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Institut de Physique de Rennes, UMR 6251/Université de Rennes 1, Campus Beaulieu, 35042 Rennes Cedex, France

(Dated: April 27, 2015)

We present experimental results on the propagation of an ultrasonic wave (40 kHz) in liquid
foams, as a function of the foam physical and chemical parameters. We have first implemented an
original setup, using transducers in a transmission configuration. The foam coarsening was used
to vary the bubble size (remaining in the sub-millimeter range), and we have made foams with
various chemical formulations, to investigate the role of the chemicals at the bubble interfaces or in
bulk. The results are compared with recently published theoretical works, and good agreement are
found. In particular, for all the foams, we have evidenced two asymptotic limits, at small and large
bubble size, connected by a non-trivial resonant behavior, associated to an effective negative density.
These qualitative features are robust whatever the chemical formulation; we discuss the observed
differences between the samples, in relation to the interfacial and bulk viscoelasticity. These results
demonstrate the rich and complex acoustic behavior of foams. While the bubble size remain here
always smaller than the sound wavelength, it turns out that one must go well beyond mean-field
modeling to describe the foam acoustic properties.

I. INTRODUCTION

Aqueous foams are natural and self-organized hierar-
chical materials. They consist of packed gas bubbles sep-
arated by a continuous fluid network [1–3]. From the
bubble point of view, there are no spatial arrangement,
and the resulting material is amorphous. On the oppo-
site, the liquid network surrounding the bubbles is self-
organized with a well controlled geometrical structure [1–
3]. To minimize the interfacial energy, which is propor-
tional to the area of the gas-liquid interfaces, the fluid
is finally distributed within films, liquid channels (called
“Plateau borders” - PBs), and nodes of different geome-
tries and sizes, and corresponding to minimal surfaces.
The films are the liquid lamellae separating the bubbles,
and are connected to the PBs, as the main elements of the
network. These PBs are then connected to each others
by the nodes. The important point is that the sizes are
drastically different: films are flat lamellae of less than
1 micron thick, while Plateau borders have a pipe shape
and have sections of characteristic length scale of typi-
cally tens to hundreds of microns. The nodes have the
same characteristic size as the PBs, but are tetrahedral
in shape. Most of the liquid is contained within the PBs
and the nodes; though they contain a negligible amount
of liquid, the films are crucial as their stability controls
the whole foam stability.

The liquid fraction of the foam, Φ, is defined as the
volume of liquid divided by the volume of foam. A low
liquid fraction implies a network with long and slender
PBs, and films covering a large part of the bubble area.
Oppositely, wet foams have small area of films between
bubbles, as swollen PBs and nodes widely cover the bub-
bles. Back to the bubble point of view, the liquid fraction
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describes how packed the bubbles are. Together with the
size of the bubble, the liquid fraction is a key parameter
of a foam, as most of the foam properties depend on it.
Moreover, the liquid fraction and the bubble size are not
constant with time. Foams are out-of-equilibrium ma-
terials which drain and coarsen, resulting in a decrease
of liquid fraction and increase of bubble size with time.
Therefore, bubbles are getting more and more packed
with time, as well as the liquid network gets emptied.

At the macroscopic scale, the foam can then be con-
sidered as a soft poroelastic material, as a result of the
liquid and gas distribution at the scale of the bubble and
liquid network. But, depending on its liquid fraction,
bubble size, chemical formulation and external forcing, a
foam can behave more like a liquid or a solid. Because
of this wide and adjustable pallet of behaviors, foams
have been chosen as the most efficient template in many
applications [1, 3].

However, despite this wide use, many issues are still
pending. First, techniques to characterize foams in de-
tails still have to be developed. In parallel to technical
challenges lies a more general one, which is the propa-
gation of waves in self-organized hierarchical and aging
materials. In that spirit, the optics and the electrical
transport of foams have been studied [4, 5]. In a foam,
light is scattered by the gas-liquid interfaces; with al-
ready a few bubble in thickness, the multiple scattering
regime is obtained, and a foam is no longer transparent.
This apparent disadvantage has been overcome, and in
this limit of multiple scattering, many information can
still be obtained [4, 6–8]. However, a major drawback
with such multiple scattering is that one cannot directly
see the internal organization within a foam.

By comparison, the acoustics of 3D foams has been
much less studied. The key point is to understand how
a soft liquid skeleton vibrates and eventually how such
vibrations modify the propagation of sound from the one
in a pure gas. Implementing earlier works [9–11], signifi-
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cant experimental and theoretical progress have recently
been reported on foam acoustics [12–18]. Some of these
were obtained with experimental setup based on ultra-
sonic transducers [14, 15, 18]. Other experiments with
impedance tube allowed to broaden the range of inves-
tigated frequencies [12, 16]. In parallel, light scattering
techniques were used to monitor the acoustic deforma-
tion within a foam [13]. It turns our that these results
can be rationalized by a global model, introducing res-
onance effects and a negative density regime [18]. In
particular, these results emphasize the crucial role of the
foam structure (bubbles size and liquid fraction).

Here, our objectives are twofold: first, we want to up-
grade previous works performed with ultrasonic trans-
ducers [14], to improve the information which can be
extracted by this approach. In particular, we want to
monitor more precisely how the propagation depends on
the bubble size, to further test the recent model of [18].
The goal is to determine if one can finally understand the
continuous evolution of the acoustic features as the bub-
ble size is widely varied. Secondly, we want to determine
whether the chemical formulation can affect sound propa-
gation. At this stage, it is not included in models, except
in terms of a surface tension. However, unexpectedly
high sound velocities were found for commercial foams
[10, 16], possibly showing a possible role of chemistry.

To address these questions, we take advantage of the
natural foam coarsening to vary the bubble size, starting
from a controlled initial liquid fraction remains almost
constant (between 8% and 13%). Furthermore, we have
varied the chemical formulation in a controlled manner:
our selection of solutions allow us to decorrelate as much
as possible the effects occurring at the interfaces, in the
films and in bulk. Thanks to these approaches, which
are described in Secs. and III, we present new results,
show that they agree with the recent theoretical predic-
tions, and discuss the role of the physical and chemical
parameters on foam acoustics.

II. FOAM SAMPLES: CHOICE OF CHEMICAL
FORMULATIONS AND GAS

One of the goal of this work is to determine if the
chemical formulation of the foam has an impact on the
foam acoustics. Various structural and rheological prop-
erties are set by the chemical species of the foaming so-
lution. First, they set the properties of the air-liquid
interfaces. A first important quantity is the surface ten-
sion, decreased by the presence of adsorbed surfactants;
but the adsorbed chemicals can also induce 2D viscoelas-
ticity (either in compression or shear) [19, 20]. They can
also modify the bulk properties of the solution, by pro-
viding non-Newtonian viscoelastic behavior [21]. More
indirectly, the chemicals also control the properties of the
films between two bubbles (thickness, spatial uniformity
and viscoelasticity) [3, 22, 23]. Moreover, the viscoelastic
behavior within a thin film separating two bubbles can

be different from the one of the bulk, due to the con-
finement, especially for solutions containing polymers or
proteins [3, 23].

Our plan was to select a reference formulation, then to
add other components so that interfacial, film and bulk
properties are tuned. This implied that we have selected
chemical additives which modify, as much as possible,
only a single property at a single scale (interface, film
or bulk). In parallel, to quantify the modifications made
by the additives in bulk, within the films and at the in-
terfaces, we performed interfacial tensiometry, interfacial
dilational rheology (with a pendant drop apparatus [19]),
bulk viscoelasticity, and single film microscopy. For the
latter, we used a home-made setup derived from the “thin
film balance” apparatus to get information about the film
texture and thickness [23, 24].

Following this strategy, we started with a simple and
classical system: a solution of sodium dodecyl sulfate
(SDS), a low molecular weight anionic surfactant. It was
used here at 10 g/L, above the SDS critical micellar con-
centration (cmc). This surfactant solution has a high
foamability, and corresponds to basically no interfacial
viscoelasticity. The bulk solution viscosity is equal to
the one of water and the films between the bubbles are
uniform in texture, and in the order of tens of nm.

A second group of formulations corresponds to the ad-
dition of dodecanol (DOH) to the SDS solutions. As the
concentration of DOH is increased, the interfacial tension
decreases, and an interfacial viscoelasticity emerges: the
interfacial modulus increases as shown in Tab. I. Interest-
ingly, this occurs while bulk and film properties remain
constant. Thus, DOH is used to only tune the viscoelas-
ticity of the gas-liquid interfaces. As a third choice, we
have added glycerol to the SDS solution. With this ad-
ditive, we can modify the bulk viscosity, with interfacial
and film properties constant and similar to those of the
SDS solutions.

To mimic more complex formulations, especially those
found in industrial applications and commercial foams,
we also performed experiments where a cationic polyelec-
trolyte (CP) is added to the SDS solution. We have used
a high molecular weight polymer, from Guar gum, known
as Jaguar C13-S. At low concentration of CP (0.2 g/L)
added to the reference SDS solution, no effect are seen
on the bulk and interfacial properties. When the concen-
tration reaches a few g/L, various effects occur: the bulk
viscosity is increased, the interfaces become rigid and the
films becomes thicker and get gelified, as observed under
the microscope. In fact, the interfacial rigidity is so high
that no reliable measurements of the dilational viscoelas-
tic modulus can be done with the pendant drop appara-
tus. We selected concentrations so that the bulk viscosity
is the same as when glycerol is added, but the interfacial
and films are also modified when the CP added.

Lastly, we also prepared solutions of milk proteins (ca-
sein); these proteins are widely used in food applications
for making foams [25]. This allows us to get another com-
plementary configuration: the bulk viscosity remains the
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one of water, while, due to confinement, the films between
bubbles are heterogeneous, thick and gelified. Thus, here
by comparing with SDS or SDS/DOH systems, only the
films are modified.

The details of the interfacial and bulk measurements
are given in the table 1 below. As a consequence of our
choice of chemical systems, almost all types of combina-
tions are tested here, and by comparing the results found
for these solutions, one expects to decorrelate the possi-
ble influence of the interfaces, the films and the bulk.

For the gas, all the foams are made initially with hex-
afluoroethane, C2F6. It is chosen to obtain a suitable
coarsening rate of the foam: due to the its low solubil-
ity and diffusivity in water, the timescale for bubble size
variation is much longer than for air or nitrogen, hence
the timescale for a single acoustic measurement is also
well shorter than the foam aging (see details below). The
gas density ρg and viscosity η of this fluorinated gas are
ρg = 5.84 kg/m3 and η = 1.4 × 10−5 Pa.s for C2F6 (for
comparison, ρg = 1.4 kg/m3 and η = 1.8× 10−5 Pa.s for
air).

It is important to note that at their creation, foams
are made with pure C2F6, but air tends to enter and
diffuse inside the foam, leading to a volumetric expansion
of the foam [26]. Therefore, the composition of the gas
changed as a function of time. In the following data
analysis, we discuss in details the effect of this change of
gas composition with time.

III. FOAM SAMPLES: PRODUCTION AND
PHYSICAL PARAMETERS

All the foams tested here are produced using the dou-
ble syringe technique, illustrated in [16]. For all the
chemical formulations, the liquid fraction Φ, just after
production at t0 is 0.10 ± 0.02. The bubble radius is
systematically measured during the acoustical measure-
ments and all the initial mean bubble radii are found
lower than 70 microns. We have chosen such initial con-
ditions to have foams which mostly age by coarsening
[27]; this is due to the small bubble radii, which induces
high pressure in bubbles, and high coarsening rate, while
drainage rates are oppositely low. Moreover, we used
samples of a few cm high; this also reduce the drainage
as our samples have a height comparable to the capil-
lary hold-up distance [28], which corresponds to the part
of a foam which always remain imbibed of water at the
bottom of a foam.

To monitor the bubble size evolution, we use the “bub-
ble raft method”, meaning that a tiny portion of a foam
is collected over time and deposited on a bath of soap so-
lution (typically the foaming solution of SDS at 10 g/L)
in order to get a raft [16]. From image analysis, the bub-
ble size distribution, n(r), is found as a function of time.
It can be fitted by a log-normal law:

n(r) =
1

Rε
√

2π
exp
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− 1
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FIG. 1. (Color online) Time evolution of the mean bubble
radius of a pure SDS foam with C2F6 placed in open air. The
curve is a fit with the evolution law (2) with r0 = 51 µm,
tc = 344 s. Inset: time evolution of the polydispersity.

where r is the bubble radius, R the median radius and

ε the polydispersity. The mean radius is 〈r〉 = Reε
2/2.

The parameters 〈r〉 and ε are measured as a function of
time for all the chemical formulations.

An example is given in Fig. 1. These are data for
the SDS reference foam. The average bubble radius, 〈r〉,
follows the usually reported law [4, 7]:

〈r〉 = r0

√
1 +

t

tc
, (2)

where r0 is the initial average bubble radius and tc a
characteristic time, which depends on the chemical for-
mulation. Note that the polydispersity does not strongly
depend on time. In the following, such relationship be-
tween bubble size and time is measured for all the differ-
ent types of foams, and is used to transpose the acoustic
data from a time-dependance to a size dependance.

Concerning the liquid fraction Φ and its evolution
with time, we previously monitored its evolution for SDS
foams in similar geometries [14], and have shown that
it varied by less than a factor two over the experimen-
tal timescale. Together with the facts that we used here
small initial bubbles and small sample heights, drainage
can be considered as a minor effect when compared to
coarsening. However, we must also take into account that
air is progressively invading the foam, and this tends to
decrease the overall liquid fraction, as the foam volume
increases. This liquid fraction evolution is also discussed
as we analyze the acoustic data shown below.

IV. ULTRASONIC MEASUREMENTS

The other goal of this work is to upgrade the ex-
perimental ultrasonic setup previously described in [14],
who observed dispersion in coarsening SDS and Gillette
foams, and a minimum of transmission at a given time,
ascribed to resonance effects.

In the experiments presented in [14], the foam was
placed in open air between two fixed piezoelectric trans-



4

TABLE I. Table of physico-chemical properties of the different foaming solutions. The interfacial dilatational moduli were
measured at 1 Hz and amplitude δA/A0 = 0.05%; symbols � stand for the solutions where they were too high to be measured
reliably.

Foaming solution surface tension (mN/m) Interfacial modulus E (mN/m) Bulk viscosity (mPa.s)

SDS (10 g/L) 36 0 1

SDS (10 g/L) + DOH (0.03 g/L) 31 3 1

SDS (10 g/L) + DOH (0.1 g/L) 24 11 1

SDS (10 g/L) + DOH (1 g/L) 19 33 1

SDS (10 g/L) + CP (0.2 g/L) 36 0 1

SDS (10 g/L) + CP (3 g/L) 36 � 10

SDS (10 g/L) + CP (4 g/L) 36 � 16

SDS (10 g/L) + Glycerol (4 g/L) 36 0 7

SDS (10 g/L) + Glycerol (7 g/L) 36 0 16

Casein (5%) 48 20 1

Casein (10%) 50 22 1

ducers working at 40 kHz (MA40E7R/S) at a fixed dis-
tance. The complex transmission at one distance and
one frequency (40 kHz) was followed during foam aging.
The complex transmission is given by the amplitude and
the phase of the received signal, measured by an oscillo-
scope. Several experiments, each one at a different, given
distance, were performed to measure the speed of sound
and attenuation.

In such a setup, neglecting multiple interferences, the
complex transmitted signal T , in between the two trans-
ducers separated by a distance xi, writes:

T = |T | exp (iϕ) =
4ZZt

(Z + Zt)2
exp (ixik), (3)

where Z and Zt are respectively the complex impedance
of the foam and the transducers, and k is the complex
acoustic wave vector, which can be written as:

k =
2πf

v
+ iα. (4)

Hence, the logarithm of the absolute value of the trans-
mission is linked with the sound attenuation by the linear
relation:

ln (|T |) = −Im(k)xi + Re [A] = −αxi + Re [A] , (5)

and the phase of the transmission is linked with the phase
velocity by the linear relation:

ϕ = Re(k)xi + Im [A] =
2πf

v
xi + Im [A] , (6)

where:

A = ln
4ZZt

(Z + Zt)2
. (7)

Therefore, obtaining the phase velocity and the atten-
uation through the foam is in principle possible by linear
fits from a set of experiments done at different distances

0 xi
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FIG. 2. (Color online) (a) Sketch of the setup. (b) Dimensions
of the transducers. (c) Data analysis: plots of the logarithm
of the transmission ln |T | and of the phase as functions of
the distance, on one single translation of the receiving trans-
ducer. The logarithm of the average transmission, ln〈T 〉, is
subtracted to ln |T | only for convenience; this has no effect on
the slope of the fit (hence on the value of α). The best linear
fits are shown, which give the attenuation coefficient and the
speed of sound.

between transducers. However, this methods crucially
relies on a reproducible evolution of the samples used in
different experiments, and it turned out that the repro-
ducibility of the coarsening of the different samples was
not good enough to measure reliably the speed of sound
and the attenuation.

To overcome this difficult, we need to vary the distance
on a given sample. Hence, in our new setup, the liquid
foam is still placed in the open air in between the cou-
ple of narrow-band transducers working around 40 kHz
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(Fig. 2.a and b). But while the emitting transducer is
fixed, the receiving transducer is mounted on a transla-
tion stage. This enables to vary the distance between
the transducers (x− < xi < x+), hence to measure the
velocity and attenuation in the foam on a path.

Figure 2c shows the phase and the absolute value of the
complex transmission during one translation, for values
of xi increasing between 1.5 mm and 2 mm. This trans-
lation lasted less than 30 seconds. We can safely neglect
foam coarsening at this time scale, this hypothesis be-
ing supported by the linear evolution of the phase of the
transmission and the logarithm of the absolute value of
the transmission in function of the distance. Looking for
equations (6) and (5), the phase velocity v and the at-
tenuation α are estimated using a linear fit in which the
phase is unwrapped prior to its fit. The uncertainty on
this fitting procedure comes from the dispersion of the ex-
perimental data off the linear trend (Fig. 2c) and the 99%
confidence interval criterion gives the error bars on v and
α shown later in Figs. 4 and 5. We have not attempted
to calibrate the absolute value of the phase, because it
is not necessary to measure v. Hence, the phase shown
in Fig. 2c, and later in Fig. 3, is true except for a (con-
stant) offset. To improve the sensitivity of the ultrasonic
setup, a lock-in has been also adding to the receiver. To
validate the setup, we have checked that monitoring the
dependence of phase on distance for transducers placed
in air, we recover the speed of sound in air within 3 %.

Our experiments are thus performed as follows. A
freshly prepared foam sample is injected between the two
transducers. Then, the translation stage is set to make a
continuous back-and-forth motion between distances x−
and x+, at constant velocity. In order to minimize the
disturbance of the foam by the motion of the receiver,
the amplitude of the translation x+−x− was kept below
2 mm, although it should remain large enough that the
amplitude and the phase vary significantly, to permit fit-
ting by (5) and (6). We have checked that our procedure
does not induce foam coalescence. We have also checked
that the duration of a single translation was always much
shorter than the typical coarsening time; hence, over a
single translation, we probe a foam of nearly constant
properties. As shown below, we point out that during
the foam aging, the variation of the acoustic properties
can be sufficiently strong, so that we need to change the
starting and ending position to optimize the measure-
ments.

V. EXISTING MODELS

As a key assumption to all models of foam acoustics,
the bubble size is assumed to be much smaller than the
acoustic wavelength λ, an assumption which is fulfilled in
practice: the bubble size remains below 250 µm, whereas
λ = v/f is of order 1 mm to 1 cm.

We will compare our measurements to the model of
[18]. It is based on the vibrational response to pressure

waves of the foam idealized as a 1D assembly of gas pock-
ets separated by thin, flexible soap films of thickness e
and diameter a, connected to thick, rigid Plateau bor-
ders. The prediction of the acoustic wavevector is:

k2 = ω2χeffρeff , (8)

with χeff = (1− Φ)χg + Φχw, and:

ρeff = (1− Φ)ρg + Φ′ρ, (9)

with an effective liquid fraction given by:

Φ′ =
Φc + Φf (1− iωτ)I(qa)

1 +
(
x2 Φf+Φc

Φf
− 2x

)
[1− I(qa)]− iωτxI(qa)

.

(10)
Let us describe the various terms in this expression.

The liquid fraction of the foam Φ is separated in two
contributions: Φ = Φf + Φc, with Φf the contribution of
the films and Φc that of the Plateau borders and vertices.
The volume fraction of the films is Φf = πa2enf , with nf
the number per unit volume of films perpendicular to the
direction of propagation. Considering that there are N
such films per bubble, one obtains nf = 3N(1−Φ)/4πr3.
The volume fraction in the Plateau borders and vertices is
Φc = Φ−Φf . The characteristic time τ is a fitting param-
eter which describes dissipation phenomenologically. The
quantity q = ω

√
ρe/2σ is the characteristic wavenumber

of the films. The dimensionless number qa is the argu-
ment of the function I, defined as:

I(qa) =

∫ ∞
0

a′2n(a′)H(qa′)da′∫ ∞
0

a′2n(a′)da′
. (11)

In this definition, n(a′) is the distribution function of the
film radii a′, assumed to follow a log-normal distribution
like the bubble radii, with a polydispersity εf , and H is
defined as:

H(qa′) =
2J1(qa′)

qa′J0(qa′)
, (12)

with J0 and J1 Bessel functions of the first kind. Hence,
I is a weighted average of the function H, whereby the
foam polydispersity is taken into account in the model.
Finally, x is the mean surface fraction of the thin soap
films on the bubble faces, the remainder being occupied
by Plateau borders and vertices. The surface fraction
covered by films in a liquid foam was studied by Princen
[29]. He found the following empirical dependence on Φ:

x = 1− 3.20 [7.70 + (1− Φ)/Φ]
−1/2

.
A crucial ingredient of the model of [18] is that it ac-

counts for the different response of the soap films and
of the Plateau borders as the mean bubble radius and
the frequency vary. Because of their difference in iner-
tia, films and Plateau borders display the same vibra-
tional response to pressure waves only below a critical
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frequency, which decreases at increasing bubble size. On
the contrary, at large bubble size and frequency, the in-
ertia of Plateau borders and vertices is such that their
vibration can be neglected with respect to the films.
As a consequence, the model of [18] naturally includes
two models previously proposed: Wood’s model [30],
and Kann’s model [11], as two distinct asymptotic lim-
its, respectively of small bubble size and/or frequency,
and of large bubble size and/or frequency. Let us re-
mind these two models. Wood’s model is an effective
medium approach, and considers that the sound propa-
gation is only sensitive to average properties of the foam,
namely its average density and compressibility, irrespec-
tive of any microstructural or physicochemical detail.
With such assumptions, Wood’s law predicts a phase ve-
locity given by the relation: vWood = (ρWoodχeff)−1/2,
where ρWood = Φρ+ (1−Φ)ρg is the foam density in its
usual sense, and χeff = Φχw + (1 − Φ)χg as previously
defined. In these expressions, ρ and ρg are respectively
the density of liquid and gas, and χw and χg the corre-
sponding compressibilities. Since limx→0 I(x) = 1, it is
straightforward to show from (10) that when qa → 0,
Φ′ → Φ, hence from (9), ρeff → ρWood. Since typi-
cally χw/χg ≈ 10−4, χeff ' (1 − Φ)χg. Hence, with

vg = (ρgχg)
−1/2 for the speed of sound in gas, Wood’s

model yields:

vWood =
vg√

(1− Φ)
(

1− Φ + ρΦ
ρg

) . (13)

In contrast, Kann’s model overlooks the presence of
Plateau borders and vertices, and considers the foam as
a grid of soap films of thickness e immersed in gas. Its
main prediction is that sound propagates as in air, but
with some extra mass due to the films. It predicts the
following speed of sound in foam:

vKann =
vg

1 + ρe
ρg2R

, (14)

where R is the bubble radius. The velocity predicts by
Kann is usually much larger than Wood’s prediction. The
model presented in [18] slightly modifies this relation. It
considers the surface fraction covered by the film:

vhigh =
vg

1 + ρxe
2ρgR

. (15)

This formula is true if x is not too small, i.e. if the foam
is not too wet. If the radius a of the thin films becomes
too small compared to the size of the Plateau borders,
it is not reasonable to assume that Plateau borders and
vertices play no role. Indeed, an assumption of the mod-
els by Kann [11] and Pierre et al. [18] is that there is a
clear scale separation between very thin films, and much
bigger Plateau borders and vertices. In reality, there is
a smooth transition between films and Plateau borders
where the thickness progressively varies. For wet foams
with small films, it is likely that not only the films, but
also a significant part of these transition regions, are put
into vibration by the acoustic wave, likely leading to an
effective thickness which is significantly larger than that
of the sole films.

In the following, we will use the predictions (8) and (10) at low bubble size, when the acoustic behavior starts
departing from Wood’s law. More precisely, we perform a series expansion of the model at qa � 1. Using the

expansions: H(qa′) ' 1 + q2a′2/8 and I(qa) ' 1 + q2a2e5ε2/8, after the moments of the log-normal law (1):∫∞
0
a′pn(a′)da′ = ap0ep

2ε2/2. Assuming Φf � Φc, which is valid in practice, the effective liquid fraction (10) be-

comes: Φ′ ' Φ/[1− (r/R∗)3 − iδ], with a damping coefficient δ = ωτx and a resonance radius:

R∗ =

[
12Nσ(1− Φ)

x2ρΦω2 exp (9ε2/2 + 4ε2
f )

]1/3

. (16)

In Eq. (16), εf is the polydispersity of the films, which is considered close to ε; see also the Supplemental Material of
[18]. Inserting in the expression (8) of the acoustic wavevector and extracting the speed of sound from v = ω/Re(k),
we then get:

v(R) = vlow

1

2

1− R3

R†3
+

√(
1− R3

R†3

)2

+ δ2


−1/2√(

1− R3

R†3

)2

+ δ2, (17)

a formula valid for qa� 1. Following the theoretical derivation, R† in Eq. (17) is equal to R∗. However, we distinguish
R∗ and R† because there are two ways of estimating the resonance radius: either by direct computation of (16), or
by fitting with (17) the data at small bubble radius to get R† as a best fit parameter; the two methods will be used
in Sec. VII.

VI. RESULTS FOR THE REFERENCE FOAM

We first focus on a foam made with the simplest for-
mulation: as discussed previously, this corresponds to a

water fluid phase containing SDS (10 g/L) and the gas
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phase is C2F6. With this solution, we present below in
details all the acoustic features we can understand and
extract by our measurement technique. Then, we discuss
in the following section how these quantities depend on
the physical chemistry.

Figure 3 shows the time evolution of the complex trans-
mission through the SDS-foam. The distance between
the transducers is varied between x− = 1.5 mm and
x+ = 2 mm up to 57 minutes (Fig. 3). For this foam,
typically after 60 minutes of evolution, the boundaries
x− and x+ are no longer optimal: first, the variations of
the transmitted signal along a path, become increasingly
smaller with time, so that extracting the acoustic proper-
ties by the fitting procedure explained in Sec. IV becomes
impossible. Moreover, as shown below, the range of bub-
ble size corresponding to the resonance is actually passed
after 60 minutes: it then becomes more interesting to col-
lect data at much higher bubble sizes to cover the widest
range of size variations. As a consequence, a second con-
figuration with larger x−, x+ and x+−x− is required. In
practice, these distances have also to be adjusted to avoid
too large deformation or destruction of the foam sample.
In the case of the SDS foams, the values x− = 6 mm and
x+ = 8 mm corresponds to the best distances to get pre-
cise measurements in the large-bubble regime. However,
this is at the expense of the signal between 60 and 90
minutes, which cannot be precisely measured using the
second configuration.

Within the first 60 minutes, the figure 3 first confirms
that the variation of the phase and amplitude along a
translation are much sharper than the slow drifts due to
aging. Secondly, the transmission shows a minimum at
30 minutes, consistently with [14]. This is not the max-
imum of attenuation: the latter happens at a shorter
aging time (around 17 minutes), when the variation of
the amplitude over a translation x+ − x− is the highest.
Note also that between 20 and 40 minutes, the variation
of the phase and of the amplitude become irregular, even
with non-monotonous behavior along a translation. In
this range, the linear fitting procedure cannot be used.
More complex fitting formula can be derived, taking into
account multiple reflections, but finally cannot be used
here, as the range of variations of x or log (|T |) are too
small to provide correct fits. As a consequence, there is
a range where the acoustic properties cannot be deter-
mined.

Lastly, one can see a phase jump at an aging time of 28
minutes, that survived our unwrapping procedure. This
is not problematic, since we do not use the value of the
offset Im [A] in (6).

Apart from the two gaps discussed previously (for
20′ < t < 40′ and 60′ < t < 90′) where measurements
cannot be done, we extract from the transmitted signal,
the complex wave vector in the foam and can plot the
real and imaginary parts as a function of the bubble ra-
dius (Fig. 4). For such SDS foams, the time evolution of
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the bubble radius is shown in Fig. 1 and this provides the
way to shift from time to bubble size variation. We also
derived the phase velocity (v = ω/Re(k)) and the effec-
tive density, and stacked all these plots in figure 4. Fig-
ure 4 shows that the acoustic wave propagation is indeed
strongly dispersive, confirming previous works [14, 18].
Under this form, the data can then be directly compared
to the model of [18]. This model predicts the acoustic
response for all bubble sizes, and the challenge here is to
check whether there is a range of fitting parameters which
can described the whole experimental behavior, both in
terms of complex wave vector, velocity and complex ef-
fective density, and not only for velocities in asymptotic
cases.

To compute the wavevector following the expressions
presented in Sec. V and to compare it to the data, we
need values for the liquid fraction Φ, the gas composi-
tion, the film thickness e, and the viscous time τ . It first
comes that the data cannot be fitted with a constant liq-
uid fraction. We thus consider a simple linear decrease
of the liquid fraction as a function of R. As well, the gas
composition also needs to be modified along the aging.
All together, the optimal fitting parameters are: a liquid
fraction decreasing between 13% to 6%, a viscous time
equal to 2 × 10−5 s, a constant film thickness equal to
250 nm, and a gas evolving between pure C2F6 at the
beginning of the experiment to pure air at the end (with
a linear dependence of the proportion of both gases with
the bubble size). With such conditions, the predictions
of the model is superposed to the data of figure 4. To
illustrate the effect of the gas composition, we also show
the predictions for pure C2F6, and pure air.

From the comparisons on Fig. 4, it finally turns out
that the model captures most of the non-monotonous ex-
perimental trends: a low speed of sound for small bub-
bles, a large speed of sound for large bubbles, and a reso-
nance in between with a maximum of attenuation. More-
over, the fitting parameters are consistent with the ex-
perimental conditions. Such initial and final liquid frac-
tions, and gas evolution are actually in full agreement
with what was expected, as discussed in Sec.2. The time
τ is identical to the one found in [18], and the film thick-
ness falls within a reasonable range, though higher than
expected [18].

The gas composition effect is well evidenced: explain-
ing the acoustic features clearly requires to take into ac-
count the air entering within the foam the velocity. The
curves in figure 4 clearly shows that assuming a constant
pure C2F6 with time is unrealistic at the end of the ex-
periments.

Note that the speed of sound at small bubble size, as
well as the position of the resonance, is much less sensi-
tive on the gas content than at high bubble sizes. Quan-
titatively, we recover the Wood’s velocity in this limit of
small bubble sizes: with (13), one gets vWood = 31 m/s
for pure C2F6. We can then consider for the following
analysis that the foam is made of pure C2F6 before the
resonance.

In the opposite limit, at large bubble size, the speed of
sound is slightly lower than that of air. Quantitatively,
we recover here the other asymptotic limit (equation 15),
assuming pure air within the foam. Although the final
value for the speed of sound is compatible with pure air,
there might still be some low fractions of C2F6, and our
data are not enough precise to determine accurate gas
compositions. This means also that extracting absolute
values of the film thickness remains risky, if one does not
monitor the gas composition. We also observe a slow in-
crease of the speed of sound in this regime, which can
either due to gas composition continuing to change, or to
a decrease of the ratio e/R due to the continuous growth
of the bubble size (with a film thickness remaining con-
stant). For the subsequent analysis, we consider that this
second effect dominates in the large bubble size regime,
and simplify these issues by considering pure air within
the foam at the late stages of the experiments. This will
allow us to make relative comparisons of film thickness
for the different formulations.

The model thus quantitatively explain the behavior in
the two extreme limits. However, the agreement between
the data at the model is less good in the intermediate
range of bubble size associated to the resonance. It is
found that the radius for the maximum of attenuation
(here, at R = 100 microns) is well recovered by the model,
but the attenuation is always overestimated, as shown in
Fig. 4. Also, for bubble radius between 140 and 170 µm,
the agreement between the data and the model is poor,
even if the quantitative range for the wavevector (be-
tween 1 and 2 mm−1) is fine. In that range of R, there
are also discrepancies between the predictions and the
data for the velocity.

It is interesting to point out that the model also gives
us some insights on the range between 120 µm and
140 µm where no measurements were possible. This
range corresponds to an effective density with a small
modulus: the acoustic impedance of the foam is then very
mismatched from that of the transducers, and the acous-
tic power is poorly transmitted between the transducers
and the foam, both at the emitting and at the receiv-
ing transducers. Moreover, this range of bubble size also
corresponds to a real part of the effective density becom-
ing negative, together with the imaginary part close to
zero. Such features, as already reported in [18], suggest
a regime where sound does not propagate but forms an
evanescent wave (although dissipation complicates this
simple picture). In parallel, for these bubble sizes, the
velocity is expected to get highest values. It is then clear
that measuring acoustic features within this range is ex-
tremely difficult. In fact, problems to obtain clean data
are associated to sizes where Re(ρeff) and Im(ρeff) are
close to zero or negative, while velocity is high.

All together, the comparisons of the global model pro-
posed in [18] to our data spanning over a large range
of bubble radii shows that this model captures well the
main features. This is even quantitatively correct below
and above a resonance regime, for which the sound prop-
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agation is highly complex. Moreover, the superposition
in Fig. 4 of the data and predictions tends to provide
a complete picture, allowing us to connect the different
parts of the foam acoustic behavior.

VII. INFLUENCE OF THE CHEMICAL
FORMULATION ON ULTRASONIC

PROPAGATION

Following the previous detailed analysis of our refer-
ence SDS foams, we can then analyze and compare the
measurements made for all the other chemical formula-
tions listed in Tab. I.

Our first major result is that the same qualitative fea-
tures are recovered whatever the foam recipes. The con-
secutive behaviors described in Fig. 4, as the bubble size
increases, are always observed: the complex resonance
regime always separates the two well-defined behaviors
at small and large bubble sizes. It is especially in these
regimes before and after the resonance that data can be
safely compared, and that quantitative differences with
the formulation are actually found.

Focussing on the evolution before the resonance, the
figure 5 shows the sound velocity as a function of the
bubble radius, for different type of foams. For clarity,
not all the data points are plotted. As for the SDS foam,
the other data sets show an asymptotic velocity at the
lowest bubble sizes, followed by an rapid increase of this
velocity as the resonance is approached. Note the case
of SDS-glycerol foams, where the velocity increases al-
ready drastically at the smallest bubble size, so that we
hardly detect the asymptotic limit. Nevertheless, this ve-
locity plateau is found independent of the solution and
the value is in agreement with the SDS foam. This tends
to validate that - for any type of foams and in the limit
of small bubble sizes - the sound propagation agrees with
the basic assumptions of the Wood’s model.

By contrast, it is also clear from figure 6a that the
chemical formulations modify the resonant radius. We
will consider three characteristic radii: the resonance ra-
dius R∗ predicted from the model of [18], Eq. (16); the
radius R† coming from the small-bubble limit, Eq. (17);
and the radius of maximal attenuation, R′. Using the ap-
proximated formula (17), valid for qa� 1, the data can
be adjusted to extract the radius R†. The error bar for
this radius comes from the nonlinear fitting procedure. In
the figure 6a, R† is plotted for the different foam types.
The radius R′ corresponding to the maximum of attenu-
ation (like the ones of figure 4) is also added. The time
when the maximum of attenuation is reached is found
with great accuracy; in contrast, the conversion between
this time and the radius of maximal attenuation R′, us-
ing Eq. (2), comes from a linear fit of the square of the
mean bubble radius as a function of time (Fig. 1). It
is this conversion, and the uncertainty on the latter fit,
which gives the major uncertainty on R′, hence its error
bar. Finally, we also plot the resonance radius R∗ pre-

dicted from Eq. (16); all experimental parameters in this
expression are known precisely except Φ, which varies
between 8% and 12%. It is this uncertainty which gives
the error bar on R∗.

The comparisons first show that all the radii fall within
the same range: the two measured values are always close
to the predicted ones and despite large differences in the
type of foams, there is less than a factor 3 between the
extreme values. Thus, at a first order, a good agreement
between all the data and the model is found, tending
to show that physical parameters (like bubble size and
liquid fraction) are more crucial in foam acoustics than
chemical ones.

Still, some systematic deviations can be observed. The
addition of DOH which acts only as a provider of interfa-
cial viscoelasticity gives higher values for the radius at the
resonance, when compared to the model. At some point,
it might be possible that, between interfacial elasticity
and surface tension, the biggest value must be taken in
equation (16), as found in emulsion rheology [31]. In that
sense, dilatational elasticity replaces surface tension once
it becomes significantly higher.

Oppositely, increasing the bulk viscosity, by adding
glycerol, gives smaller values. Smaller values are also
found for the protein foams, which differ from SDS foam
at the scale of the thin films (thicker and gelified). Fi-
nally, the chemical system (SDS with CP) which is ex-
pected to be the most different from the reference foam
(at interfaces, in films and in bulk), gives a similar reso-
nance radius. However, despite the same velocity plateau
value and resonance radius for SDS and SDS/CP foams,
the shape of the curve is different for these two sys-
tems (Fig.5). At this point, these nontrivial behaviors
remain hard to explain, but they mostly show that com-
plex chemical formulations can have only a little effect
of the acoustic resonance, possibly as a consequence of
combined opposite effects. One may also wonder whether
the differences of resonance radii observed between dif-
ferent formulations is not a mere effect of a lack of repro-
ducibility of the measurements. To address this point,
we repeated the reference experiment, and the one with
the formulation SDS (10 g/L)-PC (3 g/L). Fig. 6a shows
then that the relative uncertainty on the resonance radii
is about 5% for a given formulation, which is lower than
the differences measured between different formulations.

Then, we can focus on the behavior above the reso-
nance. Following the data analysis of Sec. VI, and con-
sidering pure air within all the foams, we have plotted
the film thickness for the various foam types (figure 6b).
To do so, we have used Eq. (15), and we have performed,
at large radius, a linear fit of 1/v as a function of 1/R;
the error bars come from the uncertainty of the fit ex-
actly as for v and α (Sec. IV). Note that using Eq. (15),
we have access to the product xe and not only the film
thickness. As discussed previously, an absolute measure-
ment requires to know the exact gas composition. As
a consequence, we prefer to compare the data in a rela-
tive way: we have thus normalized all the thicknesses by
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the average value found for the SDS foams. It turns out
that the results are in agreement with the independent
single film studies: the thinnest films are found for the
SDS and SDS-DOH systems, while the thicker ones are
observed for the polymer and protein films. Thus, all the
data are correctly sorted. However, an increase by a fac-
tor 3 between the two extreme values is lower than the
ratio expected from single film microscopy. From these
measurements, a larger ratio is expected (from typically
70-100 nm for the SDS films to 500 nm for the thicker
films). As explained before, the discrepancy might come
from different gas compositions. But it might also be pos-
sible that the microscopy of the single films is done on
films of millimeter dimension, and that they do not fully
corresponds to those inside a foam of 100 microns bub-
ble diameters. Furthermore, the vibrating films might be
thicker than the static ones observed in microscopy, due
to dynamic effects [32], especially for SDS; this could also
explain the unexpected large thickness used in the model
to fit SDS data. Overall, this is illustrating that there is
a regime where in situ film thickness measurement could
in principle be done, provided that the gas is known.

VIII. CONCLUSIONS

Sound propagation in foams — even in the case where
the bubble size is small compared to the sound wave-
length — turns out to be much more complex than ex-
pected; however, the recent theoretical and experimental

results allows us to capture the main acoustic features
and their microscopic origins.

Our data at fixed frequency as a function of the bubble
size are fully in agreement with those at varied frequency
and fixed bubble sizes [18]. Both type of experiments co-
incide on the fact that there is a shift, when varying ei-
ther the frequency or the bubble size, between two limits,
separated by an intermediate non-trivial propagation, in-
cluding a resonance of the structure film/Plateau border
and associated to an effective negative density.

The regime before the resonance corresponds to a mod-
ification of the sound propagation in the pure gas only
linked to the liquid fraction. The acoustic waves are not
sensitive to the foam structure. Oppositely, the differ-
ence from the pure gas above the resonance arise from a
completely different origin, and linked to the film thick-
ness. Finally, the intermediate regime (the resonance) is
sensitive to the entire foam structure.

These new results are indeed qualitatively independent
of the chemistry of the foaming solution. However, some
quantitative differences arise when bulk and interfacial
viscoelasticity are varied. But, we show here that these
differences remain small. Moreover, it seems that the
existing model, based on the physical parameters of a
foam, already well capture the experimental results, so
that interfacial and bulk rheological properties does not
seem to be the main key parameters controlling the foam
acoustics. In parallel, the data analysis also evidences
the important role of the gas composition, especially in
the regime after the resonance.
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Overall, even if some data are still lacking (interme-
diate sizes, gas content), our study yields a consistent
picture to the acoustics of foams, implementing the re-
sults of [14, 18], and extending it to different chemical
formulations.

We also show here that such simple measurements
could be first used to monitor the liquid fraction, and
provide absolute measurement of Φ, without the need
of any calibration. Secondly, one could also use such
setup to get in situ film thickness, which remain a never
done measurement within foams of bubble sizes smaller
than millimeters. But any absolute measurements of film
thickness will require to know the exact gas composition.
This also opens an interesting perspective: in previous
experimental studies [27], different gases have been used
to tune the coarsening rate, but gas has never been shown

to have a such significant effect on macroscopic foam
properties (optics, conductimetry or rheology). The fact
that it influences significantly the acoustical properties of
the foams thus calls for further studies of the coarsening
of foams constituted by mixture of gases.
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[4] R. Höhler, S. Cohen-Addad, and D. J. Durian, Curr.
Opin. Colloid Interface Sci. 19, 242 (2014).

[5] K. Feitosa, S. Marze, A. Saint-Jalmes, and D. J. Durian,
J. Phys. Condens. Matter 17, 6301 (2005).

[6] D. A. Weitz and D. J. Pine, Dynamic Light Scattering:
the Methods and Applications (Oxford University Press,
Oxford, 1993).

[7] D. J. Durian, D. A. Weitz, and D. J. Pine, Phys. Rev.
A 44, R7902 (1991).

[8] M. U. Vera, A. Saint-Jalmes, and D. J. Durian, Appl.
Opt. 40, 4210 (2001).

[9] I. Goldfarb, Z. Orenbach, I. Schreiber, and F. Vafina,
Shock Waves 7, 77 (1997).

[10] N. Mujica and S. Fauve, Phys. Rev. E 66, 021404 (2002).
[11] K. B. Kann, Colloids Surf. A 263, 315 (2005).
[12] A. Britan, M. Liverts, and G. Ben-Dor, Colloids Surf. A

344, 48 (2009).
[13] M. Erpelding, R.-M. Guillermic, B. Dollet, A. Saint-

Jalmes, and J. Crassous, Phys. Rev. E 82, 021409 (2010).
[14] I. Ben Salem, R.-M. Guillermic, C. Sample, V. Leroy,

A. Saint-Jalmes, and B. Dollet, Soft Matter 9, 1194
(2013).

[15] J. Pierre, F. Elias, and V. Leroy, Ultrasonics 53, 622
(2013).

[16] J. Pierre, R. Guillermic, F. Elias, W. Drenckhan, and
V. Leroy, Eur. Phys. J. E 36, 113 (2013).

[17] J. Pierre, V. Leroy, A. Saint-Jalmes, B. Dollet, I. Ben
Salem, J. Crassous, R.-M. Guillermic, W. Drenckhan,
and F. Elias, Proc. Meetings Acoust. 19, 045044 (2013).

[18] J. Pierre, B. Dollet, and V. Leroy, Phys. Rev. Lett. 112,
148307 (2014).

[19] M. Karbaschi, M. Lofti, J. Kragel, A. Javadi, D. Bastani,
and R. Miller, Curr. Opin. Colloid Interface Sci. 19, 514
(2014).

[20] L. M. C. Sagis and P. Fischer, curr. Opin. Colloid Inter-
face Sci. 19, 520 (2014).

[21] H. A. Barnes, J. F. Hutton, and K. Walters, An Intro-
duction to Rheology (Elsevier, Amsterdam, 1989).

[22] K. J. Mysels, K. Shinoda, and S. Frenkel, Soap Films,
Studies of Their Thinning and a Bibliography (Pergamon
Press, London, 1959).

[23] V. Bergeron, J. Phys. Condens. Matter 11, R215 (1999).
[24] C. Stubenrauch and R. von Klitzing, J. Phys. Condens.

Matter 15, R1197 (2003).
[25] E. Dickinson, Soft Matter 2, 642 (2006).
[26] G. Maurdev, A. Saint-Jalmes, and D. Langevin, J. Col-

loid Interface Sci. 300, 735 (2006).
[27] A. Saint-Jalmes, Soft Matter 2, 836 (2006).
[28] S. A. Koehler, S. Hilgenfeldt, and H. A. Stone, Langmuir

16, 6327 (2000).
[29] H. M. Princen, J. Colloid Interface Sci. 105, 150 (1985).
[30] A. B. Wood, A Textbook of Sound (Bell and Sons, Lon-

don, 1944).
[31] T. D. Dimitrova and F. Leal-Calderón, Adv. Colloid In-

terface Sci. 108, 49 (2004).
[32] F. Elias, S. Hutzler, and M. S. Ferreira, Eur. J. Phys.

28, 755 (2007).


