In these expressions,

∑≡
=

∞
∞G x P x( ) ( 0) (23)

n
n0

0

is the Green function of the unconfined random walk and γ is the Euler constant (with
π γ π+ =3 ln 2 2 1.029374 ...). Note that in d = 1, it is found that

= −
→∞

x y

N
y x

T
lim

( )
, (24)

N

in agreement with well-known results [2].
Several important conclusions can be reached from these expressions:

(i) In any dimension, the MFPT depends linearly on the volume.
(ii) In dimension >d 2, the MFPT saturates at large distance −x y. In other words, the

MFPT loses the memory of the starting point at large separations between the starting
and the target points.

7



(iii) The situation is very different in dimensions ⩽d 2, where the MFPT strongly depends
on the initial position of the random walker, even at large distances.

As we will show in section 2.2, these conclusions originate from the very nature of the
random walk in the absence of any confinement, the so-called type problem. In this context, a
random walk is called compact (or recurrent) if it comes back with probability one to its
starting point and non-compact (or transient) in the opposite case. The saturation of the MFPT
with distance mentioned above is in fact characteristic of non-compact random walks as is the
case of 3D regular random walks, while the strong dependence on the starting position
observed for 1D and 2D is a hallmark of compact transport. As we will show later, these
conclusions will also hold for any Markovian scale-invariant processes (including Lévy
flights, random walks on fractal structures ...). Figure 2 displays the accuracy of this large
volume approximation even in the case of a small confining cube and illustrates the saturation
of the MFPT with the distance mentioned above.

We now consider the situation corresponding to the target and starting points close to a
boundary. We assume that the volume goes to infinity with the constraint that both x and y
remain close to an infinite reflecting plane P( ). In other words, the confining domain tends
towards a semi infinite space. The corresponding propagator, denoted by ∣∞P x y( )n

2 is then
easily written in terms of the infinite space propagator ∣∞P x y( )n by using the method of
images [25]:

= +∞ ∞ ∞P x y P x y P x s y( ) ( ) ( ( )), (25)n n n
2

where s( y) stands for the symmetrical point with respect to the plane P( ) of point y. Finally,
for hypercubic lattices,

Figure 2. MFPT in 3D parallelepipedic domains: influence of the distance between the
source and the target. Red crosses: simulations; blue dashed line: large volume
approximation (21). The domain is a cube of side 41, the target being in the middle of
it. All the simulation points correspond to different positions of the source.

8



Γ
π

Γ
π

= − −
−

+ −
−

−
−

+

→∞ −

− −

x y

N
G

d

x y

d

x s x x s y

T
lim

( )
(0)

( 2 1)

2

1

( 2 1)

2

1

( )

1

( )
... (26)

N d d

d d d

0 2 2

2 2 2

⎛
⎝⎜

⎞
⎠⎟

if >d 2, while

π π
γ

π

π

= − + +

+ −
−

+

→∞

x y

N
x y

x s y

x s x
o

T
lim

( ) 2
ln

3
ln 2

2

2
ln

( )

( )
(1) (27)

N

in d = 2.
These expressions allow one to discuss several aspects of the influence of the boundaries

of the domain.

(i) The qualitative effect of the boundaries is to increase the MFPT when a target is near a
boundary, or decrease it when the source is near a boundary.

(ii) The first effect is much more important than the second (because ∣ − ∣x s x( ) is small in
the first case, while neither ∣ − ∣x s y( ) nor ∣ − ∣x s x( ) is small in the second one).

(iii) These effects are just as marked when the dimension is small.

2.1.2. Situations with several targets: splitting probabilities. We consider the case when N
targets of positions x x x, ,..., N1 2 are present in the problem, and focus on the splitting
probability π ⋯ y( )x x

i
, , N1 that a random walker starting from site y reaches the target xi before

the others. These quantities are especially useful to quantify the kinetics of competitive
reactions [4], and may be useful in biology to determine to which extent cellular variability
may be controlled by diffusion [33, 34]. It is shown in [13, 35] by writing a renewal equation
with N targets that the splitting probabilities can be expressed exactly in terms of pseudo-
Green functions only. In the particular case of two targets, it is found that

π =
− + −

− + −
( ) ( )
( ) ( )

y
P H H P H H

P H H P H H
( )

(1) (2)

(1) (2)
, (28)x x y y

1
, 22 2 1 12

22 21 11 12

1 2

π =
− + −

− + −
( ) ( )
( ) ( )

y
P H H P H H

P H H P H H
( )

(2) (1)

(1) (2)
(29)x x y y

2
, 11 1 2 21

22 21 11 12

1 2

where we have used the notations ≡H Hij x xi j. As in the case of MFPTs with a single target
presented in section 2.1.1), exact expressions are obtained in the case of rectangular domains,
and large volume asymptotics can be derived in the general case. These two-target results are
displayed in figure 3, which shows that the accuracy of the large volume asymptotic
expressions even for finite domains.

An important qualitative difference between the 2D and 3D cases is revealed by the large
volume asymptotics of the pseudo-Green function. In 3D, the furthest target always has a
significant probability to be reached first, since the most important terms in the probabilities
Pi are H11 and H22. In 2D, if a target is much closer from the source than the other, it will
almost certainly be reached first, since Hr r,i j scales as ∣ − ∣r rln i j . Actually, the probability for
the furthest target to be reached first decreases logarithmically. As will be discussed on more
general grounds in section 2.2, these properties are related to the non-compact character of the

9



infinite 3D walk, and the compact character of the 2D walk. Indeed, an infinite 2D walk
explores all the sites of the lattice, whereas an infinite 3D walk does not; we may thus
consider that the 2D walk will explore most of the sites surrounding the source before going
much further, whereas the 3D walk will not, which qualitatively explains the difference of
behaviour. This behavior parallels the dependance of the MFPT on the starting distance
described above.

2.1.3. Occupation times. We now consider the time ∣N z y( )x( ) spent on a given site z by a
random walker starting from site y before reaching a target x. The study of the statistics of this
general quantity, known in the random walk literature as the occupation time, has long been a
subject of interest, both for mathematicians [25, 27] and physicists [36 46]. As a matter of
fact, the occupation time has proven to be a key quantity in various fields, ranging from
astrophysics [47], transport in porous media [48] and diffusion-limited reactions [49]. The
point is that as soon as some specific sites of a system have different physical or chemical
properties, it becomes crucial to know precisely how many times each site is visited by the
random walker.

As the MFPT, the mean occupation time can easily been written in terms of the pseudo-
Green functions [50]:

= − + −( )N z y
P z

P x
H H H H( )

( )

( )
. (30)x

xx xy zy zx
( )

Note that this result also gives the mean occupation time of a subdomain, which is simply the
sum of the mean occupation time of all the sites in the subdomain. In particular, using
equation (9), we can check that the mean occupation time for the whole domain,

∑ = −( )N z y
P x

H H( )
1

( )
(31)

z

x
xx xy

( )

gives back the MFPT from y to z provided by equation (8). The information provided by the
mean occupation is therefore finer than the MFPT.

Figure 3. Splitting probability in 3D domains. Simulations (red crosses) versus theory
with the large volume approximation of the pseudo Green function =H G0 (solid line).
One target is fixed in (−5, 0, 0); the source is fixed in (5, 0, 0); the other target is at (x,
3, 0). The domain is a cube of side 51, the middle is the point (0, 0, 0).
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2.1.4. Extension to continuous Brownian motion. The expressions obtained earlier in the case
of discrete time and space random walks can be extended to the case of continuous time and
space Brownian motion. We therefore now consider a continuous Brownian motion of
diffusion coefficient D in a confining domain with reflecting boundary conditions, and we still
want to know how long it takes to reach a given target. A fundamental difference with the
discrete case is that, except in the 1D case, the target must have a finite size to be reached, and
this size a will be an important parameter of the problem. This question has also been
addressed in the mathematical literature (see for instance [51 54]).

In fact, taking the limit of small target size makes it possible to directly transpose
essentially all the results on discrete random walks obtained in the previous section [13, 55].
More precisely, in the small target size limit, the expressions of the MFPT and splitting
probabilities obtained in the discrete case hold also in this continuous case by making use of

≡ +( ) ( )H G a Hr r r r( ) * . (32)T T T T0

where ∣H r r*( )T is defined as the regular part of ∣H r r( )T as →r rT :

= − −( ) ( )H H Gr r r r r r* ( ), (33)T T T0

and −G r r( )T0 is the infinite space Green function.
As in the discrete case, the pseudo-Green function H is known exactly for domains with

simple shapes such as spheres. For example the pseudo-Green function for the unit disk of
surface area π=A reads [28]:

π
′ = − − ′ − ′ + + ′ −( )H B r rr r r r r r( )

1

2
ln ln ( , )

1

2

3

4
, (34)2 2⎡

⎣⎢
⎤
⎦⎥

where B is the modulus of

= ′ − ′
′

r
r

B r
r

. (35)

Figure 4 shows the accuracy of the method on the example of a 2D disk with an off-centered
target.

For a domain of arbitrary shape, there is no explicit analytical expression of the pseudo-
Green function. However, as in the discrete case, large volume asymptotics of first-passage
observables can be derived. Indeed, one has to leading order H≈G0 where G0 is the infinite
space Green function. This leads to explicit expressions of first-passage observables in terms
of G0 only (see [13, 56]). For example, the MFPT to a single target starting from S writes:

π
= −

→∞

( )
V D a r

T r
lim

1

4

1 1
(3D) (36)

V

S ⎜ ⎟⎛
⎝

⎞
⎠

π
=

→∞

( )
A D

r

a

T r
lim

1

2
ln (2D) (37)

A

S

r being the source target distance.

2.1.5. Alternative approach: renewal equation for continuous processes. The results
presented in the previous section for continuous processes can in fact be derived directly
from a renewal equation, as we show in this paragraph. This alternative approach will prove
to be useful in the case of non-Markovian processes. We assume that the stochastic process
can be defined by the propagator ∣P tr r( , )0 (in confined space), which gives the probability
density to observe the walker at r at time t, given that the initial position was r0. Defining the
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target as the sphere of radius a and center =r 0, and ′∣f t r r( , )S as the FPT density at the
target at ′r starting from rS, one can write the following renewal equation:

∫ ∫= ′ ′ ′ ′ ′
′ =

( ) ( )P t t S f t P tr r r r r r r, d d ( ) , ( , ) (38)S

t

a
S

r0

where r can be any point inside the target. Taking =r 0, and expanding the Laplace
transform of (38) for small values of the Laplace variable, we get:

∫ ∫ π= ′ ′ ′ −−
∞

′ =
{ }( ) ( ) ( )V t S P t P tT r r 0 r r r 0 rd d ( ) ( , ) , (39)S

a
S S

r

1

0

where ∫π ′∣ = ′∣∞
f tr r r r( ) dt ( , )S S0

is the splitting probability to arrive on the target surface at
position ′r . We next introduce the infinite space propagator ∣∞P tr r( , )0 , which we assume
depends only on the distance ∣ − ∣r r0 . Averaging (39) over rS and taking the large volume
limit then yields

∫= −
→∞

∞
∞ ∞{ }( )( )

V
t P t a P t

T
0 u 0 rlim d , , (40)

V
r

0
0

where ur is a unit vector pointing normal to the target center. This formula relates explicitly
the propagator in infinite space, ∞P , to the mean first passage time. For example, in the case of
Brownian diffusion, the propagator is known explicitly,

π
=∞

− −( )P t
Dt

r r,
1

(4 )
e , (41)

d
Dtr r

0 2
( ) 40

2

which, once inserted into (40), leads to equations (36), (37).

2.2. General scale-invariant processes

So far we have presented general results on first-passage observables valid for regular dif-
fusion processes, either discrete or continuous. We now show that such results can be gen-
eralized to the much wider class of scale-invariant processes that include Lévy flights, random
walks on fractals and in disordered media (see figure (5) ). Note that these results can be
straightforwardly generalized to CTRWs on fractals [24]. In this section we present results for

Figure 4. Brownian motion on a 2D disk of radius 25 centered at (0, 0); the source is at
(0, 1) and the target of radius 1 is at x( , 0). Red crosses: simulations; black solid line:
theoretical prediction of equation (8) with the substitution of equation (32) where the
exact function H given by equation (34).
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the first-passage observables introduced earlier: FPTs, splitting probabilities and occupation
times. Technically, we derive general large volume asymptotics, by directly paralleling the
approach introduced in the case of regular diffusion processes. These results in fact provide
explicitly the dependence of these observables on the geometrical (volume and source to
target distance) and dynamical (fractal and walk dimension to be defined below) parameters.

2.2.1. MFPT. As in section 2.1, we consider a Markovian random walker moving in a
bounded domain of N sites, with reflecting walls. Let ∣P x y( )n be the propagator at time n,
starting from the site y at time 0. For the sake of simplicity we assume that the walker
performs symmetric jumps and that the stationary distribution is homogeneous

∣ = =→∞P x y P x Nlim ( ) ( ) 1n n . For an analysis of non-homogeneous networks see for
instance [57]. We start from the exact expression for the MFPT derived earlier (see
section 2.1), which in fact only requires that the processes is Markovian:

= −( )x y
P x

H HT( )
1

( )
. (42)xx xy

Here again, H is the pseudo-Green function [58] of the domain:

∑≡ −
=

∞

( )H P x y P x( ) ( ) . (43)xy

n

n

0

As in section 2.1.1, we take the large volume limit which yields:

∑= −
→∞ =

∞
∞ ∞[ ]x y

N
P x x P x y

T
lim

( )
( ) ( ) , (44)

N
n

n n
0

where ∣∞P x y( )n stands for the propagator on an infinite lattice.
To go further and obtain explicit results, we follow [59] and assume that the problem is

scale-invariant. More precisely, we use for ∞P the standard scaling [60]:

Π∼ −∞ −P x y n
x y

n
( ) , (45)n

d d
d1

f w

w

⎛
⎝⎜

⎞
⎠⎟

Figure 5. Examples of bounded fractal domains. The random walker starts from S and
reaches T. (a) Sierpinski gasket (here of order 5). (b) Two dimensional critical
percolation cluster (case of bond percolation on a square lattice) in a bounded domain.
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where the fractal dimension df characterizes the accessible volume ∼V rr f
d within a sphere of

radius r, and the walk dimension dw characterizes the distance ∼r n d1 w covered by a random
walker in a given time n. The form (45) ensures the normalization of ∞P by integration over
the whole fractal set. Note that the MSD is then given by Δ〈 〉 ∼ βnr2 with β = d2 w. A
derivation given in [59] then yields for the MFPT:

∼

− <

+ =

+ >

−

−

( )

( )

N A Br d d

N A B r d d

N A Br d d

T

for

( ln ) for

for

, (46)

d d
w f

w f

d d
w f

w f

w f

⎧
⎨
⎪⎪

⎩
⎪⎪

where explicit expressions of A and B are given in [59]. This result generalizes the
asymptotics derived in the case of regular random walks (dw = 2) on Euclidean lattices of
dimension =d df discussed in section 2.1.

Several comments are in order, which complement the analysis of section 2.1. First, we
point out that equation (46) gives the large N asymptotics of the MFPT as a function of N and
r as independent variables. In particular the volume dependence is linear with N for r fixed in
any case, which can not be inferred from the standard scaling 〈 〉 ∝ LT dw, L being the
characteristic length of the domain of order N d1 f . However, a global rescaling of the problem

λ λ→ →r r L L, , when applied to equation (46), gives the standard form λ〈 〉 ∼T dw for
>d dw f and λ〈 〉 ∼T d f for <d dw f in accord with [61, 62]. Second, equation (46) shows two

regimes, which rely on infinite space properties of the walk: in the case of compact
exploration [60] ( ⩾d dw f ) where each site is eventually visited, the MFPT behaves like

〈 〉 ∝ −NrT d dw f (〈 〉 ∝ N rT ln for dw = df) at a large distance, so that the dependence on the
starting point always matters; inthe opposite case of non-compact exploration 〈 〉T tends to a
finite value for large r, and the dependence on the starting point is lost.

These analytical results can be confirmed by Monte Carlo simulations and exact
enumeration methods applied to various models which cover the three previous
cases [59, 63].

• The random barrier model in two dimensions [60] is a widespread model of transport in
disordered systems whose MFPT properties remain widely unexplored. It is defined by a
lattice random walk with nearest-neighbor symmetrical transition rates Γ distributed
according to some distribution ρ Γ( ). Even for a power law distribution ρ Γ( ) the scaling
function Π ξ( ) can be shown to be Gaussian [48] ( = =d d 2f w ), which allows us to

explicitely compute the constant B and obtain π〈 〉 ∼ +( )N A D rT (1 2 ) lneff . Here Deff

is a diffusion constant depending on ρ Γ( ) which can be determined by an effective
medium approximation [48, 59].

• The Sierpinski gasket [60] of finite order is a representative example of a deterministic
fractal. In this case = < =d dln 3 ln 2 ln 5 ln 2f w, so that the theory predicts the

scaling 〈 〉 ∼ −NrT (ln 5 ln 3) ln 2.
• The Lévy flight model of anomalous diffusion [25, 64, 65] is based on a fat-tailed
distribution of jump lengths β∝ < ⩽β− −p l l( ) (0 2)d . The walk dimension is now

β=dw , while the fractal dimension is the dimension of the Euclidean space d. In
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dimensions ⩾d 2, or in 1D when β < 1, one has >d df w and the theory gives

〈 〉 ∼ − β−( )N A BrT d .
• Critical percolation clusters (see figure 1(b)) constitute a representative example of
random fractals [60, 66, 67]. Here we consider the case of bond percolation, where the
bonds connecting the sites of a regular lattice of the d dimensional space are present with
probability p. The ensemble of points connected by bonds is called a cluster. If p is above
the percolation threshold pc, an infinite cluster exists. If =p pc, this infinite cluster is a
random fractal characterized by its fractal dimension df. We consider a nearest neighbor
random walk on such critical percolation cluster with the so-called ‘blind ant’ [25]
dynamics: on arrival at a given site s, the walker attempts to move to one of the adjacent
sites on the original lattice with equal probability. If the link corresponding to this move
does not exist, the walker remains at site s. This walk is characterized by the walk
dimension dw. In the example of the 3-dimensional cubic lattice, one has df = 2.58..., and

=d 3.88 ...w [67] and the motion is subdiffusive with β = ≃d2 0.51..w .

Such models have been frequently used to describe transport processes in real complex
media, for example: in the case of exciton trapping on percolation systems [68] or in the case
of anomalous motions induced by obstruction and binding in crowded environments
[65, 69, 70] such as biological cells [63, 71 74]. In particular, fractal models have regained
interest in the context of the nuclear organization of DNA [75]. Indeed, recent experiments
based on neutron scattering [76], rheology techniques [77] and more recently the Hi-C
method [78] revealed independently a fractal structure of the chromatin.

Figure 6 reveals an excellent quantitative agreement between the analytical predictions
and the numerical simulations. Both the volume dependence and the source target distance
dependence are unambiguously captured by the theoretical expressions (46) as shown by the
data collapse of the numerical simulations. We emphasize that the very different nature of
these examples demonstrates that the range of applicability of the approach, which mainly
relies on the length scale-invariant property of the infinite space propagator (45), is wide.

These results can be partly reproduced by using other methods such as electrical
analogies [79, 80] and elastic vibrations spectrum analysis [81]. It has also been extended in
several directions. First, in the case where the scaling form of equation (45) holds at all scales
it is shown in [82] that in the compact case A = 0. Approximations of the constant B,
independent of the scaling function Π can also be obtained by using the Kac formula. This
yields in the compact case a zero constant formula for the MFPT, which has been shown to be
in very good agreement with numerical results in various examples [82]. Note that these
results rely on the scale invariance hypothesis; examples of anisotropic media have been
studied in [80]. Finally, we note that, in the case of deterministic fractals, the scaling relation
equation (45) actually only holds for discrete rescaling of the distance ∣ − ∣x y . This can be
shown to induce small amplitude oscillations of the MFPT with the source to target distance,
which can be analytically derived by adapting the above formalism [83].

2.2.2. Further first-passage observables. Following the methods developed in section 2.1,
the explicit geometric dependence of further first-passage observables of scale-invariant
Markovian processes can be derived. Indeed, the large volume asymptotics of the exact
expressions of first-passage observables in terms of pseudo-Green functions derived earlier in
section 2.1 are straightforwardly obtained by making the substitution ∣ → ∣H x y G x y( ) ( )0 ≡
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∑ ∣=
∞ ∞P x y( )n n1 and using equation (45). Note that only differences of H functions are

involved, which always remain finite in the large volume limit.
For example, it is possible to compute splitting probabilities within this framework. We

consider here two targets located at x1 and x2 and a source point y. The probability π1 of first
reaching target 1, starting from y, is then [63]:

Figure 6.MFPT in scale invariant media. a Lévy flights on a 2D square lattice (β = 1).
The confining domains are (a) 50 × 50 , 100 × 100 and 200 × 200 squares, with the
target approximately in the middle. The MFPT is presented as a function of the source
target distance for different source points. Simulation points are fitted with
〈 〉 ∼ − β−( )N A BrT 2 . (b) Random barrier models with a transition rate distribution

ρ Γ α Γ Γ Γ= α( ) ( )( )0 , with Γ = 10 and α = 0.5. The confining domain is a ×L L
square with the target point in the middle. Numerical simulations of the MFPT rescaled
by the volume N, averaged over the disorder, for three different domain sizes. The
theoretical curve (black line) is given by π〈 〉 ∼ +( )N A D rT (1 2 ) lneff , where the
only fitting parameter is A. (c) Numerical simulations of random walks on a Sierpinski
gasket (log/log plot) for three different system sizes (order 6, 7 and 8). For each set of
points, the size of the Sierpinski gasket and the target point are fixed and the starting
point takes various positions on the Sierpinski gasket. The plain line corresponds to the
theoretical scaling −rd dw f . (d) 3 D critical percolation clusters. For each size of the
confining domain, the MFPT, normalized by the number of sites N, is averaged both
over the different target and starting points separated by the corresponding chemical
distance, and over percolation clusters. The plain black curve corresponds to the
theoretical prediction of equation (46) with − ≃d d 1w f .
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where = ∣ − ∣r r rij i j is different from 0. The mean occupation time of site i starting form site S
before reaching site T can also be calculated [63], and reads:

∼

+ − − <

+ =

+ − >

− − −

− − −

( )

( )

A B r r r d d

A B r r r d d

B r r r d d

N

for

ln( ) for

for

, (48)
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d d
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d d
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d d

w f
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d d
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d d
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d d

w f

i

w f w f w f

w f w f w f

⎧

⎨
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⎩
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Note that the entire distribution of Ni, which involves only splitting probabilities, can be
derived [63].

3. Mean first-passage times of non-Markovian processes in confinement: the
example of the Rouse chain

3.1. MFPT for non-Markovian processes and the Markovian approximation

Up to now, all the theories for the MFPT that we have considered make an explicit use of the
Markovian properties of the stochastic processes at the very beginning of the analysis. For
example, the expression (8) states that the MFPT can be expressed as time integrals of the
propagator of the process, which is ill defined for generic processes with memory. The case of
non-Markovian processes therefore requires a further analysis that we present here. We
consider now a stochastic process tX( ) evolving with continuous time t with stationary
increments. As stated in [84], the non-Markovian character of a process often arises from the
interaction of the considered variable, tX( ), with other degrees of freedom that evolve at a
time scale comparable to that of the motion. A typical example of non-Markovian walker is
the motion of one tagged monomer of a polymer chain [85], or of one tagged particle moving
in a complex fluid [15 17, 86]. Here, specifically, we consider the overdamped dynamics of N
particles of positions …x x, , N1 that evolve in a space of dimension d and interact through
harmonic interactions and hence satisfy the Fokker Planck equation:

 ∑ ∑∂
∂

= +
= =

P

t
A P D Px , (49)

i j

N

i ij j

i

N

i
, 1 1

2

where the connectivity matrix A is symmetric, and D is the individual diffusion coefficient of
each particle. The case of a flexible (Rouse) chain [87], where a polymer is simply described
by a chain of beads with friction coefficient ζ linked by springs of stiffness k, is obtained
when A takes the tridiagonal form:
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ζ
=

−
− −

− −

− −
−

A
k

1 1 0 .. .. ..
1 2 1 0 .. ..

0 1 2 1 .. .... .. .. .. .. ..
.. .. 0 1 2 1
.. .. .. 0 1 1

. (50)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

We now assume that the non-Markovian walker tX( ) is one of the monomers, called below a
reactive monomer, at position q in the the chain, =t tX x( ) ( )q , and we study the MFPT of

tX( ) to a fixed target (see figure 7). We furthermore assume that the polymer is confined
inside a volume V much larger than its gyration radius, and that both the initial position

=tX( 0) and the target position are in the bulk, that is far from the confining boundaries. The
Rouse model will be our main example of non-Markovian process. However, depending on
the choice of matrix A, the models of the type equation (49) can be used to describe more
complicated structures, such as Gaussian semiflexible chains [88] (in which successive bonds
tend to be aligned), chains with dihedral interactions [89], the dynamics of interfaces [90], etc,
and the theory described here does not depend on the precise shape of the matrix A. In the
following, we describe the essential steps to obtain a precise estimate of the MFPT in this
non-Markovian problem.

The equation (49) is generally simplified by using normal mode analysis. We define the
orthogonal matrix Q such that λ λ= … −A Q Qdiag( , , )N1

1, with λ λ…diag( , , )N1 a diagonal
matrix of eigenvalues λi, with λ λ λ= < < <0 ... N1 2 . The modes ai are defined by:

∑ ∑= =
= =

t Q t t Q ta x x a( ) ( ), ( ) ( ). (51)i

j

N

ij j i

j

N

ji j

1 1

The evolution of the probability density P ta({ }, ) to observe the system with a configuration
= …a a a{ } { , , }N1 at time t in the absence of absorption now satisfies the simplified Fokker

Planck equation:

∑ λ∂
∂

= ∂
∂

+ ∂
∂=

P

t
P D P

a
a

a
, (52)

i

N

i
i i

i1

⎛
⎝⎜

⎞
⎠⎟

where each mode evolves independently of the others. In terms of the modes, the variable X
is expressed as the linear combination:

Figure 7. Schematic of the MFPT problem in the non Markovian case: a monomer of a
Rouse chain is searching for a target in a confined domain.
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∑= ≡
=

t b t b QX a( ) ( ), . (53)
i

N

i i i qi

1

We study the problem of finding the MFPT of tX( ) to a spherical target of radius a located
around the position =X 0. For simplicity, we restrict our analysis to initial configurations
such that =X X0 and such that the rest of the polymer is at equilibrium:

∑ ∑λ λ
π

λ
δ= − −

−
= =

P b
D D

ba
a

a X({ })
...

(2 )
exp

2
. (54)d N

N

d

i

N
i i

i

N

i iini 1
2

1

2

2

2

1

0
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⎣⎢

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The above distribution is Gaussian, with mean vector δ〈 〉 = ba Xi iini ,1 0 1, and covariance
matrix σ δ=α β αβa aCov( , )i j ij

eq,* with α β, the spatial coordinates x y z{ , , }, and σij
eq,* is

defined by:

∑
σ

δ λ

λ

λ

=

⩾

− ⩾ =

= =
=

( )

( )
D

i j

b b j i

b b i j

if , 2

if 2, 1.

if 1

(55)ij

ij i

j j

q

N

q q

eq,*
1

2

2
1
2

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

Note that σ∑ =b 0j ij j
eq,* , which imposes =X X0 at t = 0, as seen by the presence of the delta

function in equation (54). Interestingly, σij
eq,* does not depend on the value of X0. Now, let

δ γαβ t( )ij be the covariance of αai and βa j at a time t after the initial time in unbounded space
and in the absence of target. It is known [84] that the Fokker Planck equation (52) admits
Gaussian solutions and that the evolution of the covariance matrix γij satisfies the following
equation:

γ λ λ γ δ∂ = − + +( ) D2 . (56)t ij i j ij ij

The actual value of γ t( )ij is found by solving equation (56) with the initial condition

γ σ=(0)ij ij
eq,* given by equation (55):

γ δ λ σ= − +λ λ λ− − −( )t D( ) 1 e e e . (57)ij ij
t

i
t t

ij
2 eq,*i i j

We define the mean square displacement function ψ t( ) as the variance of αX at t, given that
the initial distribution of the monomers was P a({ })ini given by (54). Because = ∑bX ai i, we
have ψ γ= ∑ =t b b t( ) ( )i j

N
i j ij, 1 , and therefore:

∑ψ
λ

≡ − = + − λ

⩾

−( )[ ]t
d

t Db t D
b

X X( )
1

( ) 2 2 1 e , (58)
j

j

j

t
0

2
1
2

2

2

j

where d is the space dimension. Then, we can define an ‘effective propagator’ (or ‘reduced
Green function’) in free space:

πψ ψ
= −

−
( )

( )
{ }P t

t t
X X

X X
, , eq , 0

1

[2 ( )]
exp

2 ( )
(59)

d0 2

0
2⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭

Note that this represents the probability of finding the reactive monomer at position X at time
t, given that it was observed at position X0 at the initial time t = 0, and that the rest of the
chain was at equilibrium at this initial time. We stress that the effective propagator (59) does
not satisfy the Chapman Kolmogorov equation:
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∫≠ ′ ′ ′ ′ ′( ) ( ){ } { }P t P t t P tX X X X X X X, , eq , 0 d ( , { , eq}, ) , , eq , 0 , (60)0 0

reflecting the fact that the process tX( ) is not Markovian. It is however tempting to use (59) as
an effective propagator in the expression of the MFPT derived for Markovian processes (see
(40)):

∫
πψ ψ ψ

= − − −
→∞

∞

V
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t t

T X
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d

[2 ( )]
exp

2 ( )
exp

2 ( )
. (61)

V d

Markovian

0 2

2 0
2⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

We call this assumption the Markovian assumption, and we will see in section 4.1 that in the
case of cyclization this assumption is equivalent to the Wilemski Fixman approximation.
This formula suggests that as in the Markovian case, the MFPT is proportional to the volume,
and that its dependance with the initial distance is contained in the infinite space effective
propagator, which depends on ψ t( ). More precisely, in the case of the Rouse chain, it can be
shown by calculating explicitly the eigenvalues λi and coefficients bi that:

ψ

τ
κ τ τ

τ
≃

≪
≪ ≪

≫
t

Dt t

t t N

D t t N

( )

2 if

if .

2 if

(62)

0

1 2
0

2
0

cm 0
2

⎧
⎨⎪
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where = =D Db D Ncm 1
2 is the diffusion coefficient of the center- of-mass, τ ζ= k0 is the

relaxation time of a single bond, and κ πτ= l4 0
2

0 for an end-monomer, with =l k T kB0

the equilibrium bond length. Equation (62) states that, at very short times scales, a monomer
behaves as if it were disconnected from the rest of the chain and freely diffused. At
intermediate time scales, all the internal time scales contribute to the motion and it is known
that the monomer motion becomes subdiffusive. Non-Markovian subdiffusion is character-
istics of polymer dynamics, with exponents that depend on the model considered [85]. At
larger time scales, the monomer again has a diffusive motion, due to the motion of the
polymer center-of-mass.

Using the properties (62) of the function ψ t( ), we can infer those of the MFPT in the
Markovian approximation using the formula (61) if d = 1 (with a target size a = 0) [91]:
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Interestingly, in the intermediate scale regime, the MFPT is thus found to scale as X0
2. This is

in contradiction with the results ≃T X0
3 obtained from a naive application of equation (46)

with a walk dimension dw = 4 and a space dimension d = 1. In fact, we will see that in this
regime non-Markovian corrections lead to the scaling ≃T X0

3 (see equation (75)).
In 3D, the Markovian approximation of the MFPT reads in the limit of large initial

distance between the target and the polymer (∣ ∣ → ∞X0 ):

π
π

π

≃
≪

≃ ≪ ≪
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where aeff is an effective reactive radius. Comparing with the expression for a Markovian
diffusive walker (equation (36)), we observe that, at very small target sizes, the MFPT is the
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same as that of an isolated reactive monomer and is essentially controlled by the microscopic
diffusion coefficient of the individual monomer. The most interesting regime is the
intermediate regime, where the MFPT is that of an effective particle of diffusion coefficient
Dcm that reacts with a target whose size aeff is larger than the ‘true’ target size a. This size a
does not enter in the expression of the MFPT reflecting the compact feature of the walk at
length scales between l0 and l N0

1 2. Finally, for target sizes much larger than the gyration
radius, the polymer behaves as a single particle of diffusion coefficient =D D Ncm .

3.2. The Renewal equation: non-Markovian case

We now adapt the Renewal equation method that was used in the case of Markovian pro-
cesses (equations (2) (8)) to this non-Markovian problem, following the works of [91, 92].
We focus here on the 1D problem for simplicity; generalization to 3D will be described in the
next section. The target is assumed to be located at position X = 0. While the dynamics of the
position of the reactive monomer X(t) is non-Markovian, we can use the fact that the problem
with N degrees of freedom is Markovian to write the following Renewal equation, valid for
any configuration a{ } such that = ∑ =X b a 0i i i :

∫ ∫= ′ ′ ′ ′ − ′ ′P a t t a f a t P a t t a({ }, {ini}, 0) d d{ } ({ }, ) ({ }, { }, 0). (65)
t

0

Here, ′ ′f a t({ }, ) is the probability density to reach the target for the first time at time t′, with
a configuration ′ = ′ … ′a a a{ } ( , , )N1 . In turn, ′ ∣P a t a({ }, { }, 0) is the propagator of the chain
in the presence of confinement, but in the absence of absorption at X = 0, and

′ ∣P a t({ }, {ini}, 0) is the probability to observe the configuration ′a{ } at t, starting from
the initial distribution P a({ })ini (equation 54)). We introduce the splitting probability
distribution π a({ }) that represents the probability density of observing a configuration ∣ 〉a
when the reaction takes place:

∫π ≡
∞

a t f a t({ }) d ({ }, ). (66)
0

Taking the Laplace transform of the renewal equation (65) and developing for small values of
the Laplace variable (adapting the steps used in equations (5), (7), (8)), we obtain that the
distribution π is normalized, and that:

∫ π= −
∞

P a t P a t P a tT ({ }) d [ ({ }, , 0) ({ }, {ini}, 0)] (67)eq
0

which is valid for all the conformations a{ } such that ∑ =b a 0i i i . Here we have introduced
P a({ })eq that represents the probability of observing a given configuration in the equilibrium
state in confinement. If the confining volume is sufficiently large, the stationary distribution is
equal to:

∑λ λ
π

λ
≃ −

−
=

P a
b

V D
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D
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(2 )
exp

2
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N
i

N
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1 2
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1 2

2
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⎤
⎦
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which means that the center-of-mass is uniformly distributed in the volume V, while all the
other internal degrees of freedom of the chain are at equilibrium and do not feel the confining
volume.

In (67), the quantity π∣P a t({ }, , 0) is the probability of a configuration a{ } at t given that
the configuration at t = 0 is taken from the splitting probability π. It is given by the con-
volution equation:
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∫π π= ′ ′ ′P a t a a P a t a({ }, , 0) d{ } ({ }) ({ }, { }, 0). (69)

The equations (67), (69) together with the normalization of π form an integral equation that
completely defines the splitting probability π and the mean first reaction time T. Its use is
however limited since it is required to solve for an unknown function of N variables, with N
potentially large.

To go further, two additional steps can be followed:

(i) Large volume limit: in this limit, all the terms appearing in the right-hand side of
equation (67) can be replaced by their expression in unbounded space, as previously done
in the case of Markovian walkers, see equations (20), (44).

(ii) Gaussian approximation of the splitting distribution: we assume that the splitting
probability distribution π a({ }) can be accurately described by a multivariate Gaussian
distribution, with mean vector πmi and covariance matrix σ π

ij that are determined by
solving a set of self-consistent equations. This Gaussian approximation is well supported
by numerical simulations (figure 8).

With these assumptions, the evolution of the average value μ π t( )i of the mode ai at a time
t after the first passage to the target satisfies μ λ μ∂ = −π π

t i i i , leading to:

μ =π π λ−t m( ) e . (70)i i
ti

We next define πX t( ) as the average of X at a time t after the first passage to the target.
Because = ∑X b aj j j, it is simply given by:

∑ ∑μ≡ = − −π
π π λ

= =

−( )X t b t b m( ) ( ) 1 e (71)
i

N

i i
i

N

i i
t

1 2

i

where we have used the fact that =πX (0) 0. For simplicity of the presentation, we assume
that the covariance matrix σ π

ij can be approximated by the covariance of equilibrium

Figure 8. Histograms of mode positions ai, after they have been centered and rescaled
to have a zero mean and variance 1, obtained from numerical (Langevin) simulations of
the evolution of a Rouse chain of N = 20 monomers, whose first monomer is seeking
for a target located at X = 0. The figure is a superposition of 200 histograms π a X( ; )i 0 ,
for all initial distances X0 appearing in figure equation (9, and all values of i
( ⩽ ⩽i N1 ). Red curve: normalized Gaussian distribution. Inset: same plot, in semi log
scale.
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configurations constrained by X=0: σ σ≃π
ij ij

eq,* given by equation (55). We call this additional
approximation the ‘stationary covariance approximation’. With these hypotheses, the
distribution π∣P a t({ }, , 0) of configurations at a time t after the first passage is also a
Gaussian, with covariance matrix γ t( )ij (equation (57)), and mean vector μ π t( )i .

The value of the modes at the instant of first passage, πmi , will be deduced from a set of
self-consistent equations. The derivation of these equations requires the calculation of the
following general Gaussian integrals:

∫ ∑ ∑δ μ γ μ

μ
γ
γ

μ πγ
π γ

μ
γ

− − −

= − −

= =

−( )( )a a b a a a

e b

b b
b

b b

b
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where we adopted the notation 〈 ∣ ∣ 〉 = ∑v M u v M ui j i ij j, for any symmetric matrix M and
vectors u v{ }, { }, and ∣ 〉ei is the vector whose elements are all zero, except for the ith which
takes the value 1. Using the formula (72), the result of the multiplication of the integral
equation (67) by δ ∑a b a( )i j j j gives the following set of equations, for any i between 2 and
N:
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The equations (73), together with the expression of πX t( ) given by (71), form a set of N self-
consistent non-linear equations that completely define the moments πmi . An expression of the
MFPT is obtained from (67), after multiplication by δ ∑ b a( )i i i and integration over all
configurations:

∫
πψ ψ ψ
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This expression finally gives the MFPT, and fully takes into account non-Markovian effects.
Some remarks can be made at this stage:

(i) Structure of the equations and scaling with the volume. Comparing equation (74) with
the expression of the MFPT obtained in the Markovian approximation (61), as well as
with those obtained for Markovian walkers (20) and (44), we see that the MFPT is still
proportional to the volume. A key ingredient of this approach is the quantity πX t( ),
which represents the fictive averaged trajectory followed by the walker in the future of
the first passage event. This directly depends on the averaged configuration of the chain
at the first passage event, described by the πmi . Note that the Markovian approximation is
recovered by setting =πm 0i .

(ii) Validity of the non-Markovian theory. On figure 9, we compare the predictions of the
MFPT for different theories to the results of simulations for the Rouse chain. If the
Markovian approximation clearly overestimates the MFPT, the non-Markovian theory is
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in quantitative agreement with the simulations. Note that the ‘stationary covariance
approximation’ is accurate, as shown in figure 9.

(iii) Meaning of the non-Markovian theory. It is clear on figure 9 that the non-Markovian
theory predicts MFPTs that are much lower than in the Markovian approximation. This
can be understood by considering the average position of the monomers at the instant of
the reaction, 〈 〉 = ∑π

π
=x Q mi j

N
ji j1 (see (51)), represented in figure 10. It is seen on this

plot that the positions of the non-reactive monomers of the chain are shifted on average
at the instant of first passage. Therefore, the non-Markovian theory takes into account the
events, due to fluctuations, which bring the first monomer to the target, while the rest of
the monomers, and the polymer center-of-mass, are still far from the target. This leads to
a smaller estimate of the MFPT than in the Markovian approximation, which does not

Figure 9. MFPT of the first monomer of a Rouse chain to reach a target located at
X = 0, as a function of initial distance X0 for N = 20 monomers. Symbols: stochastic
simulations, dashed upper green line: Markovian approximation (61), lower dashed
blue line: non Markovian prediction obtained by numerically solving (73), red full line:
non Markovian theory without doing the stationary covariance approximation,
described in [91]. The polymer evolves inside a confining volume of radius

=R l40.25 0. Lengths and times are in units of l0 and τ0, respectively.

Figure 10. Average of monomer positions at the instant of the first passage of the first
monomer to the target, for N = 10 and X0 large in 1D. Symbols: numerical (Langevin)
simulations, upper red line: non Markovian theory, lower green line: Markovian
theory. The unit length is l0.
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account for these events correctly, since it assumes that the reactive conformations of the
chain are equilibrium conformations.

(iv) Strongly non-Markovian regime. A careful analysis [91] of the asymptotic properties of
equations (73), (74) reveals that:

κ≃ ×
≪

≪ ≪
≪

V

X D X l

X l X l N

NX D l N X

T

2 if

˜ if .

2 if

(75)
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0
3

0 0 0
1 2

0 0
1 2

0

⎧
⎨⎪
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with κ̃ a constant independent of N and X0. Comparing with (63), we see that the regime
at intermediate length scales is different from that predicted by the Markovian
approximation. Here one finds ∼ −T VX d d

0
w f with dw = 4 and df = 1, as could be expected

from a naive application of equation (46), originally derived for scale-invariant
Markovian processes. In addition, the scalings for small X0 and large X0 are the same as
predicted for Markovian processes (see equation (63)). At very short length scales, the
process reduces to the free diffusion of an isolated reactive monomer, while at very large
length scales it is controlled by the diffusion of the center-of-mass.

3.3. Non-Markovian theory in 3D

We now consider the extension of the theory to 3D. The problem consists in determining the
MFPT of a reactive monomer to a target of radius >a 0. The main difference with the 1D
case is that the extension a of the target must now be taken into account. We denote by û the
‘arrival direction’, defined as the unit vector normal to the target sphere at the position of the
reactive monomer at its first passage to the target. Anticipating that, when the confinement
volume is large, the MFPT will depend only on the initial distance between the polymer and
the target, we assume isotropic initial conditions. Then, the arrival direction vector û is
isotropically distributed. The main hypothesis of the non-Markovian theory is that the dis-
tribution of conformations of the chain at the instant of first passage, given that the arrival
direction is û, is a multivariate Gaussian, with an average vector πm ûi . In the stationary
covariance approximation, we also assume that the covariance matrix is isotropic and given
by equation (55). We demote by πX t( ) the average position of the reactive monomer at a time
t after the first passage in the direction û by:

∑= = − −π π
π λ
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By construction, =πX a(0) . Then, following the same steps as in 1D (see [91]), we obtain the
set of non-linear self-consistent equations that define πmi :
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Once the moments πmi are determined, the MFPT is calculated from:
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Comparison with the expression (61) in the Markovian approximation shows that the key
ingredient of the non-Markovian theory is to take into account the mean reactive trajectory

πX t( ) followed by the polymer after the reaction. The MFPT is represented as a function of
the initial distance between the reactants in figure 11, where one observes that the use of the
non-Markovian theory improves significantly the accuracy of the MFPT predictions.

A careful asymptotic analysis for large V of the equations (76), (77), (78) shows that:
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Comparing with the asymptotic expression (64) of the MFPT in the Markovian
approximation, it appears that non-Markovian effects vanish in the regimes where the
dynamics of the reactive monomer is purely diffusive (very large and very small target sizes
in (79)). In the intermediate regime however, which involves a subdiffusive scaling, the non-
Markovian effects are quantitatively important, since the effective reaction radius aeff in (79)
is significantly larger than in the Markovian theory. The configuration of the polymer at the
instant of reaction is represented in figure 12. Similarly to the 1D case, the non-Markovian
theory predicts that the chain is elongated in the direction of reaction, thereby taking into
account the events where the first monomer hits the target due to fluctuations, while the
center-of-mass is still far from it.

Figure 11. MFPT in 3D for a Rouse chain with N = 20 monomers. The reactive
monomer is the first monomer of the chain, the target is centered around 0 and its radius
is =a l2 0. Symbols: simulations, continuous red line: non Markovian theory (77),
equation (78), upper dashed line: MFPT in the Markovian approximation (61).
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4. Cyclization dynamics of polymer chains

We now consider the cyclization dynamics of a Rouse chain. The determination of the mean
time before two momomers of the same polymer chain meet is an old problem of statistical
mechanics. It has led to intense theoretical efforts and we shall discuss here important
theoretical approaches, including the early theories of Doi [93], Wilemski Fixman [94, 95],
Szabo, Schulten and Schulten [96], and also recent theoretical advances [97 102], which we
will summarize in this section. The cyclization time can be seen as an FTP in an effective
confinement volume whose diameter is of the order of the chain gyration radius. Note that the
end-to-end vector, denoted tX ( )ee , is a non-Markovian variable, which formally makes the
cyclisation problem similar to the question analyzed in previous section.

We still consider a chain of monomers of positions …x x, , N1 , whose dynamics is given
by the Fokker Planck equation (49). The dynamics can be equivalently defined by con-
sidering the modes ta{ ( )} defined by equation (51) and evolving independently with
equation (52). The variable of interest is now the is the end-to-end distance,

= −t t tX x x( ) ( ) ( ), (80)Nee 1

which can also be considered as a combination of the Rouse modes:

∑= = −
=

t b b Q QX a( ) , . (81)
i

N

i i i Ni iee

2

1

Interestingly, Xee has no component on the first mode, which is proportional to the position of
the center-of-mass. The expression of the ‘effective propagator’ (59) is modified, and is given
by:

π ψ
= ϕ ψ− −( ){ }P t

t
X X, , eq , 0

1

[2 ( )]
e (82)

d
t tX X

ee ee
0

2
( ) [2 ( )]ee ee
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Figure 12. Predicted polymer conformations at reaction. Left: Average vertical position
(the reaction is assumed to take place along the vertical axis, =u eˆ z) of the monomers
when the reaction takes place for the reaction between the first monomer and a target
(continuous line: prediction of non Markovian theory, dashed line: Markovian
approximation). We also plot the sketch of the polymer shape when the reaction
takes place, and an example of conformation drawn from the splitting probability
distribution (left), which is in marked contrast with the stationary distribution (right).
The position of a monomer in the chain is represented by a colour code. Parameters:
N = 800 and =a l N0.32 0

1 2
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where d is the space dimension. The effective propagator can be interpreted as follows: if one
measures the end-to-end distance Xee

0 for a polymer at equilibrium at t = 0, and let the
polymer evolve, the distribution of Xee at time t is then given by equation (82). Here, the
function ϕ t( ), which characterizes the dynamics, is the correlation function:

∑ϕ
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= =
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−
t

t Db

L

X X

X
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e
(83)

i

N
i

t
ee ee

ee
2

2

2

i
2

i

where L is the equilibrium mean square end-to-end distance, defined as:
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and the mean square displacement function ψ t( ) is related to ϕ t( ) by the relation

ψ ϕ= −t L t( ) 1 ( ) . (85)2 2⎡⎣ ⎤⎦
Note that = −L l N( 1)0

1 2 in the case of the Rouse chain. This quantity will be useful in the
next sections, where we review various approaches to the cyclization problem.

4.1. The Wilemski–Fixman approach

We first describe the Wilemski Fixman [94, 95] approach and underline its links with the
non-Markovian approach presented in section 4.2 (see also [103]). Wilemski and Fixman
considered the irreversible cyclization of a chain, in the presence of a ‘sink’ term k X( )ee ,
defined as absorption probability per unit time, which is assumed to depend on the end-to-end
distance. In the presence of the sink term, the Fokker Planck equation (49) becomes:

 ∑ ∑Ψ λ Ψ Ψ Ψ∂
∂

= + −
= =

( )
t

D ka X , (86)
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N

i i i

i

N

i
2 2

2
ee

where  = ∂ ∂/ .i ai Note that here we callΨ ta({ }, ) the survival probability that the polymer is
in conformation a{ } at time t, and has not yet reacted with the sink. Now, let us call

∣P ta a({ }, { })0 the probability to observe the configuration a{ } at t in the absence of sink,
given that a{ }0 was observed at t = 0. The solutions of (86) can then be written:

∫ ∫Ψ Ψ= + ′ ′ − ′ ′ ′ ′′( )P t t P t t k ta a a a a X a({ }) ({ }, ) d d{ } ({ }, { }) ({ } , ). (87)
t

eq
0

ee

This equation has a clear meaning: the probability to observe a configuration a{ } at t without
sink, is the sum of the probability of being at a{ } at t without having reacted before (term
Ψ ta({ }, )), plus the probability of reaching a{ } from ′a{ } during a time − ′t t , multiplied by
the probability that the reaction occurred at t′ with configuration ′a{ }. The probability density
f ta({ }, ) to react at t with a configuration a{ } is given by:

Ψ= ( )f t k ta X a({ }, ) ({ }, ) (88)ee

so that:

∫ ∫= + ′ ′ − ′ ′ ′ ′
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P
f t

k
t P t t f ta

a
X
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({ }, )

d d{ } ({ }, { }) ({ } , ) (89)
t

eq
ee 0

which is the generalization of the Renewal equation (65) for finite k. Taking the temporal
Laplace transform of (89) and expanding for small values of the Laplace variable, we get:
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where ∫π = ∞
f ta a({ }) dt ( , { })

0
is the splitting probability, that is the probability to react

with a configuration a{ }. Equation (90) is the generalization of the equation (67) for finite k.
In the Wilemski Fixman approximation (see equation (41) of the original work of Wilemski
Fixman [94]), one writes:

Ψ ≃t P g ta a({ }, ) ({ }) ( ) (91)eq

meaning that the sink does not modify much the distribution of the chain configurations. One
can use this approximation to get an estimate for the density of FPT, however here we focus
only on the MFPT. The approximation (91) is equivalent to:

π
κ
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( )P k
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a X
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(92)
eq ee

eq

where the normalization constant κeq is the probability of absorption per unit time of a chain
at equilibrium:

∫ ∫κ = =( ) ( ) ( )P k P ka a X X X Xd{ } ({ }) d . (93)eq eq ee ee eq ee ee

Now, we need to introduce a closure approximation, that is to find one single equation
from (90) that will enable the determination 〈 〉T in a self consistent way. The closure
approximation of Wilemski Fixman consists in multiplying equation (90) by k X( )ee and
integrating over all conformations, which leads to:

∫κ
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∞
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1
d [ ( ) 1], (94)WF

eq 0

where C(t), called the sink sink correlation function, can be expressed by using the effective
propagator (59):

∫ ∫
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Here, this sink sink correlation function is normalized so that ∞ =C ( ) 1. Note also that C(t)
does not depend on the magnitude of the function k, but it depends only on its shape. Hence,
the absorption time 〈 〉T WF in equation (94) is the sum of two terms, the second of which is
independent of the strength of the sink term and is the reaction time in the diffusion controlled
limit.

An alternative, slightly different closure approximation can be done by multiplying
equation (90) by δ X( )ee instead of k X( )ee and integrating over the configurations, which
leads to:

∫κ
= ′ ′ ′ ′( ) ( ) ( ){ }C t

P
k P t P

0
X X 0 X X( )

1

( )
d , , eq , 0 . (96)

eq eq
ee ee ee eq ee

Interestingly, Wilemski and Fixman, after obtaining their expression (94), considered a
supplementary approximation consisting in taking one of the sink terms equal to a delta
function in (95) leading to equation (96) (see below equation (7) in [95]).

Now, we consider the diffusion controlled limit, and we address specifically the problem
of finding the MFPT for Xee to reach a, which corresponds to the following form of the
reaction rate:
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δ= − → ∞( ) ( )k k a kX X , . (97)ee 0 ee 0

In this case, inserting (97) into (94), (96) yields:

∫≃ = −−
∞

{ }( ){ }P t P t a PT 0 0 X 0( ) d , , eq , 0 ( ) . (98)WF eq
1

0
ee eq

Since one would obtain exactly this expression by using the ‘effective propagator’ (82) in the
expression of the MFPT obtained for Markovian walkers (40), the Wilemski Fixman
approximation can be seen as a ‘Markovian’ approximation. It is also the generalization of the
corresponding expression in the case of the reaction with a fixed target, equation (61).

It is instructive to look at the asymptotic relations predicted by the Wilemski Fixman
expression (98) in the case of the Rouse chain, for which the MSD function ψ t( ) behaves as:

ψ
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κ τ τ
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As in the case of the motion of one monomer (see equation (62)), we recover the diffusive and
subdiffusive behavior at very small and small timescales, respectively. An asymptotic study
of the Wilemski Fixman expression leads to:
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τ
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( )[ ] ( )l N Da a l N
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The first regime, for which 〈 〉 ∼ −aT 1 is simply the formula for a diffusive walker
(equation (36)), with diffusion coefficient 2D moving in an effective volume

π= =−V P L0( ) (2 )eq
1 2 3 2. In this regime, the monomers essentially behave as if they were

diffusive molecules disconnected from the rest of the chain; no memory effects are thus
expected, and the same asymptotic relation holds for the Wilemski Fixman and the non-
Markovian theories. For larger values of N, the cyclization time scales as N2, and is
independent of the capture radius, as expected for subdiffusive walks. The presence of two
distinct regimes predicted by the Wilemski Fixman theory has been recognized by Pastor
[104] and demonstrated by numerical stochastic simulations [105].

4.2. Non-Markovian approach

We describe in this section the adaptation of the theory presented in Sections (3.2), (3.3) to
the problem of cyclization, as described in [92, 106]. We remind that the problem is to
calculate the MFPT of Xee to reach a reactive region of radius a, while the chain is assumed to
be initially at equilibrium. Here, we assume in addition that initially the end-to-end distance is
larger than a. Let us first notice that the Markovian approximation of equation (98) has to be
adapted to take into account this supplementary constraint, and becomes [106]:
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ϕ
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Here, the function Z is defined as:

∫=
∞

−Z a h R R( , ) d e . (102)
a

R h
0 0

2 (2 )0
2

Equation (101) is obtained by doing a Markovian approximation, as in the Wilemski Fixman
approximation.

Next, we show how to take into account non-Markovian effects. The starting point is the
3D version of the Renewal equation (67):

∫ π= −
∞

P t P t P tT a a a({ }) d ({ }, , 0) ({ }, {ini}, 0) , (103)eq
0

⎡⎣ ⎤⎦

which is valid for any configuration a{ } such that the end-to-end distance vector is inside the
reactive region, ∣ ∣ = ∣∑ ∣ ⩽b aX ai iee

0 . Multiplying equation (103) by δ ∑ −b a X( )i i ee and
integrating, we get:

∫ π= −
∞

( ) ( ) ( ){ }P t P t P tT X X Xd , , 0 , ini , 0 , (104)eq ee
0

ee ee
⎡⎣ ⎤⎦

which is an exact expression of the MFPT, valid as soon as ∣ ∣ ⩽ aXee . Comparing with
equation (78), we observe that the stationary probability density of the end-to-end vector in
the reactive region, P X( )eq ee , plays the same role as the inverse of the volume for the problem
with a fixed target. Note that the Markovian approximation (101) is recovered from (104) by
assuming that the splitting distribution π a({ }) is the equilibrium distribution, with the end-to-
end distance constrained to the surface of the sphere.

As in the 3D case for intermolecular reactions, we define the unit vector û as the direction
taken by Xee at the instant of first passage to the target, and we consider the distribution of
reactive conformations π a({ })û , with the constraint that = aX ûee . Then, in the Gaussian
approximation, we assume that π a({ })û is a multivariate Gaussian distribution, with mean
vector =π πmm ûi i . For the sake of simplicity, we assume that the covariance matrix is
approximated by the equilibrium covariance matrix, where Xee is constrained, which is given
by the conditional covariance matrix [106]:

δ
λ λ λ

δ= −α β αβa a
b b

L
cov( , ) . (105)i j
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We define the average trajectory πX t( ) as the average value of X u. ˆee at a time t after the first-
passage time, given that the direction of the end-to-end vector at the first passage was û:

∑= − −π
π λ

=

−( )X t a b m( ) 1 e . (106)
i

N

i i
t

2

i

The values of the moments πmi are determined by a set of −N 1 self-consistent equations,
obtained by multiplying (103) by δ − ∑a bX a( )i j jee , and by integrating over all
conformations and then taking the limit ∣ ∣ →X 0ee [106]:

31



∫
ψ

ϕ ϕ

λ ψ

ϕ ϕ

λ
ψ ψ

ψ

+
−

−

−
−

− =

π λ
π

λ
π

λ

∞ − −
−

−

π
ψ

( )

t m X t b t t X t

t

b t t

Z a L
Z a

G a t

t

d e ( )

3

( ) ( ) e
1

( )

3 ( )
e

( ) ( ) e

,
( , )

( , ( ))

3 ( )
0, (107)

i
t i

t

i

i
t

i

0 5 2

2

2

i
i

X t
t

i

( )2

2 ( )

⎧
⎨⎪
⎩⎪

⎡

⎣
⎢⎢

⎡⎣ ⎤⎦ ⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎪
⎭⎪

where the function G is defined by:

∫=
∞

−G a h R R( , ) d e . (108)
a

R h
0 0

4 20
2

The expression of the MFPT (104) finally becomes:
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Comparing with the Markovian approximation (101) (in which ϕ=πX t a t( ) ( )), we observe
that, as in the case of a fixed target, the essential new feature of the non-Markovian theory is
the presence of the average trajectory in the future of the first-passage time, πX t( ), which is
readily deduced from the reactive shape of the polymer through equation (106).

Examples of comparison between the predictions for the MFPT and simulations are
presented in figure 13 for the Rouse chain, along with predictions of the SSS theory, in which
the problem is mapped on the motion of an effective single particle diffusive in a harmonic
potential (see section 4.3). We observe in figure 13 that, for small capture radius a, all theories
predict with reasonable accuracy the MFPT, whereas for larger a differences appear. An

Figure 13. Average end to end cyclization time of a Rouse chain of N monomers in
simulations (symbols) and different theories (lines). There are two sets of curves,
corresponding to two values of a, for which we represent the result of the non
Markovian theory (full line), the Markovian (Wilemski Fixman) approximation (upper
dashed lines), and the SSS approximation (lowed dashed dot line). For the smallest
value of a, the non Markovian and the Markovian results are undistinguishable. The
unit of time is the relaxation time of individual bonds, τ0.
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analysis of equations (106), (107), (109) reveals that the asymptotic scalings of the MFPT
with N and a of the non-Markovian theory in 3D are the same as predicted by the Wilemski
Fixman theory (see equation (100)). For small capture radius, all theories predict exactly the
same asymptotic relation, 〈 〉 ∼ N aT 3 2 , with the same coefficient. We will see below that the
result in this regime is in fact exact. However, in the regime 〈 〉T ∼N2, the numerical prefactor
is quantitatively different: the MFPT is in this regime controlled by the subdiffusive, non-
Markovian dynamics of the polymer at intermediate time scales.

In figure 14, we represent an example of spectrum πmi , obtained both from the self-
consistent equations (107) and numerical simulations. The agreement is very good, sug-
gesting that the theory catches the essential characteristics of the spectrum of reactive con-
formations. Asymptotic analysis of equation (107) shows that, for large q, the spectrum has
non-trivial power-law dependence with q:

π
≃ −πm

a N

q

2
(110)q

1 6 1 3 5 6

4 3

which shows that the average positions of the monomers, 〈 〉πsx( ) vary very fast next to the
reactive monomers.

4.3. The ‘SSS’ approach

Another approach to compute the cyclization time is to approximate the non-Markovian
dynamics of Xee by a simpler, Markovian dynamics, of an effective particle, of position tr( )
moving in an effective potential U r( ), with an effective diffusion coefficient D r( ) for which
the exact analytical calculation of the MFPT is possible. Following this strategy, a simple
expression for the MFPT was presented in the theory developed by Szabo, Schulten and
Schulten (SSS) [96], who proposed an alternative form to the earlier expressions of Sunagawa
and Doi [107, 108]. We will see however that the identification of the effective potential and
effective diffusion coefficient is difficult.

Figure 14. Left: Average value of the modes πmq at the instant of end to end cyclization

for a chain of N = 300 monomers and a capture radius =a l4.33 0. Symbols:
simulations. Red line: non Markovian theory. Green thick dashed line: asymptotic
relation of the non Markovian theory (110), proportional to j4 3. Magenta thin dashed
line: Markovian approximation. Right: average value of the monomer positions (in the
direction of reaction, û) for the same parameters.

33



The Fokker Planck equation for the simplified dynamics is:

   β∂ = +p t D U p D pr r r( , ) [ ( )( ) ] [ ( ) ] (111)t

with β = k T1 B . The mean FPT τ r( ) of a particle to a sphere of radius a centered around 0,
starting from position r, obeys the adjoint, backward equation [96, 109]:

   β τ τ− + = −D U Dr r r r( )( ) ( ) [ ( ) ( )] 1. (112)

The boundary condition at the surface of the target is τ =r( ) 0 for ∣ ∣ = ar . In the case where
both the potential U and the diffusion coefficient D depend only on the radial coordinate

= ∣ ∣r r , equation (112) is a first order differential equation for τ∂ r( )r that can be solved
explicitly. Averaging the solution over equilibrium initial configurations leads to [96]:
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In the context of the cyclization of a Rouse chain, the potentialU r( ) is identified with the
harmonic potential whose stiffness is that of a spring formed by −N 1 bonds in series:

=U kr r( ) 2eff
2 with the effective stiffness = −k k N( 1)eff . Assuming a constant diffusion

coefficient for the effective particle modelling the end-to-end vector, and denoting
τ = k T D k( )Beff eff eff the effective relaxation time, equation (113) can be rewritten, in the
limit ≪a N :

τ
π

≃
−N l

a
T

( 1)

2
. (114)SSS eff

1 2
0

Now, the choice of the effective diffusion coefficient is not straightforward. Pastor et al [104]
have suggested that the optimal choice is =D D2eff 0, for which equation (114) coincides
with the small a limit of equation (100), ∼T N a3 2 , with the same prefactor. However, the
regime T∼N2, observed numerically, is not predicted by this approach. The main limitation
of this approach is that it involves a single time scale, and therefore cannot reproduce all the
observed regimes. In fact, as shown in figure 13, predictions of the SSS theory are not
reliable.

Toan et al [98] have recently noticed that both N2 and N a3 2 behaviors of (100) could
however be recovered if one assumes that the diffusion coefficient depends on the length scale

∼
>
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Therefore, the work of [98] shows that the ‘SSS’ and the Wilemski Fixman results can be
reconciliated, at the price of indroducing a space-dependent diffusion coefficient.

4.4. Variational principles: upper and lower bounds on the MFPT

Variational principles can be used to derive rigorous upper and lower bounds on the MFPT.
Here, we follow the recent approach of Portman et al [101, 102], who generalized the early
results of Doi [110]. The starting point is to consider the functional ϕM [ ], defined for any
‘trial’ function ϕ a({ }) as (see equation (24) in [102]):
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where ∫∣ ′ = ∣ ′∞ −P s t P ta a a aˆ ({ }, { }) d e ({ }, { })st
0

denotes the Laplace transform of the
propagator without sink. The following remarks can be successively made:

(i) The quadratic term in ϕ of the functional (116) is positive, so that, for any function ϕ,
ϕ ϕ⩾M M[ ] [ *], where ϕ* satisfies δ δϕ =M * 0.

(ii) Calculating the functional derivative of (116) and comparing the result with
equation (87), one obtains that the optimal function is ϕ Ψ= s Pa a a*({ }) ˆ ({ }, ) ({ })eq .

(iii) Evaluating M at ϕ* leads to ϕ = − = − + 〈 〉 +M F s s sT[ *] ˆ ( ) 1 ( )2 , where F sˆ ( ) is the
Laplace transform of the density of reaction time,

(iv) Evaluating M for the constant trial function ϕ ϕ κ κ= = + C sa({ }) ¯ [ ˆ ( )]eq eq , one finds

that ϕ ≃ − + 〈 〉M s T[ ¯] 1 WF, which by virtue of the fact that M is minimal at ϕ*, implies
that:

⩽T T (117)WF

which proves that the Wilemski Fixman approach gives an overestimate of the mean
reaction time.

(v) A similar variational argument [101] can be used to show that the expression of the
MFPT in the SSS approximation, with an effective diffusion coefficient =D D2eff is a
lower bound for the MFPT:

⩾T T (118)SSS

(vi) Finally, since we have the two inequalities (117) and (118), and since both Wilemski
Fixman and SSS approaches give the same asymptotic result in the limit →a 0, we can
deduce that the asymptotics 〈 〉 ≃ N aT 3 2 in equation (100) is exact in the limit →a 0.

Other bounds can be found with this variational approach, if one uses different trial
functions to evaluate the functional (116), the only limitation being the ability to perform the
resulting integrals [101, 102].

4.5. Strong localized perturbation theory

Recently, Amitai et al [99] have proposed another approach of the cyclization problem, based
on an expansion of eigenvalues of the Fokker Planck equation in the limit of small reactive
radius, →a 0. We present here a simplified version using the concepts of strong localized
perturbation theory, as presented by Ward and Keller [111]. In the absence of absorbing
region, the equilibrium distribution P a({ })eq is an eigenfunction of the Fokker Planck
operator, with vanishing eigenvalue. When introducing a small reactive region of radius

→a 0, the vanishing eigenvalue (μ) is perturbed, as well as the associated eigenfunction
(denoted f a({ })), that satisfy:
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For →a 0, the eigenfunction f converges to Peq, suggesting the expansion:

= + + ≫( )f P af aa a a X({ }) ({ }) ({ }) ... . (120)eq 1 ee

However, this expansion cannot be valid close to the absorbing region, where f must satisfy
the absorbing boundary condition f = 0 for ∣∑ ∣ =b aai i . As a consequence, we assume that
when ∣ ∣ ∼ aXee , the function f has a rapidly varying component g and can be written:

≃ ≪( ) ( )f h g a La a X X({ }) ({ }) , (121)ee ee

where h and g are functions independent of a. Inserting this last equation into the definition
(119), and keeping only the leading order terms in a, we get:

 =g 0. (122)2

Taking into account the absorbing boundary conditions at ∣ ∣ = aXee , the appropriate solution
for g is:

= −( )( )g a C aX X1 . (123)ee ee

Matching of the outer expansion (120) and the inner expansion (121), we find successively
that =C h Peq, and then that

≃ − ≪ ≪f P a La a X X({ }) ({ }) . (124)1 eq ee ee

Following closely the approach of [111], we introduce a small parameter σ, such that
σ≪ ≪a L , and we integrate equation (119) over all configurations such that σ∣ ∣ ⩾Xee ,

obtaining the following expression for the first eigenvalue in the limit of small a:
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The result of this integral would be zero if f1 was a regular function. Replacing f1 by its
irregular behavior (124), we obtain:

 ∫ ∑μ =
σ σ→ ⩾
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The integration over the configurations leads to:
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The fact that = −b Q Qi Ni i1 with Q an orthogonal matrix implies that ∑ =b 2i
2 , and

therefore the value of the perturbed eigenvalue is:

μ π= aDP 08 ( ). (128)eq

This eigenvalue is much lower than all other eigenvalues of the Fokker Planck equation in
the limit →a 0, and it therefore dominates the density of FPTs, which is approximately
exponential in this regime, with an MFPT that reads:
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Therefore, the result of equation (129) is exactly the one obtained by the Wilemski Fixman
theory in the limit →a 0, equation (100). Equation (129) is asymptotically exact in the limit
of small a, in agreement with the variational approach described in section 4.4. Higher order
corrections can be obtained with this approach of strong localized perturbation [99], but there
is to date no analytical evaluation of the numerical coefficients.

4.6. Other approaches

Another approach to the problem of cyclization has been proposed by Sokolov [97]. Let us
denote = ∣ ∣r t tX( ) ( )ee ee , and call q r t( , )ee the probability density of the variable ree in the
absence of reaction. The approximation done in [97] consists in approximating the probability
of the event ‘observing =r aee for the first time at time t′ by the probability of the other event
‘observing =r aee at t given the initial conditions of the problem’ [97, 100]. With this
approximation, the renewal equation becomes:

∫≃ ′ ′ ′( ) ( )q r t t F t q r t a t, ini d ( ) , , ; ini (130)
t

ee
0

ee

where F(t) is the density of the FPT to the target. If the initial condition is the equilibrium
distribution for the chain, one recovers exactly the Wilemski Fixman approximation. For
different initial conditions however, equation (130) goes beyond the Wilemski Fixman
approximation. Note that the convolution structure of the equations is lost, and the equations
have to be solved numerically. It would be interesting to compare this approach with
numerical simulations to see to what extent it can capture non-Markovian effects.

Likthman and Marques [100] have also proposed that the exact solution for the FPT
density can be approached as the result of successive iterations, the nth iteration involving
integrals of the joint probability distribution of observing Xee at n different times. The method
is relatively formal, but seems to predict correctly the short time behavior of the FPT
distribution.

Yet another approach is the application of perturbative dynamic renormalization group
theory [112 116]. The results in this case are derived in the limit of long chains, → ∞N , and
are derived as perturbation in the small parameter ϵ = − d4 , where d is the spatial dimen-
sion. In the case of the Rouse chain, the results of this theory for the long time decay rate of
the density of first-passage time is:

πζ=
−

−k
N

k d16 (4 )
. (131)RG

1
2

It is interesting to compare this approach with the results of the Wilemski Fixman theory. A
simple generalization of (98) to the case of a d-dimensional space, with →a L 0, leads to:

∫
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t
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t
T d
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Since the MSD function behaves as ψ ≃t t( ) 1 2 for short times, this integral converges only
for <d 4. The divergence for →d 4 of (132) is determined by the short time behavior of ψ,
and reads:
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The expression (133) is exactly the expression obtained in the renormalization group theory
for a quantity that is slightly different from the reaction time (the inverse of the reaction rate at
long times) [117]. The fact that this result of the renormalization group can be derived by
developing the reaction time obtained from the Markovian theory suggests that there is a local
equilibrium assumption that is made in the renormalization group theory. The advantage of
renormalization group theory is that one can treat with the same method the case of polymers
with hydrodynamic interactions or excluded volume. Interestingly, for large N, the theory
predicts that the reaction rate in the case where both excluded volume and hydrodynamic
interactions are included scales as the equilibrium contact probability between the reactants,
as in a law of mass action.

5. Concluding remarks and perspectives

To conclude, let us summarize the main content of this review. We have presented a general
theoretical framework which enables the accurate determination of the mean FPT (MFPT) for
regular random walks in bounded domains. We then briefly mentioned extensions of these
results to related first-passage observables such as splitting probabilities and occupation
times. It was showed that this analytical approach provides a universal scaling dependence of
the MFPT on both the volume of the confining domain and the source target distance in the
case of general Markovian scale-invariant processes. This analysis is applicable to a broad
range of stochastic processes characterized by length scale-invariant properties, and reveals
the key role that can be played by the starting position of the random walker.

We next showed that such an analysis can be extended to non-Markovian processes, on
the example of the Rouse chain (note that the simpler example of persistent random walks
was analyzed in [118]). Taking the Rouse model as a paradigm of polymer dynamics, we
developed a theory of polymer reaction kinetics that takes into account the non-Markovian
features that characterize the dynamics of polymers. This approach shows that non-Marko-
vian effects can be quantitatively important, and that the reaction kinetics crucially depend on
the non-equilibrium statistics of polymer conformations at the instant of the reaction. We
show quantitatively that the typical reactive conformation of the polymer is more extended
than the equilibrium conformation, which leads to reaction times that are significantly shorter
than those predicted by existing Markovian theories. These result apply to both reactions with
fixed targets, and cyclization reactions. Together, our results provide a better understanding of
the complex kinetics of polymer reactions involved, for example, in the formation of loops of
RNA or polypeptide chains.

We believe that the results presented in this review open several promising perspectives.
First, the analysis of the MFPT in confinement for non-Markovian processes was performed
on the example of the Rouse chain. We anticipate that similar methods could be developed to
deal with more general Gaussian non-Markovian processes. This includes the very important
case of fractional Brownian motion, which is a Gaussian model for anomalous diffusion
presenting strongly non-Markovian features. There is a growing number of experimental
observations and theoretical works indicating that this kind of stochastic motion is involved in
a number of different fields, such as in the motion of telomeres in the nucleus [119], polymer
translocation [122, 123], single file diffusion [124] or the motion of particles in complex
fluids [15 17, 120, 121]. Determining the first-passage properties for this kind of random
processes could therefore find applications in very different fields and calls for a
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generalization of the methods described in this review to more general non-Markovian pro-
cesses. In the context of polymer physics, the case of more realistic polymer dynamics
models, such as semi-flexible chains [125], models involving dihedral interactions [89], the
Zimm model [87] that incorporates hydrodynamics interactions, or models of branched
polymers [126] also deserve particular interest.

Second, it should be noted that in this review, we focused only on the first moment of the
FPT distribution. In general, the distribution of the FPTs can be expected to be quite broad,
since trajectories hitting the target range from very short ones when the target is found
immediately, to very long ones when the walker explores the whole volume before reaching
the target position. Hence, fluctuations can be important in FPT problems [127, 128], and the
analysis of the FPT statistics at all time scales requires the determination of the full FPT
distribution. This in addition can give access to further first-passage observables, such as
participation ratios discussed in [127, 128]. In the case of Markovian walkers, it was
demonstrated that the FPT distribution falls into well defined universality classes after a
rescaling by the MPFT [14, 24], which is therefore a very important determinant of the
distribution. It would therefore be very interesting to determine the full distribution of the FPT
in confinement for non-Markovian processes, and check whether similar properties still hold.
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