Local leaders in random networks - Archive ouverte HAL
Article Dans Une Revue Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Année : 2008

Local leaders in random networks

Vincent D. Blondel
  • Fonction : Auteur
Julien M. Hendrickx
  • Fonction : Auteur
Cristobald de Kerchove
  • Fonction : Auteur
Renaud Lambiotte
  • Fonction : Auteur

Résumé

We consider local leaders in random uncorrelated networks, i.e., nodes whose degree is higher than or equal to the degree of all their neighbors. An analytical expression is found for the probability for a node of degree k to be a local leader. This quantity is shown to exhibit a transition from a situation where high-degree nodes are local leaders to a situation where they are not, when the tail of the degree distribution behaves like the power law $∼k^{−\gamma_{c}}$ with $\gamma_{c}=3$. Theoretical results are verified by computer simulations, and the importance of finite-size effects is discussed.

Dates et versions

hal-01146073 , version 1 (27-04-2015)

Identifiants

Citer

Vincent D. Blondel, Jean-Loup Guillaume, Julien M. Hendrickx, Cristobald de Kerchove, Renaud Lambiotte. Local leaders in random networks. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2008, 77 (3), pp.036114. ⟨10.1103/PhysRevE.77.036114⟩. ⟨hal-01146073⟩
97 Consultations
0 Téléchargements

Altmetric

Partager

More