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Basic notions for the analysis of large two-mode networks
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c LARGEPA, Université Paris 2, 13 Avenue Bosquet, 75007 Paris, France

Many large real-world networks actually have a two-mode nature: their nodes may be separated into two classes, the links being between nodes of 
different classes only. Despite this, and despite the fact that many ad hoc tools have been designed for the study of special cases, very few exist to 
analyse (describe, extract relevant information) such networks in a systematic way. We propose here an extension of the most basic notions used 
nowadays to analyse large one-mode networks (the classical case) to the two-mode case. To achieve this, we introduce a set of simple statistics, 
which we discuss by comparing their values on a representative set of real-world networks and on their random versions. This makes it possible 
to evaluate their relevance in capturing properties of interest in two-mode networks.
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1. Introduction

A bipartite graph is a triplet G = (⊤, ⊥, E) where ⊤ is the

set of top nodes, ⊥ is the set of bottom nodes, and E ⊆ ⊤× ⊥

is the set of links. The difference with classical graphs lies in

the fact that the nodes are in two disjoint sets, and that the links

always are between a node of one set and a node of the other. In

other words, there cannot be any link between two nodes in the

same set.

Many large real-world networks of interest may be mod-

eled naturally by a bipartite graph. These networks are called

two-mode networks, or affiliation networks when they represent

groups and members (i.e., each link represents a social actor’s

affiliation to a group). Let us cite for instance the actors–movies

network, where each actor is linked to the movies he/she played

in (e.g., Watts and Strogatz, 1998; Newman et al., 2001a), author-

ing networks, where the authors are linked to the paper they

signed (e.g., Newman, 2001a,b), occurrence networks, where

the words occurring in a book are linked to the sentences of

the book they appear in (e.g., Ferrer and Solé, 2001), company
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board networks, where the board members are linked to the com-

panies they lead (e.g., Robins and Alexander, 2004; Conyon and

Muldoon, 2004; Battiston and Catanzaro, 2004), and peer-to-

peer exchange networks in which peers are linked to the data

they provide/search (e.g., Fessant et al., 2004; Voulgaris et al.,

2004; Guillaume et al., 2005, 2004).

Although there is nowadays a significant amount of notions

and tools to analyse (classical) one-mode networks, there is still

a lack of such results fitting the needs for analysing two-mode

networks. In such cases, one generally has to transform the two-

mode network into a one-mode one and/or to introduce ad hoc

notions. In the first case, there is an important loss of information,

as well as other problems that we detail below (Section 4). In

the second case, there is often a lack of rigor and generality,

which makes the relevance of the obtained results difficult to

evaluate.

The aim of this contribution is to provide a set of simple

statistics which will make it possible and easy to analyse real-

world two-mode networks (or at least make the first step towards

this goal) while keeping their bipartite nature.

To achieve this, we will first present an overview of the basic

notions and methodologies used in the analysis of one-mode net-

works. We will then show how people usually transform bipartite

networks into one-mode networks in order to be able to analyse

them with the tools designed for this case. This will lead us to a

description of the state of the art, then of the methodology used
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in this paper. Finally, we will present and evaluate the statistics

we propose for the analysis of two-mode networks.

Before entering in the core of this contribution, let us notice

that we only deal here with simple,1 undirected, unweighted,

static networks. Considering directed, weighted, and/or dynamic

networks is out of the scope of this paper; we will discuss this

further in Section 11. Moreover, in all the cases we will con-

sider here (and in most real-world cases), the graph has a huge

connected component, i.e., there exists a path in the graph from

almost any node to any other. In the following, we will make

our statistics on the whole graph everywhere this makes sense,

but we will restrict ourselves to the largest connected compo-

nent where this is necessary (namely for distance computations).

Again, this is classical in the literature and has no significant

impact on our results.

2. Classical notions

Let us consider a (classical) graph G = (V, E), where V is the

set of nodes and E ⊆ V × V is the set of links. We will denote

by N(v) = {u ∈ V, (u, v) ∈ E} the neighbourhood of a node v,

the elements of N(v) being the neighbours of v. The number of

nodes in N(v) is the degree of v: d◦(v) = |N(v)|.

The most basic statistics describing such a graph are its

size n = |V |, its number of links m = |E|, and its average

degree k = (2m/n). Its density δ(G) = (2m/n(n − 1)), i.e., the

number of existing links divided by the number of possible

links, also is an important notion. It is nothing but the prob-

ability that two randomly chosen (distinct) nodes are linked

together.

Going further, one may define the distance between two nodes

in the graph as the minimal number of links one has to fol-

low to go from one node to the other. Note that this only make

sense if there is a path between the two nodes, i.e., if they are

in the same connected component. As explained above, in all

the paper, we will only consider distances between the nodes

in the largest connected component (and we will give its size).

Then, the average distance of the graph, d(G), is nothing but

the average of the distances for all pairs of nodes in the largest

connected component.

The statistics described above are the ones we will call the

basic statistics. The next one is not so classical. It is the degree

distribution, i.e., for all integer i the fraction pi of nodes of

degree i. In other words, it is the probability that a randomly

chosen node has degree i. One may also observe the correlations

between degrees, defined as the average degree of the neighbours

of nodes of degree i, for each integer i. Other notions concerning

degrees have been studied, like assortativity (Newman, 2003a)

for instance, but we do not detail this here.

The last kind of statistics we will discuss here aims at cap-

turing a notion of overlap: it measures the probability that two

1 This means that we do not allow loops (links from a node to itself) nor

multiple links between two given nodes. This is classical in studies of large

networks: loops are managed separately, if some occur, and multiple links are

generally encoded as link weighs, or simply ignored.

nodes are linked together, provided they have a neighbour in

common. In other words, it is the probability that any two neigh-

bours of any node are linked together. This may be done using

two slightly different notions, both called clustering coefficient,

among which there often is a confusion in the literature.2 Both

will be useful in the following therefore we discuss them pre-

cisely here.

The first one computes the probability, for any given node

chosen at random, that two neighbours of this node are linked

together. It therefore relies on the notion of clustering coefficient

for any node v of degree at least 2, defined by

cc•(v) =
|EN(v)|

(|N(v)|(|N(v)| − 1))/2
=

2|EN(v)|

d◦(v)(d◦(v) − 1)

where EN(v) = E ∩ (N(v) × N(v)) is the set of links between

neighbours of v. In other words, cc•(v) is the probability that

two neighbours of v are linked together. Notice that it is nothing

but the density of the neighbourhood of v, and in this sense it

captures the local density. The clustering coefficient of the graph

itself is the average of this value for all the nodes:

cc•(G) =

∑

v ∈ V

cc•(v)

|{v ∈ V, d◦(v) ≥ 2}|

One may define directly another notion of clustering coefficient

of G as a whole as follows:

cc∨(G) =
3N�

N∨

where N� denotes the number of triangles, i.e., sets of three

nodes with three links in G, and N∨ denotes the number of

connected triples, i.e., sets of three nodes with at least two links,

in G. This notion of clustering is slightly different from the

previous one since it gives the probability, when one chooses

two links with one extremity in common, that the two other

extremities are linked together.

Both notions have their own drawbacks and advantages. The

first one has the advantage of giving a value for each node, which

makes it possible to observe the distribution of this value and

the correlations between this value and the degree, for instance.

It however has the drawback of reducing the role of high degree

nodes. Moreover, importantly, these definitions capture slightly

different notions, which may both be relevant depending on the

context. We will therefore use both notions in the following.

This is why we introduced two different notations, namely cc•

and cc∨, which emphasises the fact that one is centered on nodes

and the other is centered on pairs of links with one extremity in

common.

One may consider many other statistics to describe large

networks. Let us cite for instance centrality measures, vari-

ous decompositions, and notions capturing the ability of each

node to spread information in the network. See Wasserman and

Faust (1994), Albert and Barabási (2002), Newman (2003b),

2 Some authors make a difference by calling the first notion clustering coef-

ficient and the second one transitivity ratio, but we prefer to follow the most

classical conventions of large network studies here.
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Bornholdt and Schuster (2003), and Brandes and Erlebach

(2005) for surveys from different perspectives. We will not con-

sider here such statistics. Instead, we will focus on the most

simple ones, described above, because they play a central role

in recent studies of large networks, which we call post-1998

studies, as we will explain in the next section.

3. One-mode large real-world networks

Many large real-world networks have been studied in the

literature, ranging from technological networks (power grids,

Internet) to social ones (collaboration networks, economical

relations), or from biological ones (protein interactions, brain

topology) to linguistic ones (co-occurrence networks, syn-

onymy networks). See Wasserman and Faust (1994), Albert

and Barabási (2002), Newman (2003b), Bornholdt and Schuster

(2003), and Brandes and Erlebach (2005) and references therein

for detailed examples.

It appeared recently (e.g., Watts and Strogatz, 1998; Albert

and Barabási, 2002; Newman, 2003b; Bornholdt and Schuster,

2003) that most of these large real-world networks have several

nontrivial properties in common. This was unexpected, and led

to an important stream of studies, developing a new kind of

network analysis which we will call post-1998 network analysis

(as it followed the seminal paper Watts and Strogatz, 1998).

This section is devoted to an overview and discussion of these

properties (based on the definitions given in previous section),

on which the rest of the paper will rely. We will use the same

notations as in Section 2.

We are concerned here with large networks only, which means

that n is large. In most real-world cases, it appeared that m is

of the same order of magnitude as n, i.e., the average degree k

is small compared to n. Therefore, the density generally is very

small: δ(G) = (kn/n(n − 1)) ∼ (k/n), which is close to 0 since

n is much larger than k in general. We will always suppose we

are in this case in the following.

It is now a well-known fact that the average distance in

large real-world networks is in general very small (small-world

effect), even in very large ones, see for instance Milgram

(1967) and Watts and Strogatz (1998). This is actually true

in most graphs, since a small amount of randomness is suffi-

cient to ensure this, see for instance Watts and Strogatz (1998),

Kleinberg (2000a,b), Bollobas (2001), and Erdös and Rényi

(1959). This property, though it may have important conse-

quences and should be taken into account, should therefore not

be considered as a significant property of a given network (see

Section 6).

Another issue which received recently much attention, see for

instance Faloutsos et al. (1999) and Barabasi and Albert (1999),

is the fact that the degree distribution3 of most large real-world

networks is highly heterogeneous, often well fitted by a power

law: pk ∼ k−α for an exponent α generally between 2 and 3.5.

This means that, despite most nodes have a low degree, there

3 See Appendix A for more detailed definitions and hints on how to understand

this kind of statistics.

exists nodes with a very high degree. This implies in general that

the average degree is not a significant property, bringing much

less information than the exponent α which is a measurement of

the heterogeneity of degrees.

If one samples a random network with the same size (i.e.,

as many nodes and links) as a given real-world one,4 thus with

the same density, then the obtained degree distribution is qual-

itatively different: it follows a Poisson law. This means that the

heterogeneous degree distribution is not a trivial property, in the

sense that it makes large real-world networks very different from

most graphs (of which a random graph is typical). The degree

correlations and other properties on degrees, however, behave

differently depending on the network under concern.

Going further, the clustering coefficients (according to both

definitions) are quite large in most real-world networks: despite

most pairs of nodes are not linked together (the density is very

low), if two nodes have a neighbour in common then they are

linked together with a probability significantly higher than 0

(the local density is high). However, the clustering coefficient

distributions, their correlations with degrees, and other proper-

ties related to clustering, behave differently depending on the

network under concern.

If, as above, one samples a random graph with the same size

as an original one then the two definitions of clustering coef-

ficients are equivalent and equal to the density. The clustering

coefficients therefore are very low in this case. If one samples

a random graph with the same number of nodes and the very

same degree distribution5 then the clustering coefficients still

are very small, close to 0 (Newman, 2003b). Clustering coeffi-

cients therefore capture a property of networks which is not a

trivial consequence of their degree distribution.

Finally, it was observed that the vast majority of large real-

world networks have a very low density, a small average distance,

a highly heterogeneous degree distribution and high clustering

coefficients. These two last properties make them very differ-

ent from random graphs (both purely random and random with

prescribed degree distribution). More subtle properties may be

studied, but until now no other one appeared to be a general fea-

ture of most large real-world networks. The properties described

here therefore serve, in most post-1998 studies, as a basis for the

analysis of large real-world networks, and so we will focus on

them in the following. Our aim will be to define and discuss their

equivalent for two-mode networks/bipartite graphs.

4. Projection

Let us now consider a large two-mode network modeled as a

bipartite graph G = (⊤, ⊥, E). The ⊥-projection of G is the

graph G⊥ = (⊥, E⊥) in which two nodes (of ⊥) are linked

4 We consider here a network chosen uniformly at random among the ones

having this size, using typically the Erdös and Rényı́ model (Bollobas, 2001;

Erdös and Rényi, 1959).
5 We consider here a network chosen uniformly at random among the ones

having this number of nodes and this degree distribution, using typically the

configuration model (Bender and Canfield, 1978; Bollobas, 2001; Molloy and

Reed, 1995, 1998; Viger and Latapy, 2005).
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Fig. 1. An example of bipartite graph (center), together with its ⊤-projection (left) and its ⊥-projection (right).

together if they have at least one neighbour in common (in

⊤) in G: E⊥ = {(u, v), ∃x ∈ ⊤ : (u, x) ∈ E and (v, x) ∈ E}. The

⊤-projection G⊤ is defined dually. See Fig. 1 for an example.

In order to be able to use the many notions defined on

one-mode networks, and to compare a particular network to

others, one generally transforms a two-mode network into its

⊥-projection, often called the one-mode version of the net-

work. This was typically done for the two-mode networks we

presented in Section 1: the actors–movies network is trans-

formed into its ⊥-projection where two actors are linked if they

acted together in a movie (e.g., Watts and Strogatz, 1998); the

authoring networks are transformed into their ⊥-projections,

i.e., coauthoring networks where two authors are linked if they

signed a paper together (e.g., Newman, 2001a,b; Newman et al.,

2001a); the occurrence networks are transformed into their ⊥-

projections, i.e., co-occurrence networks where two words are

linked if they appear in the same sentence (e.g., Ferrer and Solé,

2001); the company board networks are transformed into their

⊥-projections where two persons are linked together if they are

member of a same board (e.g., Robins and Alexander, 2004;

Conyon and Muldoon, 2004; Battiston and Catanzaro, 2004;

Kogut and Walker, 2003; Kogut et al., 2006); and the peer-to-

peer exchange networks are transformed into their ⊥-projections

where two data are linked together if they are provided/searched

by a same peer (e.g., Fessant et al., 2004; Voulgaris et al., 2004;

Guillaume et al., 2005, 2004).

This approach is of course relevant since the projections under

study make sense, and also encode much information. Moreover,

this allows the study of two-mode networks using the powerful

tools and notions provided for classical, one-mode, networks.

We however argue that in most cases there would be a significant

gain in considering the bipartite version of the data. The main

reasons are as follows:

• Most importantly, there is much information in the bipartite

structure which may disappear after projection. For instance,

the fact that two actors played in many movies together, and

the size of these movies, brings much information which

is not available in the projection, in which they are sim-

ply linked together. This loss of information is particularly

clear when one notices that there are many bipartite graphs

which lead to the same projection (while each bipartite graph

has only one ⊤- and one ⊥-projection), see Guillaume and

Latapy (2004a,b). The fact that much important information

is encoded in the bipartite structure is a central point which

we will illustrate all along this paper.

• Notice that each top node of degree d induces (d(d − 1)/2)

links in the ⊥-projection, and conversely. This induces an

inflation of the number of links when one goes from a bipartite

graph to its projection, see Table 1. In our examples, this is

particularly true for peer-to-peer: the number of links reaches

more than 10 billions in the ⊥-projection, which needs more

than 80 GB of central memory to be stored using classical

(compact) encodings (while the original two-mode network

needs less than 500 MB). This is a typical case in which the

huge number of links induced by the projection is responsible

for limitations on the computations we are able to handle on

the graph in practice.

• Finally, some properties of the projection may be due to the

projection process rather than the underlying data itself. For

instance, it is shown in Newman et al. (2001a) and Guillaume

and Latapy (2004a,b) that when considering the projection of

a random bipartite graph, one observes high clustering coef-

ficients. Therefore, high clustering coefficients in projections

may not be viewed as significant properties: they are conse-

quences of the bipartite nature of the underlying two-mode

network. Likewise, the projection may lead to very dense

networks, even if the bipartite version is not dense; this is

particularly the case here for the ⊤-projection of occurrences.

One way to avoid some of these problems is to use a weighted

projection. For instance, the weight of a link (u, v) between two

bottom nodes in the weighted ⊥-projection may be defined as

the number of (top) neighbours u and v have in common in the

bipartite graph. Other definitions may be considered: each top

node may contribute to each link it induces in the ⊥-projection

in a way that decreases with its degree, for instance. In all cases,

and despite such an approach is relevant and promising, one still

loses a significant amount of information, and one transforms

the problem of analysing a bipartite structure into the problem of

Table 1

Number of links in two-mode networks and their projections, for the four examples we will describe in Section 6

Actors–movies Authoring Occurrences Peer-to-peer

Number of links in G 1,470,418 45,904 183,363 55,829,392

Number of links in G⊥ 15,038,083 29,552 392,066 10,142,780,673

Number of links in G⊤ 20,490,112 134,492 51,405,275 1,085,217,140
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analysing a weighted one, which is not easier. Indeed, despite the

fact that important progress has recently be done in this direction

(Barrat et al., 2004; Barthélemy et al., 2005; Newman, 2004),

much remains to be done before being able to analyse precisely

the structure of weighted networks.

Our aim in this paper is to provide an alternative to the pro-

jection approach, leading to a better understanding of two-mode

networks. It must however be clear that (weighted) projection

approaches also lead to significant insight, and we consider that

the two approaches should be used as complementary means to

understand in details the properties of two-mode networks.

5. State of the art

Two-mode networks have been studied in an amazingly wide

variety of context. Let us cite for instance company boards

(e.g., Robins and Alexander, 2004; Conyon and Muldoon, 2004;

Battiston and Catanzaro, 2004; Newman et al., 2001a), sport

teams (e.g., Bonacich, 1972; Onody and de Castro, 2004), movie

actors (e.g., Watts and Strogatz, 1998; Newman et al., 2001a),

management science (e.g., Kogut and Walker, 2003; Kogut et

al., 2006), human sexual relations (e.g., Ergun, 2002; Lind et al.,

2005), attendance to events (e.g., Faust et al., 2002; Freeman,

2003), financial networks (e.g., Caldarelli et al., 2004; Dahui

et al., 2005; Garlaschelli et al., 2004; Young-Choon, 1998),

recommendation networks (e.g., Perugini et al., 2003), theatre

performances (e.g., Agneessens et al., 2004; Uzzi and Spiro,

2005), politic activism (e.g., Boudourides and Botetzagias,

2004), student course registrations (e.g., Holme et al., 2004),

word co-occurrences (e.g., Dhillon, 2001; Véronis and Ide,

1995), file sharing (e.g., Iamnitchi et al., 2004; Fessant et al.,

2004; Voulgaris et al., 2004; Guillaume et al., 2004, 2005), and

scientific authoring (e.g., Roth and Bourgine, 2005; Morris and

Yen, 2005; Newman, 2001a,b, 2000).

These studies are made in disciplines as various as social sci-

ences, computer science, linguistics and physics, which makes

the literature very rich. In all these contexts, scientists face

two-mode networks which they try to analyse, with various

motivations and tools. They all have one feature in common:

they insist on the fact that the bipartite nature of their data plays

an important role, and should be taken into account. They also

emphasise the lack of notions and tools for doing so.

Because of this lack of relevant notions and tools, most

authors have no choice but to consider the most relevant projec-

tion of their two-mode network. This leads for instance to studies

of interlocks between companies, see Robins and Alexander

(2004) and Conyon and Muldoon (2004), studies of coauthoring

networks, see Newman (2000, 2001a,b), or studies of exchanges

between peers in peer-to-peer systems, see Fessant et al. (2004),

Voulgaris et al. (2004), and Guillaume et al. (2004, 2005).

Many authors realise that this approach is not sufficient, and

try to use the bipartite nature of their data. This is generally done

by combining the use of projections and the use of basic bipartite

statistics, mostly degrees. For instance, one studies the coau-

thoring relations (typically a projection) and the distributions of

the number of papers signed by authors and of the number of

authors of papers (i.e., the bipartite degree distributions, see Sec-

tion 7) (Newman, 2000). Authors may also consider weighted

projections, see for instance Battiston and Catanzaro (2004),

Morris and Yen (2005), Guillaume et al. (2004, 2005), Iamnitchi

et al. (2004), and Newman (2000), which has advantages and

drawbacks, as discussed in Section 4.

Going further, some authors introduce bipartite notions

designed for the case under study. This is often implicit and

restricted to very basic properties, like the case of degree dis-

tributions cited above (which essentially capture the size of

events, and the number of events in which persons or objects

are involved, in most cases). But some authors introduce more

subtle notions, like notions of overlap (Bonacich, 1972), clus-

tering (Borgatti and Everett, 1997; Robins and Alexander, 2004;

Lind et al., 2005), centrality measures (Faust, 1997), degree cor-

relations (Peltomaki et al., 2005), and others (Young-Choon,

1998; Ergun, 2002; Caldarelli et al., 2004; Perugini et al., 2003;

Iamnitchi et al., 2004; Borgatti and Everett, 1997; Robins and

Alexander, 2004; Lind et al., 2005). Most of these notions are

ad hoc and specific to the case under study, but some of them

actually are very general or may be generalised. One of our

central aims here is to give a complete and unified framework

for the most general of these notions. We will cite appropriate

references when the notions we will discuss have already been

considered previously.

As already said, a different and interesting approach is devel-

oped in Newman et al. (2001a) and Guillaume and Latapy

(2004a,b). The authors study the expected properties of the pro-

jections given the properties (namely the degree distributions) of

the underlying bipartite graph. They show in particular that the

expected clustering coefficient in the projections is large, and

give an efficient estimation formula; this means that a high clus-

tering coefficient in a projection may be seen as a consequence of

the underlying bipartite structure rather than a specific property

of the network. Conversely, if the clustering coefficient of the

projection is different from the expected one, it means that the

underlying bipartite structure has nontrivial properties responsi-

ble for it. These properties should therefore be further analysed.

Our aim here is to propose notions and tools for such an analysis.

This approach has been used with profit in several cases, see for

instance Newman et al. (2001a, 2002), Conyon and Muldoon

(2004), and Uzzi and Spiro (2005).

Finally, a significant effort has already been made to achieve

the goal we have here, or similar goals: some studies propose

general approaches for the analysis of two-mode networks. This

is for instance the case of Faust (1997), focused on centrality

measures, of Breiger (1974), which proposes to consider both

projections and compare them, and of Bonacich (1972), which

studies in depth the notion of overlap.

Let us cite in particular Borgatti and Everett (1997), which has

the very same aim as we have here, but belongs to what we call c

lassical, or pre-1998, social network analysis. In particular, they

do not use the comparison with random graphs, central to our

contribution (see Section 6), which probably reflects the fact that

this method was not as usual in 1997 as it is now. For the same

reasons, they do not deal with clustering questions, which play

a key role here. On the other hand, they address some important

issues (like visualisation) which we consider as out of the scope
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of our contribution. It is interesting to see that, although the

initially claimed aim is very similar, the final contributions are

significantly different.

Other researchers propose formalisms suited for the anal-

ysis of two-mode networks, often based on a generalisation

of well known models. Let us cite Galois lattices (e.g., Roth

and Bourgine, 2005), correspondence analysis (e.g., Roberts,

2000; Faust, 2005), extensions of block models (e.g., Borgatti

and Everett, 1992; Doreian et al., 2004) and p* models (e.g.,

Skvoretz and Faust, 1999; Faust et al., 2002; Agneessens et al.,

2004) and a particularly original approach based on Boolean

algebra in Bonacich (1978).

Therefore, there already exists quite an impressive amount of

work on two-mode networks, and on methods for their analy-

sis. However, we observe that many of the approaches proposed

previously, though very relevant, are hardly applicable to large

networks, typically networks with several hundreds of thousands

nodes. Moreover, they often rely on quite complex notions and

formalisms, which are difficult to handle for people only inter-

ested in analysing a given network. Finally, none of them consists

in a generalisation of the post-1998 notions outlined in Section 2,

which are nowadays widely used to analyse one-mode networks.

We propose here such a contribution. We design simple

notions and methods to analyse very large two-mode networks,

which could be used as a first step in particular studies. These

methods may then be extended to fit the details of particular

cases, and we explain how to do so. Moreover, they are not only

extensions of classical notions; we go further by proposing new

notions designed specifically for the bipartite case. Our approach

may also be applied to smaller networks, as long as they are not

too small (typically thousands of nodes).

As explained above, the topic has a deep interdisciplinary

nature. In order to make our techniques usable by a wide audi-

ence, we give a didactic presentation and we focus on basic

notions. Let us insist however on the fact that this presentation

is rigorous and formal, and, as will appear all along the paper, the

results are sufficient to bring a significant amount of information

on a given network.

Finally, we insist on the fact that analysing properly and in

details a given network is a difficult task, which may be han-

dled using different methods. There is no unique way to obtain

relevant information and results in such cases. Moreover, much

resides in the interpretations made from the outputs of these

approaches. All the ones we have cited above, and the one we

propose here, should therefore be seen as complementary rather

than concurrent.

Let us conclude this section by noticing that, because of

the wide dispersion of contributions due to the interdisciplinary

nature of the topic (and the fact that it received continuous atten-

tion since several decades), we certainly missed some references.

We however expect that the ones we have cited span well the

contributions on the topic.

6. Methodology and data

As already said, the methodology we follow has mainly been

developed since the publication of the seminal paper (Watts and

Strogatz, 1998), and thus we call it the post-1998 approach.

It relies on the introduction of statistical parameters aimed at

capturing a given feature of networks under concern, and then

on the comparison of the behaviours of real-world networks

concerning these parameters as compared to random ones.6 The

underlying principle is that a parameter which behaves similarly

on real-world and random networks is just a property of most

networks (of which random networks are representatives) and so,

though it may play an important role, it should not be considered

as surprising and meaningful concerning the description of the

real-world network. Instead, one generally looks for properties

which make real-world networks different from most networks.

Our contribution here relies on this methodology. Namely, we

will define statistical parameters aimed at capturing properties of

bipartite graphs, and then evaluate the relevance of these param-

eters by comparing their values on random bipartite graphs and

on real-world two-mode networks.

Just like one considers purely random graphs and random

graphs with prescribed degree distributions in the case of one-

mode networks, we will use both purely random bipartite graphs

and random bipartite graphs with prescribed degree distribu-

tions. Such graphs are constructed easily by extending the

one-mode case, see for instance Newman et al. (2001a) and

Guillaume and Latapy (2004b).7 Note that these models (both

the one-mode and two-mode versions) generate graphs that are

not necessarily simple: they may contain some loops and multi-

ple links. There are however very few such links, and simply

removing them generally has no impact on the results. This

is what is generally done in the literature, and we will follow

this convention here: in our context, it cannot have a significant

impact.8

Notice also that the properties of random graphs may be

formally studied, see for instance Newman et al. (2001a) and

Guillaume and Latapy (2004a). One may also evaluate the mean

properties of these graphs, and their standard deviations, using

typically approaches like the ones developed in the p-star or

exponential random graph models (ERGM) frameworks (e.g.,

Robins et al., 2007).9 However, our purpose here is only to iden-

tify properties that make real-world data different from random

ones, not to quantify these differences precisely. We will there-

fore only compare empirical data to a typical random graph of

the considered class (the fact that it is typical was checked by

reproducing many times our experiments, which led to the same

observations), and leave these investigations for further work,

see Section 11.

6 In the whole paper, the term random refers to object chosen uniformly at

random in the given class: every element of the class has the same probability

to be chosen. For descriptions on how to generate such graphs, we refer to

Erdös and Rényi (1959), Bollobas (2001), Newman et al. (2001a), Guillaume

and Latapy (2004b), and Viger and Latapy (2005).
7 We provide a program generating such graphs at http://jlguillaume.free.fr/

www/programs.php.
8 One may also use the methods described in Viger and Latapy (2005) to obtain

directly simple (connected) graphs, but this is more intricate, and unnecessary

in our context.
9 See http://www.sna.unimelb.edu.au/pnet/pnet.html and http://csde.

washington.edu/statnet/.
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Table 2

Basic bipartite statistics on our four examples and on random bipartite graphs with the same size (same number of nodes and links, and thus same density and average

degree as the real-world ones)

Actors–movies Authoring Occurrences Peer-to-peer

Real Random Real Random Real Random Real Random

n⊤ 127,823 idem 19,885 idem 13,587 idem 1,986,588 idem

n⊥ 383,640 idem 16,400 idem 9,264 idem 5,380,546 idem

m 1,470,418 idem 45,904 idem 183,363 idem 55,829,392 idem

k⊤ 11.5 idem 2.3 idem 13.5 idem 28.1 idem

k⊥ 3.8 idem 2.8 idem 19.8 idem 10.4 idem

k 5.7 idem 2.5 idem 16.0 idem 15.2 idem

δ 0.000030 idem 0.00014 idem 0.0015 idem 0.0000052 idem

lcc⊤ 124,414 125,944 16,209 18,512 13,579 13,587 1,986,343 1,426,978

lcc⊥ 374,511 381,431 11,654 14,607 9,246 9,264 5,380,507 5,054,689

d⊤ 6.8 5.3 13.1 9.3 3.1 3.0 5.3 5.0

d⊥ 7.3 5.8 13.9 9.9 3.8 3.7 5.4 4.9

d 7.2 5.8 13.5 9.6 3.4 3.2 5.3 4.9

In order to complete our comparison between random and

real-world cases, we also need a set of real-world two-mode

networks. We chose the following four instances, which corre-

spond to the examples given in Section 1 and have the advantage

of spanning well the variety of cases met in practice:

• the actors–movies network as obtained from the Internet

Movie Data Base 10 in 2005, concerning n⊥ = 127, 823

actors and n⊤ = 383, 640 movies, with m = 1, 470, 418

links;

• an authoring network obtained from the online arXiv

preprint repository,11 with n⊤ = 19, 885 papers, n⊥ =

16, 400 authors, and m = 45, 904 links;

• an occurrence graph obtained from a version of the Bible12

which contains n⊥ = 9, 264 words and n⊤ = 13, 587 sen-

tences with m = 183, 363 links;

• a peer-to-peer exchange network obtained by register-

ing all the exchanges processed by a large server

during 48 h (Guillaume et al., 2004, 2005), leading

to n⊤ = 1, 986, 588peers, n⊥ = 5, 380, 546data, and m =

55, 829, 392 links;

We provide these data, together with the programs computing

the statistics described in this paper.13 The key point here is that

this dataset spans quite well the variety of context in which large

two-mode networks appear, as well as the variety of data sizes.

Let us insist on the fact that our aim here is not to derive

conclusions on these particular networks: we only use them as

real-world instances to illustrate the use of our results and to

discuss their generality. This is why we do not detail more the

way they are gathered and their relevance to any study. This is

discussed in various references and is out of the scope of this

paper.

10 See http://www.imdb.com/.
11 See http://arxiv.org/.
12 See http://www.tniv.info/bible/.
13 See http://www.liafa.jussieu.fr/latapy/Bip/.

7. Basic bipartite statistics

The basic statistics on bipartite graphs are direct extensions

of the ones on classical (one-mode) graphs. One just has to be

careful with the fact that some classical properties give birth to

twin bipartite properties while others must be redefined.

Let us consider a bipartite graph G = (⊤, ⊥, E). We denote

by n⊤ = |⊤| and n⊥ = | ⊥ | the numbers of top and bottom

nodes, respectively. We denote by m = |E| the number of links

in the network. This leads to a top average degree k⊤ = (m/n⊤)

and a bottom one k⊥ = (m/n⊥). One may obtain the average

degree in the graph G′ = (⊤∪ ⊥, E) as k = (2m/n⊤ + n⊥) =

(n⊤k⊤ + n⊥k⊥)/(n⊤ + n⊥). Finally, we obtain the bipartite

density δ(G) = (m/n⊤n⊥), i.e., the fraction of existing links

with respect to possible ones. Note that this is different from the

density of G′: δ(G′) = (2m/(n⊤ + n⊥)(n⊤ + n⊥ − 1)), which

is much lower.

Concerning the average distance (again, we restrict distance

computations14 to the largest connected component (denoted

by lcc), which contains the vast majority of nodes, see Table 2),

there is no crucial difference except that one may be interested

by the average distance between top nodes and between bottom

nodes,d⊤ andd⊥. These values may be significantly different but

one may expect that they are very close since a path between two

top (respectively bottom) nodes is nothing but a path between

bottom (respectively top) nodes with two additional links. Notice

that there is no simple way to derive the average distance d in

G′ from the bipartite statistics d⊥ and d⊤.

The values obtained for each of these basic properties on

our four examples, together with values obtained for random

bipartite networks with the same size, are given in Table 2. It

appears clearly that our examples may be considered as large

14 Distance computations are expensive; the exact value cannot be computed

in a reasonable amount of time for data of the size we consider here. Instead, we

approximate the average by computing the average distance from a subset of the

nodes to all the others, this subset being large enough to ensure that increasing

it does not improve our estimation anymore, which is a classical method. All

other computations are exact.
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Fig. 2. Degree distributions in our four real-world two-mode networks. First row: for top nodes; second row: for bottom nodes.

networks with small average degrees, compared to their size.

The density therefore is small. Moreover, the average distance

is also small. These basic properties are very similar to what is

observed on one-mode networks: both one-mode and two-mode

large real-world networks are sparse and have a small average

distance, and in both contexts this is also true on random graphs.

8. Bipartite statistics on degrees

The notion of degree distribution has an immediate extension

to the bipartite case. We denote by ⊥i the fraction of nodes in

⊥ having degree i and by ⊤i the fraction of nodes in ⊤ having

degree i, and then call (⊥i)i≥0 the bottom degree distribution

and (⊤i)i≥0 the top one. See Appendix A, for more detailed

definitions and hints on how to understand this kind of statistics.

The top and bottom degree distributions of our four exam-

ples are given in Fig. 2. One may observe on these plots that

the bottom degree distributions are very heterogeneous and well

fitted by power laws (of various exponents). This is true in par-

ticular for the occurrences graph, which is a well known fact

for a long time (Zipf, 1932): the frequency of occurrences of

words in a text generally follows a particular kind of power law,

named Zipf law. Instead, the shape of the top degree distribution

depends on the case under concern: whereas it is well fitted by a

power law in the peer-to-peer and actors–movies cases, it is far

from a power law in the authoring and occurrences cases. This

is due to the fact that papers have a limited number of authors

(none has 100 authors for instance), and likewise sentences have

a limited number of words. Moreover, the number of very short

sentences also is not huge. In these two cases, one can hardly

conclude that the top degrees are very heterogeneous.

We finally conclude that, even if heterogeneity is present on

at least one side of a two-mode network, this is not generally true

for both sides. This separates real-world two-mode networks into

two distinct classes, which should be taken into account in prac-

tice. This also confirms that considering the bipartite statistics

brings significant information as compared to the projections,

which exhibit power law degree distributions in all cases.

Let us now compare these real-world statistics with random

graphs. If one generates purely random bipartite graphs of the

same size as the ones considered here, the (⊤ and ⊥) degree

distributions are Poisson laws. Therefore, the heterogeneity of

some degree distributions is not present, and even in the cases

where the distributions are not very heterogeneous they do not fit

the random case. We will therefore compare in the following our

real-world two-mode networks to random bipartite graphs with

the same size and the same (top and bottom) degree distributions.

The next natural step is to observe possible correlations15

between top and bottom degrees. In order to do this, we plot in

Fig. 3 the average degree of neighbours of nodes as a function of

their degree, both for top and bottom nodes, separately. In other

words, for each integer i we plot the average degree of all nodes

which are neighbours of a node of degree i. We plot the same

values obtained for random graphs of the same size and same

degree distributions.

In the cases of actors–movies and peer-to-peer, the plots for

the random cases are close to horizontal lines, showing that

there are no correlations between a node degree and the aver-

age degree of its neighbours: this last value is independent of

the node degree. In both cases, however, the real-world network

displays nontrivial correlations. In the case of actors–movies,

for instance, the average degree of neighbours of bottom nodes

(the lower-left corner plot in Fig. 3) decreases with the node

degree. In other words, if an actor plays in many movies then

he/she tends to play in smaller movies (in terms of the number

of involved actors). Such nontrivial observations may be made

on the other plots for actors–movies and peer-to-peer as well.

In the cases of authoring and occurrences, the plots for the

random graphs are nontrivial: they grow for the top statistics, and

are far from smooth for the bottom ones. Here again, the real-

world cases exhibit significantly different behaviours, at least

for the top statistics, thus demonstrating that these behaviours

are nontrivial and related to intrinsic properties of the underlying

15 See Appendix A for more detailed definitions and hints on how to understand

this kind of statistics.
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Fig. 3. Degree correlations in our four real-world two-mode networks, and in random bipartite graphs of the same size and same degree distributions. First row: for

top nodes; second row: for bottom nodes.

networks. Detailing this however is out of the scope of this paper.

The key point here is to have evidence of the relevance of these

statistics.

Notice that, despite they already bring much information, the

statistics observed until now are almost immediate extensions

of the classical ones. One may wonder if the bipartite nature of

the networks under concern may lead to entirely new notions

concerning degrees. We propose one below, with its variants.

Let us consider a node v in a bipartite graph G = (⊤, ⊥, E),

and let us denote by N(N(v)) the nodes at distance 2 from v,

not including v, called distance 2 neighbours of v. We will sup-

pose that v is a top node, the other case being dual. Notice that

N(N(v)) ⊆ ⊤, and actually N(N(v)) is nothing but N(v) in the

⊤-projection G⊤. The integer |N(N(v))| therefore plays a cen-

tral role in the projection approach, since it is the degree of v in

G⊤.

But there are several ways for v to be linked to the nodes in

N(N(v)), this information being lost during the projection. The

two extreme cases occur when v is linked to only one node u

in ⊥, with N(u) = N(N(v)), or when v is linked to |N(N(v))|

nodes in ⊥, each being linked to only one other node in ⊤.

Of course, intermediate cases may occur, and the actual situa-

tion may be observed by plotting the correlations between the

degree of nodes v, i.e., |N(v)|, and their number of distance 2

neighbours, |N(N(v))|. These statistics therefore offer a way to

study how node degrees in the projection appear, and to distin-

guish between different behaviours. For instance, they make it

possible to say if a given author has many coauthors because

he/she writes many papers or if he/she writes papers with many

authors. Such an information is not available in the projection

of the authoring two-mode network.

The plots in Fig. 4 show that, as one may have guessed, the

number of distance 2 neighbours of a node grows with its degree;

more precisely, it generally grows as a power of the degree (the

plots follow straight lines in log–log scale), and actually almost

linearly. This is in conformance with the intuition that the num-

ber of distance 2 neighbours should be close to the degree of

the node times the average degree of its neighbours. In the ran-

dom cases, this leads to very straight plots (except in the top

plot of occurrences). The real-world plots are quite close to the

random ones, with a few notable exceptions: the slope of the

plot is significantly different for the top plot of peer-to-peer, the

Fig. 4. Correlations of the number of distance 2 neighbours with node degrees in our four examples, and in random bipartite graphs with the same size and degree

distributions. First row: for top nodes; second row: for bottom nodes.
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Fig. 5. Examples of bipartite clustering coefficients, and interpretations. Left: a case in which cc•(u, v) = (2/6) = 0.333 . . . is quite small, despite the fact that u

and v have two neighbours in common, due to the fact that the union of their neighbours is quite large; on the contrary, cc•(u, v) = (2/3) = 0.666 . . . is quite large,

revealing that one of the neighbourhoods is almost included in the other; the value of cc•̄(u, v) = (2/5) = 0.4 indicates that this may be due to the fact that one of

the nodes has a high degree. The situation is different in the case at the center: all clustering coefficients are quite high (respectively 0.5, 0.666 . . ., and 0.666 . . .),

indicating that there is not only an important overlap, but that this overlap concerns a significant part of each neighbourhoods (and thus the two nodes have similar

degrees). On the right, the two nodes have a small clustering coefficient cc•(u, v) = (2/8) = 0.25, and the fact that the value of cc•(u, v) = (2/5) = 0.4 remains

quite small indicates that this is not due to the fact that one of the two nodes has a very high degree compared to the other one. If one considers larger degree nodes,

then the difference between small and high values is clearer, but the figure would be unreadable.

real-world plots often are significantly below the random ones

for large degrees, and they are in general slightly lower than

the random ones even for small degrees. This means that there

is some redundancy in the neighbourhoods: whereas in random

cases the number of distance 2 neighbours is close to the sum

of the degrees of the direct neighbours, in real-world cases the

direct neighbours have many neighbours in common and so the

number of distance 2 neighbours is significantly lower. This is

an important feature of large real-world networks, that we will

deepen in the next sections.

9. Bipartite clustering and overlap

Whereas there were quite direct extensions of the basic statis-

tics and the ones on degrees to the bipartite case, the notion of

clustering coefficient does not make any sense in itself in this

context. Indeed, it relies on the enumeration of the triangles in the

graphs, and there can be no triangle in a bipartite graph. We will

therefore have to discuss the features captured by the classical

clustering coefficients in order to propose bipartite extensions.

Both definitions of classical clustering coefficients capture

the fact that when two nodes have something in common (one

neighbour) then they are linked together with a probability much

higher than two randomly chosen nodes. Conversely, they cap-

ture the fact that when two nodes are linked together then they

probably have neighbours in common. In other words, they cap-

ture correlations between neighbourhoods. We will use this point

of view here and define a first notion of clustering coefficient

defined for pairs of nodes (in the same set ⊤ or ⊥):

cc•(u, v) =
|N(u) ∩ N(v)|

|N(u) ∪ N(v)|

This is the most direct generalisation of the classical notion,

and it was already suggested in Borgatti and Everett (1997),

and explicitly used in Guillaume et al. (2005) in the context of

peer-to-peer exchange analysis. It captures the overlap between

neighbourhoods of nodes: if u and v have no neighbour in com-

mon then cc•(u, v) = 0. If they have the same neighbourhood,

then cc•(u, v) = 1. And if their neighbourhoods partially over-

lap then the value is in between, closer to 1 when the overlap is

large compared to their degrees. See Fig. 5 for an illustration.

This definition however has several drawbacks. The first one

is the fact that it defines a value for pairs of nodes. One may

want to capture the tendency of one particular node to have its

neighbourhood included in the ones of other nodes. To achieve

this, one may simply define the clustering coefficient of one node

as the average of its clustering coefficients with other nodes. We

however do not include in this averaging the pairs for which the

overlap is empty16: most nodes have disjoint neighbourhood,

which does not bring information. Like in the one-mode case,

we want to measure the implication of the fact of having one

neighbour in common on the rest of the neighbourhoods. We

finally obtain:

cc•(u) =

∑

v ∈ N(N(u))

cc•(u, v)

|N(N(u))|

One may then observe the distribution of these values, their

correlations with degrees, etc. One may also define the cluster-

ing coefficient of the top (respectively bottom) nodes, denoted

by cc•(⊤) (respectively cc•(⊥)) as the average of this value

over top (respectively bottom) nodes. The average over the

all graph, denoted by cc•(G), can then be obtained easily:

cc•(G) = (n⊤cc•(⊤) + n⊥cc•(⊥)/n⊤ + n⊥). We will discuss

the obtained values below, see Table 3.

The notion of clustering coefficient discussed until now is an

extension of the first classical one. It captures the fact that a node

which has a neighbour in common with another node generally

has a significant portion of neighbours in common with it. There

is another way to capture this, similar to the second definition of

classical clustering coefficient, is to measure the probability that,

given four nodes with three links, they actually are connected

with four links (all the possible bipartite ones):

ccN(G) =
2N�

NN

where N� is the number of quadruplets of nodes with four links

in G, and NN is the number of quadruplets of nodes with at least

three. This extension of the second notion of classical cluster-

ing coefficient was already proposed in Robins and Alexander

(2004) in the context of company board networks. It is a natu-

ral generalisation of the clustering coefficient cc∨ on classical

(one-mode) graphs: this last notion is the probability, when three

16 As a consequence, the obtained value will never be 0, but it may be very

small. Notice also that the clustering coefficient is not defined for nodes v such

that N(N(v)) = ∅ (recall that, by definition, v /∈ N(N(v))).
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Table 3

Bipartite clustering statistics on our four examples and on random bipartite graphs with the same size and same degree distributions

Actors–movies Authoring Occurrences Peer-to-peer

Real Random Real Random Real Random Real Random

cc•(⊤) 0.064 0.046 0.29 0.27 0.066 0.066 0.056 0.019

cc•(⊥) 0.36 0.20 0.31 0.25 0.065 0.038 0.076 0.074

ccN(G) 0.0082 0.00024 0.079 0.00012 0.053 0.048 0.0094 0.00019

cc•(⊤) 0.24 0.23 0.56 0.56 0.19 0.20 0.27 0.24

cc•(⊥) 0.81 0.79 0.73 0.70 0.64 0.61 0.39 0.42

cc•(⊤) 0.087 0.062 0.36 0.34 0.097 0.097 0.074 0.024

cc•(⊥) 0.37 0.21 0.33 0.26 0.069 0.041 0.091 0.089

nodes are linked in a chain (with two links), that they form a tri-

angle; the ccN notion is nothing but the probability, when four

nodes are linked in a chain (with three links), that they form a

square. This extension is natural since there cannot be any tri-

angle in bipartite graphs. We will discuss the obtained values

below, see Table 3.

The two notions above generalise the classical definitions of

clustering coefficients. Capturing the overlap between neigh-

bours may however need more precision. Suppose that degrees

are heterogeneous in the network, as it is often the case (Sec-

tion 8), and consider two nodes u and v. If one of these nodes

has a high degree and the other has not, then cc•(u, v) will

necessarily be small. This will be true even if one of the neigh-

bourhoods is entirely included in the other. One may however

want to capture this, which can be done using the following

definition:

cc•(u, v) =
|N(u) ∩ N(v)|

min(|N(u)|, |N(v)|)

One may define dually:

cc•(u, v) =
|N(u) ∩ N(v)|

max(|N(u)|, |N(v)|)

See Fig. 5 for an illustration. These two notions, called min- and

max-clustering, were introduced first in Guillaume et al., 2005.

The first one emphasises on the fact that small neighbourhoods

may intersect significantly large ones; it is equal to 1 whenever

one of the neighbourhoods is included in the other. The second

one emphasises on the fact that neighbourhoods (both small or

large ones) may overlap very significantly: it is 1 only when

the two neighbourhoods are the same and it tends to decreases

rapidly if the degree of one of the involved nodes increases.

It captures the fact that nodes with similar degrees have high

neighbourhood overlaps.

With these definitions, one may define cc•(v), cc•(⊤), cc•(⊥),

cc•(G), cc•̄(v), cc•̄(⊤), cc•̄(⊥), and cc•̄(G) in a way similar to

the one used above for cc•(v), cc•(⊤), cc•(⊥), and cc•(G). The

distributions and various correlations may then be observed.

We give in Table 3 the values obtained for our four exam-

ples together with the values obtained for random bipartite

graphs with same size and degree distributions (the values for

purely random bipartite graphs are similar). It appears clearly

that the notions we introduced capture different kinds of over-

laps between neighbourhoods. However, except for ccN(G), the

obtained values are not very different on random graphs and on

real-world networks. This indicates that these statistics do not

capture a very significant feature of large real-world networks,

which will discuss this further below. Instead, the obtained val-

ues for ccN(G) is significantly larger on real-world networks than

on random graphs, which shows that it captures more relevant

information.

We show in Fig. 6 the cumulative distributions17 of cc•(v),

cc•(v) and cc•̄(v) for our four examples, i.e., for each value x on

the horizontal axis the ratio of all the nodes having a value lower

than x for these statistics. Before entering in the discussion of

these plots, notice that, by definition, we have cc•(v) ≤ cc•̄(v) ≤

cc•(v) for any v. Therefore, the lower plots in each case of Fig. 6

is the one of cc•(v), the upper is the one for cc•(v) and the one

for cc•̄(v) is in between.

More interesting, the plots exhibit quite different behaviours.

In several cases (in particular top of actors–movies, occurrences

and peer-to-peer, as well as bottom of occurrences and peer-

to-peer) the plots for cc•(v) and cc•(v) grow very rapidly and

are close to 1 almost immediately. This means that the values

of these statistics are very small, almost 0, for most nodes: in

these cases, the neighbours of nodes have a small intersection,

compared to the union of their neighbourhoods. However, in

several cases, the plots for cc•(v) grow much less quickly, and

remain lower than 1 for a long time. In several cases, it is even

significantly lower than 1 by the end of the plot, meaning that

for an important number of nodes the value of cc•(v) is equal

to 1: almost 10% in the case of top of actors–movies, almost

20% in the cases of top authoring and bottom of peer-to-peer,

and more than 40% in the case of bottom of occurrences. This

means that, despite overlaps are in general small compared to

their possible value, the neighbourhoods of many low-degree

nodes significantly or even completely overlap with other nodes

neighbours.

Other cases display a very different behaviour: in both top

and bottom plots of authoring, and in bottom of actors–movies,

it appears clearly that a significant number of nodes have a

large value for cc•(v), cc•(v) and cc•̄(v). This means that node

neighbours overlap significantly, and that this is not only a

consequence of the fact that low degree nodes have their neigh-

bourhoods included in the ones of other nodes.

17 See Appendix A for more detailed definitions and hints on how to understand

this kind of statistics.
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Fig. 6. Cumulative distributions of the various clustering coefficients in our four real-world two-mode networks. First row: for top nodes; second row: for bottom

nodes.

Fig. 7. Cumulative distributions of the cc• clustering coefficient in our four real-world two-mode networks, and in random bipartite graphs of the same size and same

degree distributions. First row: for top nodes; second row: for bottom nodes.

Again, our aim here is not to discuss in detail the specificities

of each case, but to give evidence of the fact that these statistics

have nontrivial behaviours and capture significant information.

It is clear from the discussion above that the three notions of

clustering captured by cc•(v), cc•(v) and cc•̄(v) are different,

and give complementary insight on the underlying network

properties. One may however be surprised by the fact that

cc•(v) often is very small, which we deepen now by compar-

ing its behaviours on real-world cases and on random ones, see

Fig. 7.18

In these plots, it appears clearly that, except in the case of bot-

tom of actors–movies, the plots of the real-world values and of

the random ones are quite similar. This means that, concerning

the values of cc•(v), real-world graphs are not drastically differ-

ent from random ones (they however have slightly higher values

of cc•(v) in most cases). In other words, this statistics does not

capture very significant information, according to the method-

18 For clarity and to avoid long discussions on specific behaviours, which is out

of our scope here, we only compare the real-world and the random behaviours

of cc•(v) (not of the two other notions of clustering coefficients).

ology described in Section 6. This is due to the fact that the low

degree nodes (which are numerous in our networks) have with

high probability their neighbours in common with high degree

nodes; by definition, this induces a low value for cc•(v), and even

lower for cc•̄(v). This is true by construction for random graphs,

and the plots above show that this is mostly true for real-world

networks also, which was not obvious.

Similar conclusions follow from the study of cc•̄(v), but the

study of cc•(v) leads to the opposite conclusion: an important

number of nodes have their neighbourhood included in the one of

other (large degree) nodes, as already discussed, which happens

much more rarely in random graphs. We do not detail these

results here, since they do not fit in the scope of this paper.

Instead, we will propose a new statistics in the next section that

has several advantages on the clustering coefficients discussed

here and does not have their drawbacks.

Before turning to this other statistics, let us observe the cor-

relations between node degrees and their clustering coefficient.

Again, for clarity and to maintain the paper within a reasonable

length, we focus on cc•(v) and its comparison with the random

case. See Fig. 8.
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Fig. 8. Correlations of the cc•(v) clustering coefficient with node degrees in our four examples, and in random bipartite graphs with the same size and degree

distributions. First row: for top nodes; second row: for bottom nodes.

Fig. 9. Example of redundancy computation. From left to right: a bipartite graph, its ⊥-projection, and the ⊥-projection obtained if the node A is first removed. Only

two links disappear, leading to rc(A) = (4/6) = 0.666 . . .

The values for the random graphs are below the ones for the

real-world cases (or they coincide at some points), in all plots.

This shows that the value of cc•(v) are larger in real-world cases

than in random ones, but the difference is small, which confirms

the observations above. More interestingly, it appears clearly

that in most cases cc•(v) decreases as a power of the degree of

v (straight line in log–log scale). In other words, the clustering

coefficient of low degree nodes is quite large, but the one of large

degree nodes is very small, like in random graphs.

10. The notion of redundancy

In the previous section, we discussed several ways to extend

the classical notions of clustering coefficient to the bipartite case.

One may wonder if the bipartite nature of the networks under

concern may lead to new, specific notions, just like we observed

concerning degrees in Section 8. Moreover, one may want to

capture the notion of overlap concerning one particular node; in

previous section, this was only possible by averaging the value

obtained for a possibly large number of pairs of nodes. This sec-

tion answers this: it is devoted to a new notion aimed at capturing

overlap in bipartite networks, in a node-centered fashion.

First notice that neighbourhood overlaps correspond to links

which are obtained in several ways during the projection, and

that these links cannot be distinguished one from another in the

projection. They also reveal the fact that, among all the links

induced by a node of a bipartite graph in the projection, many

(and possibly all) may actually be induced by others too. In other

words, if we remove this node from the bipartite graph then the

projection may be only slightly changed (or even not at all). This

can be captured by the following parameter, which we call the

redundancy coefficient of v:

rc(v) =
|{{u, w} ⊆ N(v), ∃ v′ �= v, (v′, u) ∈ E and (v′, w) ∈ E}|

(|N(v)|(|N(v)| − 1))/2

In other words, the redundancy coefficient of v is the fraction

of pairs of neighbours of v linked to another node than v. In the

projection, these nodes would be linked together even if v were

not there, see Fig. 9; this is why we call this the redundancy. If

it is equal to 1 then the projection would be exactly the same

without v; if it is 0 it means that none of its neighbours would

be linked together in the projection.19

Again, we can derive from this definition the ones of

rc(⊤),rc(⊥) and rc(G), as well as distributions and correlations.

We give in Table 4 the values obtained for our four examples

and for comparable random graphs. It appears clearly from these

values that, except in the case of occurrences, the redundancy

coefficient is much larger in real-world networks than in ran-

dom graphs, and that it actually is very large: in peer-to-peer,

for instance, on average half the pairs of peers that have a com-

mon interest for a given data also have a common interest for

another data. These values are much larger than the ones for

the clustering coefficients in the previous section, see Table 3,

19 Interestingly, the notion of redundancy we propose here is equivalent to the

generalisation of the notion of clustering coefficient to squares, denoted by C4( ),

proposed independently in Lind et al. (2005): it is the probability, when a node

has two neighbours, that these two nodes have (another) neighbour in common.

Though the two points of view are quite different, and the definitions termed

differently, the two notions are exactly the same.
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Table 4

The redundancy coefficient for our four examples and for random bipartite graphs with the same size and same degree distributions

Actors–movies Authoring Occurrences Peer-to-peer

Real Random Real Random Real Random Real Random

rc(⊤) 0.26 0.014 0.38 0.0016 0.80 0.74 0.31 0.011

rc(⊥) 0.25 0.011 0.33 0.00037 0.83 0.75 0.50 0.069

and the difference they make between random graphs and real-

world networks is much more significant. To this regard, it may

be considered as a better generalisation of clustering coefficients

in one-mode networks than the bipartite clustering coefficients

defined in Section 9.

The case of occurrences is different: the projections on both

sides are very dense, which is very particular as already noticed.

The redundancy coefficient therefore is huge, but this is not

because of a property of how the neighbourhoods overlap: this

is a direct consequence of the high density of the projections.

In such a case, the redundancy coefficient is meaningless, and

we will therefore not discuss this case any further in this sec-

tion; simply notice that the redundancy coefficient has similar

behaviours in such graphs and in their random equivalent.

We show in Fig. 10 the distributions of rc(v) for our four

examples together with plots for comparable random graphs.

These plots confirm that the redundancy coefficient captures

a property that makes large real-world networks different from

random ones: in all the cases except occurrences, the value of this

coefficient in random graphs is almost 0 for all nodes (both top

and bottom); instead, in real-world networks it is significantly

larger, and equal to 1 for a large portion of the nodes. This last

fact is not surprising since cc•(v) = 1 implies rc(v) = 1 for all

nodes v.

However, the redundancy coefficient has a much wider range

of values than cc•(v), which generally is close to 0 or 1, see

Fig. 6. Moreover, the redundancy coefficient captures a dif-

ferent property: in the case of actors–movies, for instance,

it does not only mean that a significant number of movies

have a cast that is a sub-cast of another movie (as captured

by cc•(v)), but that when two actors act together in a movie

then there often exists (at least) another movie in which they

also act together. Both are interesting, and complementary, but

the redundancy coefficient certainly captures a more general

feature.

Let us now observe the correlations between node redun-

dancy coefficient and their degree, plotted in Fig. 11. In these

plots, except for occurrences, the plots for the random graphs

coincide with the x-axis, which confirms that the values of node

redundancy in random graphs are very small, independently of

node degrees. Real-world cases, on the contrary, exhibit nontriv-

ial behaviours. In most cases, the redundancy decreases with the

degree, which is not surprising since the number of links needed

in the projection in order for the redundancy of a node to be large

grows with the square of its degree. However, the redundancy

remains large even for quite large degrees: it is close to 0.15

for nodes of 30◦ for top nodes in actors–movies, for instance,

meaning that among the 435 possible pairs of neighbours of these

nodes, on average 65 are linked to another top node in common.

This has a very low probability in random graphs. Likewise,

one may notice that some very high degree nodes have a very

large redundancy coefficient in several cases, which also is a

significant information.

One may push further the study of the redundancy, for

instance by counting how many nodes have an overlap with

a given one, and so may be responsible for its high redundancy.

This is nothing but the degree of the node in the appropriate pro-

jection, which emphasises once again that our approach may be

fruitfully combined with the one based on projection, as argued

in Section 4.

Fig. 10. Cumulative distributions of the redundancy coefficient in our four real-world two-mode networks, and in random bipartite graphs of the same size and same

degree distributions. First row: for top nodes; second row: for bottom nodes.
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Fig. 11. Correlations of redundancy coefficient with node degrees in our four real-world two-mode networks, and in random bipartite graphs of the same size and

same degree distributions. First row: for top nodes; second row: for bottom nodes.

11. Conclusion and perspectives

The core contribution of this paper is a set of rigorous and

coherent statistical properties usable as a basis for the analysis

of large real-world two-mode networks following the post-

1998 approach. These statistics go from the very basics (size,

distances, etc.) to subtle ones (typically various clustering coef-

ficients and their correlations with degrees). Let us insist on the

fact that we do not only extend classical notions to the bipartite

case, but also develop new notions which make sense only in

this context. Moreover, the proposed approach avoids projec-

tion of two-mode networks into one-mode ones, which makes

it possible to grab much richer information. We hope that this

unified framework and discussion will help significantly people

involved in analysis of such networks.

A first conclusion drawn from the computation of these statis-

tics on four representative real-world examples is that, just like

large real-world one-mode networks, they have nontrivial prop-

erties in common which make them very different from random

networks. In particular, there is a high heterogeneity between

degrees of nodes of at least one kind, and there are significant

overlaps between neighbourhoods. Concerning this last prop-

erty, we show that immediate extensions of the classical notions

of clustering coefficients are not sufficient to make the difference

between real-world networks and random graphs; we propose

the notion of redundancy as a relevant alternative. Overall, these

facts are strikingly close to what is met in one-mode networks

and should play a similar role. Conversely, we observed many

properties which behave differently depending on the two-mode

network under concern, which may be used to describe a partic-

ular instance in more details.

Notice that these contributions do not only concern the two-

mode networks themselves, but also their projection: keeping the

bipartite nature of the data makes it possible to obtain more pre-

cise information on the projection itself. For instance, statistics

on degrees make it possible to separate high degree nodes in the

projection into two distinct classes: the ones which are linked

to many nodes in the two-mode network, and the ones linked

to nodes of high degree in the two-mode network. This kind

of analysis could be deepened using clustering and redundancy

notions.

Going further, one may use the notions we introduced here

to define new relevant statistics on one-mode networks. Indeed,

any graph G = (V, E) may be seen as a bipartite graph G′ =

(V, V, E) where the links are between two copies of V. The

statistics we studied here may then be computed on this bipartite

graph, leading to new insight on the original graph G.

There are many directions to improve and continue the work

presented here. Among them, let us cite the analytic study of the

parameters we propose, which can in particular be done using the

techniques in Newman et al. (2001b) or in Robins et al. (2007).

One might prove in this way the expected behaviour of these

parameters and deepen their understanding. Another direction

is the development of models of two-mode networks capturing

the properties met in practice. Just as is the case for one-mode

networks, much can be done concerning degrees, see Newman

et al. (2001a) and Guillaume and Latapy (2004a), but very little

is known concerning the modeling of clustering and redundancy.

Finally, applying these results to practical cases and giving pre-

cise interpretations of their meanings in these different contexts

would probably help in designing other relevant notions. To this

regard, the statistical properties described in this paper may help

in deepening the key questions about group formation and rela-

tions (like the emergence of interlocking in company boards),

see Robins and Alexander (2004), Conyon and Muldoon (2004),

Battiston and Catanzaro (2004), and Newman et al. (2001a) or of

scientific areas and communities, see Roth and Bourgine (2005),

Morris and Yen (2005), and Newman (2001a,b, 2000), which we

did not consider here.

Let us conclude by noticing that the field of large network

analysis is only at its beginning, though much has been done,

before and after 1998, on one-mode networks. However, most

real-world networks are directed, weighted, labelled, hybrid,

and/or evolve during time. Some work has recently been done

concerning weighted networks (Barrat et al., 2004; Barthélemy

et al., 2005; Newman, 2004), and we propose here a contribution

concerning two-mode networks. However, there is still much to

do to be able to analyse efficiently these various kinds of net-
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works. Extending the notions we discussed here to the case of

multipartite graphs (nodes are in several disjoint sets, with links

between nodes in different sets only) would be a step further in

this direction.
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Appendix A. How to read and understand our plots

We give in this appendix additional hints on how to read and

understand the plots presented in this paper, for the readers who

are not familiar with these statistical approaches. Of course, this

appendix will not replace a statistics textbook, but it aims at

giving sufficient intuition on the notions under concern to help

the reader significantly.

A.1. Distributions

The main statistical notion used in this paper is the one of

distribution of a measured quantity: it is, for each possible value

k of this quantity, the fraction pk of objects which exhibit this

value when the quantity is measured on them.20 For instance,

the degree distribution in a network is, for each integer k, the

fraction of nodes of degree k (i.e., with k links).

One may consider the number of objects in place of the frac-

tion. Both notions of distributions are strongly related, since the

fraction is the number divided by the total number of objects.

As a consequence, the shape of the plot is exactly the same; the

only difference lies in the rescaling of the vertical axis (initially

between 0 and the total number of objects, to between 0 and

1 after rescaling). Both variants have their own advantages and

drawbacks. In this paper, we use the fraction variant to make it

easier to compare between different cases: it is easier to compare

the fact that in one network the fraction of degree one nodes is

0.5 (i.e., 50% of the nodes have degree one) and in another one

it is 0.8 (i.e., 80%) than the raw numbers.

In our context, the key property of the observed distributions

is whether they are homogeneous or heterogeneous.

The plot of an homogeneous distribution21 have a peak

around an average value, and no object with measured value

20 i.e., the number of such objects divided by the total number of objects.
21 Most famous such distributions are normal, Gaussian and Poissonian distri-

butions.

very different from this average.22 More formally, the fraction

of objects with measured value k, pk, decreases exponentially

fast when one goes away from the average value. Intuitively,

this means that no object are very different from the average

case concerning the observed value. This has important conse-

quences, in particular the fact that the average is meaningful:

it indicates the normal behavior, or what one may expect when

taking an object at random.

On the contrary, some distributions are heterogeneous23:

there are several orders of magnitude between observed values,

and there is a significant number of objects for which the mea-

sured value is very different from the average one. In such cases,

pk decreases only polynomially fast when one goes away from

the average value, thus much slower than in an homogeneous

distribution. Then, the average value brings little information: it

is not the value observed on most objects, and a randomly chosen

object may exhibit a very different value. In such cases, charac-

terising the heterogeneity of the distribution is more meaningful.

This is generally done by fitting the distribution with a power-law

(pk ∼ k−α for a constant α) and then considering the exponent of

this power-law (α) as a measure of the heterogeneity of the dis-

tribution (lower exponents reveal higher heterogeneity, but the

fact that the distribution is well fitted by a power-law is sufficient

to show that it is highly heterogeneous).

Notice that it is not immediate to determine if a given distribu-

tion is well fitted by a power-law: on usual plots, the difference

between exponential and polynomial decreases is not visible.

This is why, when one suspects the presence of a power-law,

one uses log–log scales: instead of plotting pk as a function of k

one plots log(pk) as a function of log(k). If the distribution is a

power-law, we have pk ∼ k−α, and thus log(pk) ∼ −α log(k).

Therefore, the plot will be a straight line of negative slope α,

which is easy to check. If the distribution has an exponential

decrease, the log–log plot will not be a straight line.

On empirical data, of course, the fits are never perfect. As one

may observe on the plots of this paper, however, the approach

just described makes it possible to distinguish between several

cases. In Fig. 2, for instance, in the case of occurrence dataset,

the bottom degree distribution is very well fitted by a power-law,

whereas the top degree distribution certainly is not a power-

law. This confirms the immediate observation that, in this case,

bottom degrees span several orders of magnitudes (from 1 to

more than 10,000) whereas top degrees do not.

A.2. Cumulative distributions

For several reasons, it is interesting in some situations to

consider the cumulative distributions, instead of classical dis-

tributions as described above: one plots the fraction of objects

having a measured value lower than or equal to k, for each k,

instead of the fraction of objects having exactly this measured

value.

22 A typical example is body height: there is an average height, and nobody is

twice this value high.
23 Most famous such distributions are Zipf and power-law distributions.
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This is particularly useful when one wants to observe the

distribution of a property taking real values, not only integer

ones: it is sufficient to consider a finite number of points in the

plot. This is why we used cumulative distributions for our plots

of clustering coefficients and redundancy (Figs. 6, 7 and 10). It

also helps in estimating the number of nodes with high clustering

coefficients or redundancy, which is appealing in this context.

A.3. Correlations

Finally, we present in this paper another kind of plots, aimed

at observing correlations between different values attached to a

same object (like the degree of a node and the average degree

of its neighbors, in Fig. 3). There are many way to investigate

such correlations. We use here plots in which we put a dot for

each object, this dot having coordinates given by the two values

of interest (in Fig. 3, each node leads to a dot for which x is the

degree of the node and y is the average degree of its neighbors).

Such plots make it possible to observe if having a given value

for one observed property is related to having a given value for

another one. In particular, one may observe if having high value

for the first implies a high value for the second. In the case

of Fig. 3, for instance, the leftmost plot of the first row (top

degree correlations for the actors–movies network) shows that

in random networks the average degree of neighbors of a node

is independent of the degree of the node: it forms an horizontal

line, indicating that it is a constant (roughly equal to 32). Instead,

in the same plot, one sees that for high degree nodes the average

degree of their neighbors tends to be smaller than for lower

degree nodes, thus indicating that high degree nodes are more

linked to low degree nodes than others (and more than if links

were random). In terms of the underlying data, it shows that if a

movie has many actors, then many of these actors played in few

movies only.
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Erdös, P., Rényi, A., 1959. On random graphs I. Publications Mathematics

Debrecen 6, 290–297.

Ergun, G., 2002. Human sexual contact network as a bipartite graph. ArXiV

preprint cond-mat/0111323.

Faloutsos, M., Faloutsos, P., Faloutsos, C., 1999. On power-law relationships of

the Internet topology. SIGCOMM 251–262.

Faust, K., 2005. Models and Methods in Social Network Analysis. Cambridge

University Press, New York (Chapter: using correspondence analysis for

joint displays of affiliation networks).

Faust, K., 1997. Centrality in affiliation networks. Social Networks 19, 157–191.

Faust, K., Willert, K.E., Rowlee, D.D., Skvoretz, J., 2002. Scaling and statisti-

cal models for affiliation networks: patterns of participation among Soviet

politicians during the Brezhnev era. Social Networks 24, 231–259.
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