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Abstract

Modeling the properties of the Internet topology aims at generating large scale
artificial IP networks that mimic properties of real ones for simulation purposes.
Current models typically consider the Internet as a simple graph where edges
are point-to-point connections between routers. This approach does not take
into account point-to-multipoint connections that exist at lower layers in the
network, e.g. layer-2 clouds, such as Ethernet switches or MPLS networks.
Instead, such physical point-to-multipoint connections are modeled as several
logical IP level point-to-point connections.

In this paper, we rely on recent developments in topology discovery based
on IGMP probing that allows for revealing part of the network’s layer-2 struc-
ture. We take advantage of this additional knowledge for proposing an Internet
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model based on bipartite graphs considering both point-to-point and point-to-
multipoint connections. Our model remains simple: it only takes as input the
node degree sequence for both layer-2 and layer-3 nodes, randomly generates
a bipartite graph respecting those distributions, and then derives the corre-
sponding layer-3 topology. We show that, despite the simplicity of our model,
realistic network properties, such as high local density, emerge naturally. This
is in contrast with the now common belief that such properties can only appear
with more intricate models or if explicitly injected in random models. Besides,
we also provide evidences of how the analysis performed at the bipartite level
might shed light on important properties of the real network structure. Finally,
we propose and evaluate a bipartite graph generator based on our model that
only takes two synthetic node degree distributions as input.

Key words: Network topology, Measurement, Bipartite modeling, mrinfo,
Topology generator

1. Introduction

Improving our understanding of the Internet topology structure is extremely
important. It has much impact on the ability to provision and manage IP
networks and enhance their reliability and efficiency. It also allows for designing
effective network protocols matching the specific requirements of a large panel
of applications. Assessing the quality of a network or protocol design involves
theoretical studies and simulations conducted on artificial graphs obtained from
models of the Internet topology. Many efforts have been made in modeling
Internet [2, 3], from very simple models [4] to more complex ones based on latest
developments in Internet topology discovery and modeling [5, 6, 1]. However,
modeling the Internet remains a challenging task because of its heterogeneity
and dynamics [7, 8].

Usually, the Internet is depicted as a simple graph where vertices represent,
depending on the Internet topology view, IP interfaces, routers, or autonomous
systems (ASes) and edges stand for direct connections between those vertices.
In particular, when considering the router level view of the Internet, edges
usually represent point-to-point links between routers, i.e., IP hops. However,
the Internet is actually made of fundamentally different kinds of nodes at layer-
2 (L2), which induce its layer-3 (L3) structure: routers might be connected
through L2 devices such as Ethernet switches, IXPs, sub-networks, . . . and a L3
link between two routers goes therefore through a L2 device. Multiple routers
connected through a single L2 device will appear as a possibly large clique
of separate point-to-point links in a layer-3 view. The underlying point-to-
multipoint connections are generally invisible because they are challenging to
discover when using ordinary active topology discovery techniques based on
traceroute [9].

Being able to map Internet topologies exhibiting the two layers of connection
would open new perspectives in Internet modeling and topology generation.
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Indeed, one could then model the Internet topology as a bipartite graph, i.e., a
graph in which vertices can be divided into two disjoint sets, ⊤ (e.g., Ethernet
switches) and ⊥ (e.g., routers), such that every edge connects a vertex in ⊤
to one in ⊥. Bipartite graphs are a fundamental object in computer science
and, as such, are widely studied [10, 11, 12]. A key operation over bipartite
graphs is the projection that transforms the bipartite structure into a simple
graph where a link between two routers in ⊥ exists if they are linked to a same
L2 device in ⊤. Interestingly, the projection fits exactly the inference of the
Internet L3 topology from its L2 topology. This makes bipartite graphs (and
their projection) an appealing approach for Internet topology modeling with a
L2/L3 view.

Fortunately, a recent advance in Internet topology discovery through IGMP
probing [13] has offered an opportunity to better characterize the nature of
IP connections (point-to-point or point-to-multipoint). With a single IGMP
probe, one can obtain all local multicast interfaces and neighbors of a multicast
router, as well as its multicast connections through L2 multi-access networks.
This latter feature provides point-to-multipoint connections between L3 devices.
Considering a map resulting from IGMP probing [1], we are able to construct a
bipartite graph where vertices belong to one of these two types.

It is worth noticing that IGMP data allows one to easily discover the actual

bipartite shape of the Internet induced by the interactions between L2 and L3
devices. Generally, such a bipartite structure is artificially generated to capture
some clustering properties in flat network ground measurements [14]. This is
not our approach here since we stick to the existing bipartite structure detected
by the measurement tool. Interestingly enough, some IP network protocols
are aware of such a physical distinction. An example is the OSPF routing
protocol [15]. OSPF routers describe the network topology using Link State

Advertisements (LSAs). Separate LSAs are used to represent different kinds of
links: Router LSAs are dedicated to outgoing links of L3 nodes while Network
LSAs represent outgoing links of transit L2 networks. IGMP probing offers an
abstraction of the same bipartite view as OSPF: when several IP neighbors are
seen through the same IP interface, one may deduce the presence of a transit
L2 device.

Such a view is necessary to understand the actual (e.g., physical) nature of
IP networks. If one wants to determine the actual physical degree of routers [1]
or measure the physical resiliency of a network [13], it is mandatory to avoid
the confusion between logical and physical connections. For example, a clique
between routers appears much more resilient than a star inter-connection. Com-
mon graph properties such as the clustering coefficient are also impacted accord-
ing to the nature of the network view [16]. Further, recent works have provided
evidences that real network topologies are far from random and are often due to
strong constraints [5]. A bipartite vision of the network would allow for identi-
fying which aspects of the real network might stem from random processes and
which ones are due to strong designed patterns.

In this paper, we step into the breach opened by the L2 devices inference
and describe the first bipartite model of the Internet topology. Our model has
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the strong advantage of being “simple”, i.e., it is a random-based model that
does not require injecting several constraints. As input, we only consider the
node degree distribution of both L2 and L3 devices for generating the random
bipartite graph and, then, project this structure into a simple graph. To this
regard, our model can be seen as an extension of the standard configuration

model [17, 18, 19] using two distinct degree sequences instead of one.
Note that our model does not aim at identifying network construction mecha-

nisms as would do a structural model [20, 21], a preferential attachment model [22,
23], or an engineer-oriented model [5]. If such approaches may bring interesting
knowledge on the networks emergence (although they are often criticized, see
[16]), they are usually not well suited for formal analysis and they tend to en-
force specific properties in the generated graphs. This is why we rather follow
the tradition of random models [4, 17, 24].

In order to assess the relevance of our model, we perform two different anal-
yses. First, we demonstrate that the resulting projected graphs have behaviors
similar to those of actual ones, specially regarding metrics that were not in-
jected in the model, such as the local density or the degree correlations for
instance. Indeed, it is worth noticing that standard models usually only repro-
duce properties they focus on but are unable to cope with all other features. On
the contrary, our model is able to capture a range of characteristics that goes
beyond the simple degree distribution it relies on. In order to emphasize this
point and better evaluate the improvements brought by our bipartite model, we
confront our results with random graphs directly generated with the configu-
ration model from which our model derives. It results that, as expected, the
configuration model is unable to cope with other properties than the degree dis-
tribution. Second, we evaluate different metrics on the bipartite structure itself
and give evidences of the relationship between the observed bipartite properties
and the projected ones. Our analyses show that, although not perfectly repro-
ducing the real data, our model succeeds in capturing most of its properties and
provides mathematical tools for explaining properties of the L3 structure from
the analysis of the bipartite structure.

Analyzing the limitations derived from our first study, we also explore pos-
sible extensions to our model. First, we investigate the interest of taking into
account the correlation between point-to-point and point-to-multi-point connec-
tions of the routers. Second, using statistical metrics defined at the bipartite
level, we identify strong redundant patterns and propose a way to cope with
such a structural property in the model. Indeed the overlapping between L2-L3
connections is frequent in real IP networks since redundancy is a key feature to
increase the reachability between networking devices. Such resiliency patterns
cannot be accurately revealed using a L3 view only.

We finally present and evaluate a network topology generator that is based
on our bipartite model. The generator goes beyond the model in that it does not
rely on prescribed degree sequences but rather random ones. The current version
of the generator draws the bipartite nodes degree from two distinct power-law
distributions. We evaluate our generator and show that even with synthetic
degree sequences, the underlying bipartite model still produces projected graphs
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1.1.0.2

1.1.0.2 [version 12.4]
1.1.0.2 → 1.1.0.1 [1/0/pim/querier]
1.1.2.3 → 1.1.2.1 [1/0/pim/querier]
1.1.2.3 → 1.1.2.2 [1/0/pim/querier]
1.1.3.1 → 0.0.0.0 [1/0/pim/leaf]
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Figure 1: mrinfo example

exhibiting realistic properties. Our generator is freely available at https://

code.google.com/p/py-bipartite/.
The remainder of this paper is organized as follows: Sec. 2 discusses the

background required throughout this paper; Sec. 3 presents the methodology
we followed when modeling the network as a bipartite graph and evaluates our
model; Sec. 4 discusses the limits of our model and investigates which additional
constraints could lead to better results; Sec. 5 describes and evaluates our topol-
ogy generator; finally, Sec. 6 concludes this paper and lays some foundations for
future works.

2. Background

In this section, we introduce the required background for the remainder of the
paper. First, we focus on mrinfo (Sec. 2.1), a tool allowing for silently revealing
all multicast IP addresses of a router, as well as its connections towards other
routers and L2 devices. Second, we discuss bipartite graphs (Sec. 2.2) that are
used for modeling topology data collected with mrinfo.

2.1. IGMP Probing

mrinfomessages use the Internet Group Management Protocol (IGMP [25]).
IGMP was initially designed to allow hosts to report their active multicast
groups to a multicast router on their LAN. However, the Distance Vector Mul-
ticast Routing Protocol, DVMRP, has defined two special types of IGMP mes-
sages that can be used to monitor routers [26]. Although current IPv4 multicast
routers do not use DVMRP anymore, they still support these special IGMP mes-
sages. Upon reception of an IGMP ASK NEIGHBORS message, an IPv4 multicast
router replies by sending an IGMP NEIGHBORS REPLY message that lists all its
multicast enabled adjacencies. Fig. 1 shows an example of the usage of mrinfo
to query the router R2 (1.1.0.2 is the replying interface of R2). mrinfo reports
that this router is directly connected to R0 (through interface 1.1.0.1) via a
layer-3 (L3) point-to-point link. One can also notice that R2 is connected to
routers R5 and R6 through a layer-2 (L2) network (labeled “switch” in Fig. 1)
because interface 1.1.2.3 appears twice in the mrinfo reply (see bold text
in Fig. 1). Finally, mrinfo reports that interface 1.1.3.1 has no multicast
router neighbor (the right IP address is equal to 0.0.0.0). All this topological
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information is obtained by sending a single IGMP message. mrinfo provides
information similar to a show command dedicated to the multicast routing plan.

In the analysis provided in this paper, the inference of L2 networks is criti-
cal. In our context, by L2 network, we mean a technology allowing a router to
transmit IP packets to several other IP routers through the same interface, i.e.,
a multi-access network. One often distinguishes between Non Broadcast Mul-

tiple Access (NBMA) networks (e.g., ATM, Frame Relay, X25), and broadcast

networks (BN) such as most LAN networks (e.g., Ethernet, token ring, FDDI).
These two kinds of networks behave differently as far as IP multicast is

concerned. In particular, when using Protocol Independent Multicast (PIM) as
a routing protocol in a BN, only one of the PIM IP neighbors is elected as
the querier [27]. Moreover, in common BN such as L2 Ethernet switches, the
IP view around the L2 device should exhibit symmetric properties and reveals
that IP interfaces involved in this symmetric point-to-multipoint connection
are allocated within a tight subnet prefix. In NBMA networks, IP packets are
usually transmitted via circuits that behave as a collection of point-to-point or
point-to-multipoint connections. Such properties can be easily revealed within
the mrinfo range: in this paper, we focus on most common BN such as L2
Ethernet switches. These represent the vast majority of multi-access networks
in the mrinfo dataset that we use.

Since May 1st, 2004, we collect the mrinfo data from a host located at the
University of Strasbourg, France. In this paper, we consider the data collected
until October 31st, 2008. The collection script maintains a list of known mul-
ticast routers. Each day, it sends an IGMP query to each of these routers to
collect their list of interfaces. If a new router is discovered in a received answer
(in the list of outgoing interfaces of an already known router), this router is
also queried in turn. These recursive queries stop at unresponsive routers or
when all known routers have been queried. Each router is queried at most once
per day. Additional information about the collection script and the raw mrinfo

dataset may be found in [28].
On average, mrinfo was able to daily discover roughly 10,000 different

routers while scanning 100,000 interfaces, and 1,000 ASBRs belonging to 200
ASes. The largest connected component consists in 7,000–8,000 routers on av-
erage. We remove interfaces with non publicly routable IP addresses (see RFC
3330 [29]), loopback address block 127.0.0.0/8 and the 0.0.0.0 address. We also
remove all multicast tunnel interfaces to focus on actual physical links. On
average, more than 25% of the interfaces collected by mrinfo fall within those
categories.

Finally, we extracted L2 nodes based on the three following rules [1]:

• Symmetry rule. All routers attached to the potential L2 network should
have the same view. On Fig. 1, router R2 is connected to R5 and R6

through a L2 device. When probing R5 and R6 with mrinfo, R2 must
also appear in their mrinfo output.

• Querier rule. In a normal case, only one router per L2 network must be
tagged as the IGMP “querier” (i.e., it won the querier election on the

6



A B C D E F

1 2 3 4

(a) bipartite graph

1

2

3

4

(b) ⊤-proj.

A

B

C

D

E F

(c) ⊥-proj.

Figure 2: Example of bipartite graph and its {⊤,⊥}-projections

subnet [27]: it has the greatest IP address on the subnet). For instance,
on Fig. 1, as interface 1.1.2.3 of R2 is tagged as “querier”, interfaces
1.1.2.1 of R5 and 1.1.2.2 of R6 should not be tagged as such.

• Subnet mask rule. The validity of the minimum mask covering all IP
addresses in the subnet is verified.

It is worth noticing that obtaining L2 and L3 topologies is also possible
using Gunes and Sarac’s subnet inference technique [30]. We believe that the
framework provided in this paper can also be applied on Gunes and Sarac’s
dataset.

2.2. Bipartite Graphs

A bipartite graph is a triplet G = (⊤,⊥, E), where ⊤ is the set of top nodes,
⊥ the set of bottom nodes, and E ⊆ ⊤ × ⊥ the set of links. Compared to
standard graphs, nodes in a bipartite graph are in two disjoint sets, and the
links are always between a node in one set and a node in the other set. An
example of bipartite graph is given in Fig. 2(a), where ⊤ nodes are depicted by
squares and ⊥ nodes by circles.

The ⊥-projection of G is the graph G⊥ = (⊥, E⊥) where two nodes (of ⊥)
are linked together if they have at least one neighbor in common (in ⊤) in G:
E⊥ = {(u, v), ∃x ∈ ⊤ : (u, x) ∈ E and (v, x) ∈ E}. The ⊤-projection is defined
dually. Both projections are illustrated in Fig. 2(b) and 2(c).

Note that bipartite graphs are very close to hypergraphs which also model
one-to-many relationships by representing hyper-links as sets of nodes instead
of using a new kind of nodes. As such, hypergraphs are in complete bijection
with bipartite graphs, the only difference being that bipartite graphs allow to
explicitly exhibit the hyper-links between the nodes. The directed hypergraphs
are good models for one-way one-to-many links such as radio links (see for
instance [31, 32]) but in our case we are interested in a model of the (wired)
core of the Internet where the connections are bidirectional. This is why we
do not need directed hypergraphs. Besides, the bipartite model follows more
closely the actual physical architecture than an hypergraph model: Firstly, a
Layer-2 node (typically, a switch) is a single point of failure as much as a Layer-3
node (router) and it is very interesting to have the same representation of these
2 types of nodes. Secondly, a link connecting a Layer-2 and a Layer-3 node has
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a physical existence which allows to study the impact of its failure, since it is
represented by a single edge in the bipartite graph. This type of link is not
directly represented in an hypergraph model. For all those reasons, we decide
to rely on the bipartite formalism instead of hypergraph in the rest of the paper.

2.2.1. Classical Analysis over Projections

In order to analyze this bipartite structure, it is natural to transform a bi-
partite graph into one of its projection in order to compute standard metrics
defined for graphs. Let us recall briefly here those metrics and the usual prop-
erties shared by real-world networks [10].

Let G = (V,E) be the (projected) graph. We denote by N(v) the set of
neighbors of v ∈ V : N(v) = {u ∈ V, (u, v) ∈ E} and by d(v) its degree:
d(v) = |N(v)|.

The usual statistics used to characterize such a graph involve its size (n =
|V |), its number of links (m = |E|), its highest degree (d+ = maxv d(v)), and its
average degree (k = 2.m

n
). Over those notions, one can also study the density

δ = 2.m
n.(n−1) that is usually small as real networks happen to be very sparse.

Indeed the probability that a link exists between two randomly selected nodes
is generally very small.

On the contrary, two nodes sharing a common neighbor have usually a high
probability to be linked. This property is often referred to as the local density

and is generally captured by the clustering coefficient and the transitivity ra-

tio [10, 33, 34]. The first one computes, for every node v ∈ V , the probability

that two of its neighbors are linked together. This is denoted by cc(v) = ∆(v)
∨(v)

where ∆(v) is the number of triangles (sets of three nodes with three links) to

which v belongs and ∨(v) = d(v).(d(v)−1)
2 the number of pairs of neighbors of v.

The clustering coefficient of the graph is the average value cc =
∑

v
cc(v)

n
.

The second coefficient, the transitivity ratio, provides a more direct computa-
tion of the property over the whole graph. Let ∆ =

∑
v ∆(v) and ∨ =

∑
v ∨(v),

then tr = 3.∆
∨ is defined as the transitivity ratio of G.

A classical observation is that those two quantities are high, at least com-
pared to the density. In other words, if one selects a random pair of links with
an extremity in common (transitivity ratio) or a random node and two of its
neighbors (clustering coefficient), then the probability that the third possible
link exists is high.

2.2.2. Specific Metrics for Bipartite Graphs

The metrics defined in Sec. 2.2.1 have the advantage to be well understood
and allow for immediate analysis of the flat topology. On the other hand, the
required projection leads to a loss of information. It is thus necessary to define
extensions of those metrics on the bipartite structure itself.

From a bipartite graph G = (⊤,⊥, E) and for each top node v ∈ ⊤, we de-
note by N⊤(v) the set of bottom neighbors of v: N⊤(v) = {u ∈ ⊥, (u, v) ∈ E}
and by N⊥N⊤(v) the set of top neighbors of v: N⊥N⊤(v) = {u 6= v ∈ ⊤, ∃x ∈
⊥ : (u, x) ∈ E and (v, x) ∈ E}. We use similar notations for the bottom
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Figure 3: Example of transformation between network, raw data, BipReal, PReal, BipGen,
and PGen. A plain line refers to a point-to-multipoint link, while a dashed line refers to a
point-to-point link

nodes N⊥(v) and N⊤N⊥(v). For instance, on Fig. 2(a), N⊤(1) = {A,B,C} and
N⊥N⊤(1) = {2, 3}. Similarly, N⊥(C) = {1, 2, 3} andN⊤N⊥(C) = {A,B,D,E}.

Let n⊤ (respectively n⊥) be the number of ⊤ (respectively ⊥) nodes and
mbip be the number of bipartite links. We denote by k⊤ (respectively k⊥) the
average degree of ⊤ (respectively ⊥) nodes and δbip =

mbip

n⊤.n⊥

the density of the

bipartite graph. On Fig. 2(a), n⊤ = 4, n⊥ = 6, k⊤ = 2.5, k⊥ = 1.6, mbip = 10,
and δbip = 0.42.

Those statistics are natural extensions of graph metrics. However, for the
local density, there is no standard variant since, by definition, there is no tri-
angle in a bipartite graph. As suggested by Latapy et al. [35], we will rely
on the following coefficient that tends to capture the overlapping between the
neighborhood of two nodes of ⊤

cc⊤(u, v) =
|N⊤(u) ∩N⊤(v)|

|N⊤(u) ∪N⊤(v)|
. (1)

This coefficient is interesting as it captures the relative overlap between
neighborhoods of top nodes, i.e., cc⊤(u, v) is equal to 1 if the neighborhood of
u and v intersects exactly, to 0 if they do not share any neighbor. If we apply
the overlapping coefficient on nodes 1 and 2 in Fig. 2(a), we have cc⊤(1, 2) =
|{A,B,C}∩{B,C,D}|
|{A,B,C}∪{B,C,D}| = 0.5.

From this coefficient, it becomes natural to define the clustering coefficient
related to a specific ⊤ node v. This is given by

cc⊤(v) =

∑

u∈N⊥N⊤(v)

cc⊤(u, v)

|N⊥N⊤(v)|
. (2)
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Raw Data (Fig. 3(b))

BipReal (Fig. 3(c))

cleaning step

BipGen (Fig. 3(e))

PGen (Fig. 3(f))

⊥-projection

PReal (Fig. 3(d)) CM

bip random

generation

random

generation

⊥-projection

Projection Evaluation (Sec. 3.2)

Bipartite Evaluation (Sec. 3.3)

Figure 4: Model setup

Applied on node 1 of Fig. 2(a), it gives cc⊤(1) = 0.375. This coefficient
enables to study the distribution of this property over the top nodes as well
as its correlation with the degree or other properties. Then, one can naturally
compute the bipartite top clustering coefficient cc⊤ of G as the average value
of cc⊤(v) over all the nodes v of ⊤. More formally

cc⊤(G) =
1

|⊤|

∑

v∈⊤

cc⊤(v). (3)

Following those definitions, we can derive the dual cc⊥(G) bottom clustering
coefficient ofG which finally leads to the global clustering coefficient ofG defined
by:

ccbip(G) =
n⊤cc⊤(G) + n⊥cc⊥(G)

n⊤ + n⊥
. (4)

3. Model

In this section, we explain how we model a subset of the router level topology
as a bipartite graph. We explain our approach (Sec. 3.1) before evaluating it
(Sec. 3.2 and 3.3).

3.1. Methodology

Our methodology is sketched in Fig. 3 and Fig. 4. We first start by removing
loops1 in our dataset (“cleaning step” on Fig. 4). We then have a dataset that
contains a set of L3 devices (routers) and L2 devices (typically switches) with

1It affects less than 0.3% of the links on average.
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links between them and among routers (see Fig. 3(b)). Because of these point-
to-point links between routers (between R2 and R3 in this example), this is not
a pure bipartite graph, as defined in Sec. 2.2. However, there is no difference
between a point-to-point link and a pair of routers connected through a L2
device2 that itself is connected only to these two routers. On Fig. 3(b), the
direct link between R2 and R3 can be replaced by a L2 device of degree 2
linking only R2 and R3 (see S2 in Fig. 3(c)) without any loss or addition of
relevant information. Indeed, if we ⊥-project Fig. 3(c), we get back the direct
link between R2 and R3. In addition, there is no such L2 devices with degree
2 in the raw data as IGMP probing can only detect L2 devices connecting, at
least, three routers. Consequently, we replace each point-to-point link between
two routers by a new L2 device linking them without any loss of information.
This results in a bipartite graph, that we call BipReal, that encodes exactly the
same information as the raw data in the sense that we can retrieve at any time
the original format of the data by only mapping the L2 nodes with degree 2 into
a direct link between two routers. Although this step has no impact regarding
the projection, it concerns an important fraction of links in the real data since
point-to-point connections represent 58% of all the links on average.

It is worth emphasizing here that the interest of considering point-to-multipoint
connections in the modeling of Internet stands precisely in the fact that this new
level enables to link several nodes together in a way that point-to-point connec-
tions could not do. Thus a degree-2 L2 device would be nothing more than
a simple extension cable between two routers. So the fact that no L2 devices
with degree 2 are present in the raw data is not really due to the measurement
procedure but is more related to the fact that, by definition, a degree-2 device,
if it exists, has to be considered as a direct link.

The classical modeling approach consists in computing the ⊥-projection
PReal of BipReal (see Fig. 3(d)), and, then, in modeling it with a random graph
CM obtained with the Configuration Model [17, 18, 19]. This model produces
a random graph with the node degree sequence given in input of the model,
the one of PReal here. We claim that this approach is not satisfying as it does
not allow to capture other properties than the one being part of the model.
For instance, if one wants to also capture local density properties, one has to
look for another model such as the one introduced by Newman [36]. However,
this would lead to the same observation, i.e., no other properties than the ones
injected will be captured and one has to look for another model if additional
properties are desired.

Instead, we propose a model that relies directly on the real bipartite structure
in order to generate graphs that will reproduce several aspects of the actual
data. Our model consists in using the degree sequences of L2 and L3 devices
in the bipartite graph BipReal in order to generate a random bipartite graph
BipGen (see Fig. 3(e)) and project it into a standard graph PGen (see Fig. 3(f)).

2The point-to-point link may actually be seen as a L2 device as it can be the case using
OSPF.
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Following the tradition of random models, the BipGen graph is obtained by
shuffling the links between L2 and L3 nodes while maintaining the node degree
distribution at both levels. Our expectation is that this bipartite representation
of the data will produce a graph PGen close to the actual one PReal, closer than
the CM one, in particular regarding other metrics than node degree distribution
(e.g., the local density, degree correlations, . . . ).

For the evaluation, we use the dataset provided by mrinfo, as described in
Sec. 2.1 and [13]. From the four year daily dataset, we arbitrarily select, each
month, the largest output file, leading thus to 56 global topologies (generally
they exhibit a large connected component having more than 7, 000 nodes). From
this subset, we more specifically focus on the largest topology, corresponding
to the data collected by mrinfo on 2006/09/07.3 We infer the presence of L2
devices following methodology discussed by Mérindol et al. [1, Sec. 2.3].

Note that, although the data obtained by mrinfo could be partial (as they
only capture a subset of the Internet topology relying on multicast-enabled in-
terfaces) and/or biased, the present work is independent from the quality of the
data itself. The problem of improving the measurement tools is different from
the one of identifying relevant properties able to exploit the features observed
in the data, which is what we focus on in this paper. This means that when
we further show the ability of the proposed model to reproduce the character-
istics of real data, it has to be understood as the ability of reproducing the
characteristics as observed in the data, with their flaws.

The rest of the section is devoted to the comparison of core statistics in
order to assess the quality of the models. Sec. 3.2 focuses on statistics on the
projection while Sec. 3.3 studies the statistics related to the bipartite level.
Our purpose is to check whether this simple process provides good results, in
particular regarding metrics that were not injected in the model. Recall that,
during the whole transformation process, we only relied on the L2 and L3 node
degree distributions. Connections between the two layer devices are then simply
randomized without injecting any other structural relationship.

3.2. Projection Evaluation

Here, we evaluate the projection by considering general statistics (Sec. 3.2.1)
before going into details (Sec. 3.2.2).

3.2.1. General Statistics

The first statistics we focus on concern some basic properties observed in
most real-world networks [10], formally presented in Sec. 2.2.1. For each met-
ric, the right part of Table 1 (labeled as “Ratios”) positions the data used in
this paper (the column labeled as “2006”) with respect to the set of 56 IGMP
topologies (the column labeled as “Avg case”), each BipGen topology being gen-
erated 10 times, thus leading to 10 corresponding PGen projections. The left

3Interested reader might find results for the 56 topologies at http://svnet.u-strasbg.fr/
merlin.
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Raw Data Ratios

PReal PGen CM 2006 Avg case
n 9,740 9,749 9,740 1.00 1.00
m 35,567 48,877 35,470 1.37 1.32
δ 7.5 10.3 7.5 1.37 1.32
k 7.3 10.0 7.3 1.37 1.32
d+ 58 234 58 4.03 2.93
tr 0.88 0.53 0.01 0.60 0.72
cc 0.58 0.42 0.00 0.72 0.73

Table 1: Global statistics for projection evaluation

part of Table 1 (labeled as “Raw Data”) provides absolute values for the PGen

and PReal graphs according to the largest topology used over the paper.
From Table 1, one can see that the number of links, m, is significantly higher

for PGen than in the actual graphs (around 37%). It follows naturally that the
density (×10−4 in Table 1) and the average degree are also higher for PGen. As
explained later in this paper, it comes mainly from the fact that there exists
overlaps and significant correlations between the two levels of nodes that are not
necessarily preserved during the randomization process. On the other hand, the
CM graph is particularly close to actual values regarding the same properties.
This is not surprising since this model focuses precisely and only on the degree
sequence of the projection. Looking at the transitivity ratio and the clustering
coefficient, Table 1 reveals that the CM model is unable to take into account
the local density captured by those coefficients. The PGen model seems, on the
contrary, able to capture it (although the values are quite different) in the sense
that the local density is relatively very high compared to the global density, the
key point for this property.

Finally, it is worth noticing that, for several properties, Table 1 reveals that
the selected topology positions itself in a worst case scenario compared to the
averaged results over the 56 topologies. This is particularly obvious for the
highest degree. This indicates that the conclusions drawn from the analysis of
this particular case would also be relevant for the other dataset.

3.2.2. A Deeper Analysis

In order to refine the general statistics provided in Sec. 3.2.1, Fig. 5 presents
the distribution of the degrees for the real data, PReal, and the random graphs
generated by the two methods, PGen and CM. The horizontal axis, in log-scale,
is the degree of the nodes, while the vertical axis, also in log-scale, presents
the inverse cumulative mass. As expected, the CM model is very efficient (it is
superimposed on PReal on Fig. 5) as its process is precisely to mimic the degree
sequence given in input, i.e., the one of PReal.

The slight differences observed stem from the cleaning steps (removing multiple-
links, loops, etc) made during the generation. Regarding the PGen method, one
can see that it is less efficient but it shows a similar distribution. One might
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Figure 5: Inverse cumulative degree distribution
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Figure 7: Average clustering coefficient associ-
ated to a given degree

notice that the main differences are located in the higher degrees. This is also
corroborated by Table 1. The highest degree is significantly higher for the PGen
graph than the real one (234 instead of 53). It partially comes from the fact
that, although the generated bipartite graph respects the degree distribution
of the routers and the L2 devices, it does not ensure that the overlapping of
the L2 devices is preserved, thus increasing the degrees of L3 nodes in the pro-
jection. This potential overlapping and other possible correlations between the
two layers of node will be investigated more precisely in Sec. 3.3 and 4.2.

Fig. 6 presents the inverse cumulative distribution of the clustering coefficient
for the real data, PReal, and graphs generated by the two methods, PGen and
CM. Note that the plots are normalized over the number of nodes with degree
≥ 2 in order to avoid side effects from the nodes of degree 1, for which the
notion of clustering coefficient is inadequate. Fig. 6 clearly shows that the CM

model is unable to provide a correct representation of such a distribution. This
is corroborated by Table 1 as the clustering coefficient as well as the transitivity
ratio are close to 0. This is due to the fact that the model does not consider the
local density and that the number of triangles is very low (only 1, 299 triangles
while the actual graph has over 203, 608 ones). On the other hand, the PGen

graph provides a similar progression, but with a significant shift of the values.
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BipReal BipGen

nL2
10,224 10,224

nL3
9,758 9,758

mbip 25,422 25,415
kL2

2.5 2.5
kL3

2.6 2.6
δbip 0.00025 0.00025
ccbip 0.37 0.27

Table 2: Global statistics for bipartite evaluation

Fig. 7 shows the correlation between the node degree and the average clus-
tering coefficient, i.e., a (x, y) dot means that the average clustering coefficient
for the nodes having degree x is y. Fig. 7 confirms the analysis made above.
Whatever the degree of a node in the CM model, its clustering coefficient re-
mains close to zero. The PGen graph, on the other hand, is able to present a
similar scatter plot shape, although the values are significantly different. More
interestingly, one can see that high clustering coefficients are related to nodes
having a similar degree on both figures.

The main difference concerns small degree nodes. For instance, nodes with
degree 2 in PGen graphs have an average clustering coefficient of 0.1 while actual
ones are close to 0.4. This indicates an interesting characteristic of the two
bipartite structures. Whereas in the actual bipartite, it seems that, when a
router is connected to two others routers, they tend to share L2 devices. This is
absolutely not the case for the PGen graph. This particular difference concerning
degree-2 nodes can be explained by the L2 devices added during the first step
of the PGen generation (see Sec. 3.1). A deeper study of the degree correlations
in the bipartite structure will confirm this statement (see Sec. 4.1).

This first analysis made on the projected graphs confirms the relevance of
using bipartite structure to model the data as it succeeds in reproducing globally

the characteristics of the real network. In particular, it is able to capture metrics
that are not part of the model. This is a significant improvement in itself since
the usual way to obtain properties is to encode them directly in the generation
process, which we claim is not satisfying in a long term perspective.

3.3. Bipartite Evaluation

This section intends to better characterize the differences observed between
real (i.e., BipReal) and L2L3 (i.e., BipGen) projections from the point of view of
the bipartite structure. Following notations presented in Sec. 2.2.2, we compare
standard properties of bipartite graphs.

3.3.1. General Statistics

Table 2 gathers the statistics presented in Sec. 2.2.2 for the real and the
random bipartite graphs, where ⊤ refers to L2 nodes (L2) and ⊥ to L3 nodes
(L3). It shows that all the simple properties are respected by the random
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Figure 8: Correlation between degrees in the bipartite and in the projection

bipartite graph, except for the bipartite clustering coefficient for which a slight
shift is observed. Note that we do not present the ratios given in Table 1 here
since they are all equal to 1 (either for this specific case or the average ones),
except for the bipartite clustering coefficient for which our case ratio (0.73) is
slightly worst than the average value (0.78).

Those observations show that our model succeeds in preserving the global
characteristics of the real bipartite structure but do not provide insight on why
the projections differ. This is why we turn now to a more refined analysis over
those notions.

3.3.2. A Deeper Analysis

First, Fig. 8 presents the correlation between the degree of L3 nodes in
the bipartite graph and their average degree in the projection, i.e., a (x, y) dot
means that the nodes having degree x in the bipartite structure have an average
degree y in the projection.

Fig. 8 shows that the behavior is similar in both cases. In particular, they
both follow a straight line in the log-log scale for x values ≥ 3 with a similar
slope. But two important differences are noticed. First, the values are signifi-
cantly lower for the actual bipartite. This indicates some redundancies in the
bipartite structure, meaning that many neighbors of nodes in the projection
share actually several common L2 devices in the bipartite. This overlapping
pattern induces the lowering of their degree in the projection.

From the BipGen points in Fig. 8, one can conclude that this redundancy
over the L2 nodes is seemingly lost when shuffling the links in the bipartite
graph. Note that this is true in particular for high degree nodes, suggesting
that the difference observed for the highest degree in the projection might be
due to this redundancy. Another difference can be pointed out for low degree
nodes for which the remark stated above does not stand. Degree-1 nodes in
particular present the opposite situation: in real bipartite, the single L2 device
to which they are connected happens to have a relatively high degree (close to
6 on average). This differs both from the tendency observed for nodes with
degree ≥ 3 and from the random case for which the correlation is consistent for
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all degrees.
Fig. 9 and 10 focus on the bipartite clustering coefficient as defined in

Sec. 2.2.2. Fig. 9 presents the cumulative bipartite clustering coefficient of L2
nodes for real and random bipartite graphs, while Fig. 10 shows the correlation
between degree of L2 nodes and their average bipartite clustering coefficient
(i.e., a (x, y) dot means that the average bipartite clustering coefficient for L2
nodes having degree x is y).

Both figures show that the two bipartite graphs have a similar behavior re-
garding this coefficient although a non negligible fraction of nodes in the real
bipartite has a higher clustering coefficient than in our model. This is particu-
larly true for low degree nodes (Fig. 10). This means that low degree L2 nodes
tend to share their neighbors with other L2 nodes. This phenomenon explains
the gap observed in Fig. 9 for high clustering coefficients and corroborates the
difference observed for the global ccbip statistics in Table 2. It strengthens also
our former remark on the redundancy that seems to be more important in the
real bipartite topology than in the random one and that explains the differences
observed on high degree nodes in the projection.

In order to test this hypothesis, we compute two more refined properties.
The bipartite clustering coefficient, although dealing with overlapping of L2
nodes, is defined for pairs of nodes. We might want to use a more direct notion
defined for a single L2 node. One possible solution is to use the redundancy

coefficient [35] defined for all L2 nodes v as the fraction of pairs (u,w) of L3
neighbors of v that are connected to a common L2 node other than v. When
such a case occurs, then (u,w) is linked in the projection whether v exists or
not. Thus, we might consider v as redundant as far as u and w are concerned.
Our analysis shows that the two topologies behave very differently regarding
this coefficient: on average, 27% of L3 nodes pairs connected to a L2 device in
a real case would not be affected by the removing of this device in term of their
link in the projection. This proportion drops to 0.3% in the random case.

The notion above focuses on the L2 nodes that are redundant for the projec-
tion. One might similarly define a notion of redundancy over the links, i.e., the
links that would not modify the projection if they were removed from the bi-
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Figure 11: Effects of bipartite random generation (BipReal to BipGen) on L3 degree

partite graph. Let us call internal link such a link [37]. Our analysis shows that
13.7% of links in the real bipartite graph are internal links, while this proportion
is only 0.2% for the random case.

These two last properties are clearly in relation with the notion of degree
in the projection and, as such, explain partially the differences observed in
Sec. 3.2. A deeper analysis is left for further works but Sec. 4.3 already provides
interesting directions to improve our model.

All the properties explored in Sec. 3 show the benefit one can gain from
modeling such L2-L3 data with bipartite graphs. While it offers support for
generating flat graphs that are able to reproduce qualitatively several and in-
dependent properties of the original data (see Sec. 3.2), it also proposes new
mathematical tools to analyze its structure from the point of view of the bipar-
tite graph itself. In particular, it allows for identifying which aspects of the real
network might stem from random processes and which ones are due to strong
designed patterns.

4. Discussion

In order to better understand the limitations of our model illustrated in
Sec. 3.2 and 3.3, we investigate here two interesting properties: (i) we evaluate
the effects of the bipartite random generation on L3 degrees and, (ii), we study
the redundancy between L2 devices (i.e., we analyze the cases in which removing
a L2 node or a L2-L3 link would affect or not the L3 projection).

While the first property (i), detailed in Sec. 4.1, allows us to emphasize an
interesting correlation between the L3 degree and the L2-L3 degree, the second
property (ii), discussed in Sec. 4.2, allows us to exhibit strong patterns and to
explain how point-to-multipoint connections “behave” in real networks. Finally,
we envision two possible extensions to improve our model in Sec. 4.3.

4.1. Correlation Analysis

Although our model respects the degree distribution of both L2 and L3
devices, there remains one important difference between the raw data and the
proposed bipartite structure. As explained in Sec. 3.1, due to the definition of
bipartite graphs, we first replace any point-to-point connections between routers
by a virtual L2 device connecting them. Although this modeling is strictly
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Figure 12: Degree versus point-to-multipoint degree

equivalent to the point-to-point connection for the projection perspective, it
might have an impact on the structure during the randomization process.

Indeed, as shown in Fig. 11, a simple rewriting in the bipartite graph may
induce an important modification for the degree of the nodes in the projected
graph. This is the case for node B in this virtual example. Before the ran-
domization, it is connected to a unique L3 node (both via node 1 and 2, see
Fig. 11(a)), thus having degree one in the projection. But simply switching
the extremities of links (2, B) and (3, C) leads to a new bipartite graph (see
Fig. 11(b)) in which B is now connected to every nodes (to A via 1 and to all
others via 3), thus increasing drastically its degree in the projection. Obviously,
this example is an extreme case but it illustrates how the randomization process
at the bipartite level may affect the degree properties of the projections.

In order to study how such a randomization may impact the generated
graphs, we investigate how routers are connected to L2 and L3 devices in the
raw data and in random graphs (considering here only “actual” L2 devices).
Fig. 12 shows the correlation between L3 degrees and the number of point-to-
multipoint connections both for real data and random bipartite graphs. On
each plot, a (x, y) dot stands for a router having x links in the bipartite graph,
y of them being with a L2 device with degree strictly higher than 2 (recall that
a L2 node with degree 2 stands precisely for a point-to-point connection).

Fig. 12(a) shows a striking fact: routers with degree higher than 20 have
no connection to real L2 devices but only to point-to-point connections. As
explained above in the example, our randomization process does not verify such
a strong characteristic, as it can be noticed on Fig. 12(b). This means that, in
our model, it is likely that routers having a high L3 degree (i.e., routers having
only point-to-point links) will be connected to actual L2 devices (whose degree
is strictly greater than 2), thus increasing, and potentially significantly, their
degree in the projection.

This observation on real data leads us to explore a more constrained model
able to preserve the correlation between the number of point-to-point and point-
to-multipoint connections of routers collected in the ground data. It relies on
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Figure 13: PoP configuration in London for Level3

splitting the L3 degree into two disjoint values: one for the number of point-
to-point links and one for the number of point-to-multipoint ones. Once such
a couple of degrees for each L3 node has been defined, it is easy to adapt our
former model to cope with this distinction.

Surprisingly, this approach does not improve significantly the properties ob-
served in the generated projections (compared to the ones observed in the real
projections). More precisely, most of the characteristics of the generated hybrid
projections are close to those of the random projections (see Table 1). The only
improvement we observe is in the highest degree which is a bit lower than in
the basic model but still higher than in the dataset (we obtain a ratio of 3.29
instead of 4.03). But the overall degree distribution and correlations studied in
Sec. 3 are not improved. This weak improvement is partially due to the low
number of large degree routers in the raw data set (less then 1% of routers have
a degree higher than 20), limiting so their impact on global properties.

In order to better understand the inadequacy of the hybrid approach, we
also look in detail at the properties of the random hybrid bipartite structure. It
turns out that they match exactly those of the random bipartite graph (shown
in Table 2). Besides, as for the basic model, redundancy patterns are lost in the
randomization process. For instance, the redundancy coefficient is still very low
(0.16%) compared to the one observed in the real bipartite (27%). We pointed
out previously that this is a plausible explanation to the model limitations.
The redundancy coefficient is clearly in relation with the degree properties of
the projections and thus with the quality of such properties in the model. This
last observation explains why this hybrid approach fails to enhance the quality
of the model accuracy. In the next section, we study in more depth the property
related to the redundancy coefficient.

4.2. Redundant Networking Patterns

At the end of Sec. 3.3, we identified an interesting property using the redun-
dancy coefficient and internal links. Indeed, the data considered in this paper
exhibits many redundant Point-of-Presence (PoP) patterns.

Fig. 13 illustrates such redundant patterns between L2 devices observed in
the raw data. In both Fig. 13(a) and 13(b) (both figures come from the Level3
London PoP observed in 2011 and 2007), one can guess that the redundancy
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coefficient and the number of internal links are high. Such network structures,
generally required for physical/logical redundancy and/or load balancing, are
not random. Thus, these structures, favoring the network robustness, imply
that the degree in the projected graph will be lower for the projection of the
real network than for the projection of the random bipartite graph.

On Fig. 13(a), we can observe that the two L2 devices generate two cliques
of i + 1 routers that only differ on EBR1 and EBR2 (while these two routers
are connected through multiple parallel point-to-point links). As a result of the
projection, i links will disappear in the projection of the real graph while it is
likely that, in the random bipartite graph, those links will be distributed over
all the network: the projection will then have a higher average and maximal
degree.

The example given on Fig. 13(b) exacerbates this observation: here, while
two of the six L2 devices4 interconnects the i routers, i − k other routers are
connected again through the four others L2 devices. This kind of configuration
is not that rare and can, at least, partially explain our random model limitations
on metrics previously highlighted.

4.3. Next Steps

Observations made in Sec. 4.1 and Sec. 4.2 open the way to the design of im-
proved models, potentially fixing lacks of the former one. The two improvements
we envision belong to two distinct families of models: random and structural.

On the one hand, we could rely on the strong redundancy patterns high-
lighted in Sec. 4.2. Based on such observations, it becomes natural to attempt
to capture the redundant PoP patterns illustrated in Fig. 13. One possible way
would be to encode the overlapping among L2 devices in the model itself. To
do so, one can extend the bipartite structure into a tripartite one using a third
level to integrate such a redundancy.

In practice, one can encode any overlapping among L2 devices by the addi-
tion of a new node at a third level (L1), connecting both the L2 and L3 devices
they are covering (see [38]). Applying this procedure on the bipartite graph
of Fig. 2(a), for example, would result in the tripartite structure presented in
Fig. 14. Indeed, the nodes 1 and 2 are both connected to nodes B and C in the
bipartite graph. This overlapping is then encoded in the tripartite graph by the
addition of a new third-level node α connecting B, C, 1, and 2.

Although such L1 nodes are artificially introduced, they intend to encode
real networking logical patterns. As explained previously, an L1 interconnection
may result from some L2 logical sub-layer as VLAN. It can be used for traffic
engineering purpose such as fast-rerouting or load balancing to circumvent ca-
pacity limitations. We envision to capture that kind of (frequent) redundant
patterns by encoding them in a third layer of inter-connection: L1 nodes are

4Note that it is possible that such a symmetry involves some VLAN configurations leading
so to two physical L2 devices having three VLANs. Furthermore, such an evolution between
2007 and 2011 suggests an improvement in the architecture capacity.
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Figure 14: A Tripartite view of IP networks

logical (on the contrary to L2 ones that are physical) and represent the subset
of routers that are connected to a given set of L2 nodes.

Once such a tripartite structure has been defined, one can easily apply sim-
ilar randomization processes than the one proposed in this paper. This pro-
cess would shuffle independently L1-L3 links and L1-L2 links but preserve the
structure defined by the new third level. This would result in generating a new
tripartite graph presenting the same redundancy patterns than the original ones
that could eventually be projected into a bipartite graph.

On the other hand, we could follow the path opened by the observations in
Sec. 4.1: there are evidences of a significant correlation between a router degree
and the degrees of L2 devices connected to it. We observed, for instance, that
very small degree routers are connected to high degree L2 devices (on average).
More generally, backbone routers (in an AS core) have a large degree mostly
composed of L3-L3 links, while access routers (providing Internet services to
clients) exhibit a lower degree and, generally, mainly composed of L3-L2 con-
nections. However, although this kind of design features can bring improvements
in the ability of the model to reproduce this specific property, it also comes with
a loss of generality in generated graph properties. As mentioned in the intro-
duction, we believe that random models, such as our tripartite proposal, are
more suited for formal analysis.

The two directions suggested here may take several forms. They would
require to investigate different mapping as well as to define new extensions of
metrics proposed for the bipartite structure analysis. We leave these promising
directions for future work.

5. Topology Generation

This section presents a first implementation of a probabilist topology genera-
tor relying on an intermediate bipartite graph. Our generator is freely available
from http://code.google.com/p/py-bipartite/. It generates bipartite and
projected graphs that can be saved to most common graph formats.

The difference between the generator and the bipartite model presented in
Sec. 3 is that the generator does not use a prescribed degree sequence obtained
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from real bipartite graph but, rather, uses probability distributions. This makes
possible the synthesis of a larger number of graphs by varying the sizes of the
L2 and L3 sets or the parameters of the probability distributions.

5.1. Methodology

The generator applies a few simple steps. First, L2 and L3 degrees are
drawn from a probability distribution. Second, a bipartite graph is generated
by randomly connecting L2 vertices to L3 vertices. Finally, a flat graph is
produced by projecting the bipartite graph on to the L3 set. The remaining of
this section describes each of these steps in further details.

To draw L2 and L3 degrees, the current version of the generator is based on
a discrete power-law distribution. For several practical reasons, we opted for
the Zipf distribution [39], a discrete power-law distribution. The support of the
Zipf is a finite interval of natural numbers [xm, N ], xm ≤ N . Outside of this
interval, the probability mass function equals 0. This property is convenient as
it allows us to define a limit on the maximum degrees that can be drawn. Recall
that large degrees in the bipartite graph can lead to extremely large degrees in
the final projected graph (as already noted in Sec. 3). Thus, this feature of Zipf
distributions is of the highest interest compared to an unbounded Zeta discrete
distribution or a standard Pareto continuous distribution.

The probability mass function of the Zipf distribution is given by

p(k) =
k−α

C(N,α, xm)
. (5)

where k, xm, N ∈ N, N ≥ k ≥ xm, and α ∈ R, α > 1. The term at the denomi-
nator, C, is a normalization factor that ensures the sum of the probability mass
function values over the support interval equals to 1. The value of C(N,α, xm)

is given by
∑N

i=xm

i−s.
To generate a bipartite graph, two distinct Zipf random variables are used:

one for the L2 degrees, the other for the L3 degrees. These degrees must satisfy
the following basic property of bipartite graph: the sum of the L2 degrees must
match the sum of the L3 degrees. To ensure this property, one can check a priori

that their expectations will match, or more formally E(ZL2).nL2 = E(ZL3).nL3,
where nLi is the number of the Li vertices and E(Zi) is the expectation of the
random variable ZLi from which Li degrees are drawn.

The expectation of the Zipf distribution is given by

E(Z) =

N∑

i=xm

i−s+1

C(N,α, xm)
. (6)

Even if the expectations for the sums of degrees match, it is possible that the
degrees actually drawn from the random variables do not have matching sums.
In this case, we follow the suggestion by Newman et al. [18]: we randomly
pick one L2 node and L3 node, discard their prescribed degrees, and draw new
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degrees. This process might need to be repeated several times but remains
practically feasible. Most of all, it ensures that there is no bias in the redrawing
step.

Finally, the bipartite graph is produced by considering that each node has
a number of half-edges equal to its prescribed degree. The half-edges of L2
nodes are then randomly connected to half-edges of L3 nodes. This process is
equivalent to the random generation of BipGen from the degree sequences of
BipReal described in Sec. 3.1.

5.2. Evaluation

This section provides a first evaluation of our generation methodology. We
aim at quantifying the accuracy of our probabilistic redrawing process to mimic
real degree sequences as well as verifying that basic properties observed in bi-
partite graph projections are still coherent with our model results. We rely on
the mrinfo dataset described in Sec. 2.1. For clarity reasons, as in Sec. 3, our
discussion will focus on the graph collected on 2006-09-07. We consider the
BipReal bipartite graphs built from the raw mrinfo data by converting any
L3-L3 edge into a pair of L3-L2 edges and an artificial L2 device, as explained
in Sec. 3.1.

First, the L2 and L3 degrees of the BipReal graphs are modeled by two
Zipf distributions. The exponent of the Zipf distribution is estimated using
the method described by Clauset et al. [40]. Power-law distributed integers
are approximated as continuous reals rounded to the nearest integer and the
maximum likelihood estimator α̂ for the exponent is computed. Unfortunately,
the degree distributions in the BipReal graphs do not show a scaling behavior
along all the degrees. For L2 (respectively L3), the scaling behavior is only
observed for degrees equal to and above xm = 3 (respectively xm = 2). One
of the reasons is the large number of artificial L2 devices added to model the
L3-L3 edges. Another reason is a limitation in the mrinfo measurement itself:
the raw data does not contain non responding IP addresses (the ones seen as
neighbors by some responding router). The estimated exponents for the L2 and
L3 degree distributions are computed based on their respective minimum values
xm.

Table 3 summarizes the BipReal statistics and metrics computed for the
2006-09-07 instance. α̂ denotes the power-law exponent estimate while E(Z) is
the expectation of the power-law distribution.

Fig. 15(a) and Fig. 15(b) show the frequency distribution of L2 and L3 de-
grees above or equal to xm for the selected instance using a log-log scale. Those
two figures also show a plot of the probability mass function of the random vari-
ables using the estimated exponents. The match obtained using the maximum
likelihood estimator to compute the Zipf exponent seems quite satisfying for de-
grees above or equal to xm. For the low L2 degrees (under xm) the Zipf model
over-represents the degree 1 vertices while it under-represents the degree 2 ver-
tices. For the low L3 degrees, the degree 1 vertices are over-represented. This
has an impact on the L2 and L3 degree expectations E(Z) which are smaller
than the respective average degrees k. Although the remaining of this section
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L2 L3

n 10,227 9,758
d+ 58 41
k 2.49 2.61
xm 3 2
α̂ 2.43 2.48
E(Z) 1.85 1.73

Table 3: General statistics and parameter estimates for BipReal

(a) L2 (b) L3

Figure 15: Frequency distribution of degrees and PDF of estimated distribution, for degrees
above or equal to xm

will show that this does not prevent the projected graphs to exhibit realistic
properties, it can be a motivation to use another probability distribution than
the Zipf one. However, we believe that, as mentioned previously in Sec. 4.3,
splitting the L3 degree distribution in its two sub-distributions, L3→L2 degrees
(pure-bipartite) and L3→L3 degrees (pure-L3), could already bring significant
improvements. Indeed, in the pure-bipartite graph, the degrees under xm are
more marginal and the scaling region captured by the Zipf represents a large
fraction (88%) of the L2 degrees. Since our generator intends to be as simple
as possible in term of the number of input parameters, we leave this hybrid
redrawing approach for further works.

To generate graphs according to the above model, the generator is invoked
with a set of eight parameters: three parameters (α, xm, N) for both the L2 and
L3 Zipf random variables and two for the cardinals of the L2 and L3 sets. To
ensure the expectations of the sum of degrees match, the size of the L2 or L3
set can be left undefined and the generator will compute the right size.

To further illustrate the generation process, we generated 100 bipartite
graphs with the parameters estimated from BipReal. As our objective is to
produce projected graphs of the same size as PReal, we fixed the size of the L3
set to 9, 758. We let the size of the L2 set undefined and the generator computed
a size of 9, 149 L2 vertices. Note that the L2 size is slightly lower than in PReal
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(a) Average degree (b) Highest degree

Figure 16: Distribution of the average and highest degrees among the synthetic instances

(10, 227). This can be explained by the expected L2 degree that is slightly larger
than the expected L3 degree while in PReal, the average L2 degree was slightly
lower than the L3 degree.

The expected sums of degrees equal to 16, 961.86 for L2 nodes and to 16, 960.97
for L3 ones.5 During the generation of the 100 synthetic instances, the num-
ber of redraws required was limited to 60, 739 in the worst case and 8, 789 on
average. The minimum number of redraws was 23.

We now focus on the projected graphs. Fig. 16(a) and Fig. 16(b) show the
distribution of, respectively, the average and maximum degrees among the 100
instances generated. We observe that the maximum degree can go as high as
408 but is less than 290 in 50% of the instances. The average degree is 9.73 on
average and tops at 11.85 while the average degree of the PReal graph is 7.29.
As expected, we can notice that differences observed here are in the same order
than the ones revealed with our model using prescribed sequences.

Fig. 17(a) shows the degree distribution in PReal and in the first synthetic
instances. The main difference lies in the number of unconnected nodes: PReal
contains only 18 while the first synthetic instance contains 3, 058. The reason
for this difference is the larger amount of degree-1 L2 vertices in the synthetic
bipartite graphs. Both the PReal and synthetic distributions seem to show a
scaling region up to a certain degree, but the tail seems to be cut off. Note
that this behavior is achieved for the synthetic instances thanks to the highest
degree bound of the Zipf distributions used to generate the bipartite graphs.

Fig. 17(b) shows the clustering coefficient distribution in PReal and in the
first synthetic instance. This instance is representative of the others as their
respective curves would be hardly distinguishable on the figure. Note that the
clustering coefficient is only defined for nodes with a degree higher than 1. This
amounts for 5, 496 nodes (57%) in the synthetic instances while it concerns 7, 777
nodes (80%) in PReal. The reason for such a difference is in the frequency of

5The difference comes from rounding during the computation of the size of the L2 set.
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Figure 17: Comparison of PReal with synthetic instances

very low degree nodes. This explains why the top left point of the inverse CDF
does not match for both curves. In the remaining of the paragraph, we only
consider nodes for which the cc is defined. In PReal, a significant fraction of
the nodes (1, 900, 24%) have a clustering coefficient equal to 0, another large
fraction (2, 961, 38%) have a cc equal to 1, and the remaining nodes have a cc

relatively well distributed between 0 and 1. In the synthetic instances, 3, 995
nodes (72.3%) have a cc equal to 1 and the remaining nodes a cc between 0.08
and 1. The synthetic instances seem to not very well capture the low cc nodes,
but have a behavior similar to PReal for the remaining nodes.

Those results show that our proposed generator is able to provide results
similar to the former model, at least qualitatively. But a careful reader might
notice that the behavior of the clustering coefficient for the generated topology
are different from the model presented in Section 3. Indeed, in Fig. 17(b), the
curve for the synthetic instance is above the one of PReal while in Section 3.2
it was the opposite. This difference can be explained by the generation of the
synthetic degree sequence. Indeed, as mentioned earlier, in order to ensure that
the expectations of the sum of degrees match, we had to release the constraint
on the number of L2 nodes. This, in turn, happened to have a major impact
on the number of degree-2 nodes which are very few in the synthetic instances
compared to the real data. Although studying the impact of generating syn-
thetic degree sequences on the model seems very interesting and should help
understanding better the relation between the parameters, we claim that such
a formal investigation is beyond the scope of the present work and let such a
study for further work.

Finally, in order to assess the quality of the generated bipartite structure
itself, we performed the same analyses as in Section 3.3 by computing the stan-
dard metrics defined at the bipartite level. Those are shown in Table 4. We
observe that, despite some differences, the statistics are quite well reproduced
by the generator. As explained above for the clustering coefficient distribution,
it turned out that the differences are due to the generation process of synthetic
degree distributions. Beside those statistics, we also computed the redundancy
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BipReal synthetic 0
nL2

10,224 9,149
nL3

9,758 9,758
mbip 25,422 17,098
kL2

2.5 1.8
kL3

2.6 1.9
δbip 0.00025 0.00019
ccbip 0.37 0.31

Table 4: Global statistics for the bipartite evaluation of the generator

coefficient and found that it is very different for the generated bipartites (0.5%)
and the real one (27%). We obtained a similar result with the model presented
in Section 3 where the observed redundancy coefficient was only 0.3%.

To summarize, except some limitations that are partially due to the difficulty
to synthesize the raw data, our generator is able to provide almost equivalent
results than the former model. The tradeoff between our generator accuracy
and simplicity (and generality) seems very interesting to reproduce main real
network characteristics.

6. Conclusion

Recent developments in Internet topology discovery have opened new per-
spectives in modeling IP networks. Indeed, when considering IGMP probing
instead of standard traceroute probing, one can distinguish two layers of net-
working devices in the collected dataset: point-to-point connections between
layer-3 (L3) devices (such as routers) and point-to-multipoint routers through
layer-2 (L2) devices (such as switches). Prior to this work, to the best of our
knowledge, those two layers have not been integrated into topology models.

In this paper, we proposed a bipartite model of the Internet topology, i.e., an
Internet model relying on graphs in which vertices are divided into two disjoint
sets (L2 and L3 nodes) such that every edge connects a vertex in one set to one
in the other. Our model has the advantage of being “simple” in the sense that
it does not require more than two metrics as inputs: we only consider the L2
and L3 node degree distributions. In addition, by confronting this model with
measurement data obtained by mrinfo, we proved that it provides interesting
behaviors: it succeeds in reproducing qualitatively different and independent
properties of the original data. This result is particularly promising regarding
the metrics that were not directly injected in the model (such as the clustering
coefficient and some degree correlations) which is in sharp contrast with usual
results in the domain.

In a second step, using metrics defined for bipartite graphs, we provided
evidence of the relation between the properties of the bipartite structure and
the ones of its projection. We showed in particular how strong redundant pat-
terns observed in real data might be detected using the notion of internal link
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and redundancy coefficient defined at the bipartite level. This offers a second
interesting perspective for using the bipartite vision.

Further, based on our bipartite model, we proposed and evaluated an Inter-
net topology generator. It relies on bounded discrete power law distributions
allowing to reproduce sequences of degree in order to generate a large diver-
sity of graphs. Our dataset is freely available (http://svnet.u-strasbg.fr/
merlin) as well as our topology generator (https://code.google.com/p/py-
bipartite/).

Finally, we also envisioned possible future research directions able to capture
redundant patterns and correlations in L3 and L2-L3 degrees. Those directions
seem promising and future work should reveal how they can improve the con-
tributions presented in this paper.
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