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Abstract—The base idea of co-simulation is to couple hetero-
geneous simulators in a single environment. This allows for
choosing the best-suited simulator to represent each part of
a complex system. Hardware-in-the-loop co-simulation intro-
duces physical components in a software co-simulation. In
this paper, we propose a hardware-in-the-loop co-simulation
platform using a dynamically reconfigurable architecture on
FPGAs. Main uses for this technology include introducing
prototypes of digital systems directly in the simulation en-
vironment, and accelerating simulation by using FPGAs to
implement models that can take advantage of parallelism. The
platform was validated by coupling a C++ application with
hardware modules loaded on-demand on a FPGA.

Keywords–Co-simulation; Prototyping; Hardware-in-the-
Loop; Reconfigurable Architectures.

I. INTRODUCTION
Co-simulation is the process of making multiple simu-

lators collaborate in a larger simulation. In a co-simulation,
each simulator is in charge of simulating a part of the system,
and has an interface to exchange data and synchronize with
its environment, which is constituted of other simulators.
Using a co-simulation approach rather that simulating the
whole system within a single simulator is an answer to grow-
ing simulation needs as systems get increasingly complex.

Indeed, in systems composed of many heterogeneous
sub-systems, very different simulation needs can emerge.
There are integrated tools, supporting most of these needs,
such as COMSOL Multiphysics [1], which integrates a large
number of modules to simulate a heterogeneous system. But
as it is difficult to design software that answers each and
every simulation need, the co-simulation paradigm seems a
promising alternative approach. Profession-centric tools are
also developed in that way, such as CNES’ BASILES [2]
co-simulation framework, which integrates different tools to
provide a methodology targeting satellite simulation.

The separation of models in a co-simulation allows
for easy replacement of a model by another, as long as
the interfaces are preserved. This capability is well-suited
for model-based approaches [3], in which models are pro-
gressively refined from a very high level description to
a precise description of the target system. Extending this
mechanism to system’s prototype by replacing a model by
its physical implementation introduces the Hardware-in-the-
Loop (HIL) notion. HIL allows for test and validation in
a fully managed environment. This notably makes possible
replaying simulation scenarios to ensure the implementation

behaves as expected and to compare prototype outputs with
the one obtained from the higher level model. This is
done by wrapping the prototype in an interface that allows
simulators to send commands to the physical system through
actuators, as well as sensors to provide data the other way.

Hardware implementations can be of many natures, but
we focus here on digital hardware systems, e.g., systems on
chips, or control-command parts of a system. Thus in the
following, the term hardware will refer to logic circuits, by
opposition to software. We use dynamically programmable
hardware, taking advantage of System on Programmable
Chip (SoPC) architecture introduced by Field-Programmable
Gate Array (FPGA) devices.

In this kind of HIL co-simulation, the programmable
hardware can be of two uses:

• Implementing a prototype of a digital system to join
the simulation, replacing its higher-level software
model,

• Implementing a model which can take advantage of
parallelism to see its performances improved being
executed on hardware rather than software.

These two different applications of SoPC HIL share a large
part of the deployment approach.

In the former, we use a SoPC to implement a logic
circuit prototype. FPGAs deliver various advantages for this
consideration, the first being the reusability of the hardware.
Indeed, nothing but development time is lost in case the
circuit is faulty, as opposite as an error in a specifically
made circuit. Moreover, programmable logic enhances high
debug capabilities. It is easy to add observer logic that will
not interfere with the actual purpose of the circuit, thanks to
the high parallelism offered by the programmable resources.

In the latter, FPGA is just a computing resource, as
those that can be found in High Performance Reconfigurable
Computers (HPRCs) [4]. Indeed, hardware implementation
enhances concurrent execution and parallelism. This gener-
ally improves the speed of algorithms, and may even achieve
impressive speedups from single-core software execution for
some algorithms. Generally, the more parallelizable is the
algorithm, the more substantial is the speed gain.

What we propose here is a solution that achieves the
following objectives:

• Easy integration and automated deployment of hard-
ware modules in a distributed heterogeneous co-
simulation,



• Dynamic loading/unloading of hardware modules
thanks to partial reconfiguration,

• Intuitive interface definition for communication be-
tween modules,

• Automatic handling of FPGAs partial reconfigura-
tion, turning a single chip in multiple independent
programmable resources.

We developed a platform by combining an existing co-
simulation solution, CosiMate [5], with a previous work on
managing partially reconfigurable resources, the Simple Par-
allel platform for Reconfigurable Environment (SPoRE) [6].

SPoRE is a tool for handling FPGA-based computing
resources. It allows executing computation kernels on dis-
tributed reconfigurable resources from a remote worksta-
tion. CosiMate is a co-simulation bus supporting various
software simulation tools, and providing a communication
and synchronization interface between them. By combining
the SPoRE platform and the CosiMate environment, we set
up a heterogeneous co-simulation environment using both
software and dynamically reconfigurable hardware.

In the following, we begin by taking a look at existing so-
lutions in Section II. Then we present our platform building
blocks in Section III, the platform itself in Section IV, and
how we build a co-simulation for this platform in Section V.
Finally, we analyze the platform usages in Section VI and
present the perspectives in Section VII.

II. RELATED WORK
Connecting reconfigurable hardware logic to software

in order to take advantage of both kinds of computations
allows for powerful applications. This process is notably
used in the rising generation of HPRCs [4], which are
massive computing farms containing FPGAs tightly coupled
to processors, the latter delegating intensive computation
kernels to the former, acting as application-specific co-
processors.

In [7], Liang et al. use a combination of
MATLAB/Simulink and Xilinx System Generator (XSG)
to communicate between software and hardware. Their
co-simulation process follow the MDE guidelines [3],
beginning by simulating a module, then coding it in HDL
and finally executing it on a FPGA as a HIL process.
Nevertheless, the communication between software and
hardware is relying on proprietary protocols inherent
to the tools. Using this solution, there is no control on
how the FPGA is handled by XSG, which is done in a
static way. This is the major difference with our solution,
which notably allows partial reconfiguration of a FPGA,
thus allowing for multi-IP design on a single FPGA chip.
Moreover, our tool is able to handle multiple FPGA running
in parallel on a network, thus multiplying the available
resources.

Liao et al. present a coupling technique between a HDL
simulator and a hardware module running on FPGA [8].
Their solution implements an efficient synchronization tech-
nique as hardware clock signal is generated from software,
allowing for synchronous operations. Nevertheless, this so-
lution prevents from taking full advantage of the speedup
allowed by hardware implementation. Moreover, this is not

clear how the communication ports, on both hardware and
software, are generated: is this an automatic process or does
ports have to be manually tailored. In our solution, hardware
ports rely on bus-based registers, while software ports are
based on CosiMate formalism.

An important part of introducing a prototype in a HIL
co-simulation is to be able to reproduce on the hardware the
exact stimuli applied to the corresponding software model.
In [9], authors instantiate a hardware module on a FPGA,
and link it to a testbench in a simulator. This technique
allows for simulating a HDL design in a simulator, and then
deport the design itself on a reconfigurable device while
preserving the test scenario. They use the SCE-MI API [10]
to communicate between a HDL simulator and hardware
implemented on FPGA. While SCE-MI is a very interesting
approach for heterogeneous communication, it does not
handle the hardware deployment, where our solution allows
for automatically handling FPGA configuration using partial
reconfiguration.

III. HIL CO-SIMULATION PLATFORM BASE BLOCKS
To build the co-simulation platform, we combined two

existing platform. On one hand, we used the CosiMate
software [5] from ChiasTek, a co-simulation bus allowing
putting together various simulators. On the other hand, we
extended the SPoRE platform [6], previously developed by
our means, allowing remote control and managed reconfig-
uration of FPGA-based nodes through a network.

CosiMate, as shown on Figure 1, is a bus on which
standard simulators are plugged. CosiMate offers a standard
interface through ports and synchronization mechanisms for
simulators.

Simulator Simulator Simulator 

Model Model 

CosiMate interface CosiMate interface 

CosiMate bus 

Port Port Port Port 

Model 

CosiMate interface 

Figure 1. CosiMate bus architecture.

A port is defined with a direction and a data type, e.g., an
output integer port on an IP will provide 32-bit data to the
bus. Ports can also be defined as arrays to allow transferring
blocks of data with larger size than basic types.

A simulator needs an extension library to be compatible
with CosiMate. In such a simulator, user can define ports
using a specific syntax, which will allow for generation of
a XML-based description. A CosiMate project gathers these
description files and allows links to be made between ports.



An output port from a simulator can be linked to one or
various input ports of the same type and size of another
simulator. Then, launching the co-simulation requires all
the simulators to be running, and CosiMate automatically
handles communication between ports.

Two modes are supported by CosiMate: synchronized
and event-driven. In synchronized mode, all simulators wait
on a barrier at each simulation step, the barrier being
released by CosiMate environment when all simulators have
reached it. Communication synchronization is done at each
simulation step. This mode enables simulation time to be
managed.

In event-driven mode, data flow though ports without any
barrier, thus the synchronization process is up to the user.
Moreover, event-driven mode also requires user to define
a protocol for communication, as there is no time step to
indicate when data is available.

The SPoRE platform is a distributed-node platform,
which nodes contain FPGAs and are linked by a network,
as displayed on Figure 2. The arrows indicate which node
initiates the communication.

SPoRE 
Network 
Manager 

SPoRE 
Computing 

Nodes 

Data Bus 

SPoRE 
Data Server 

User 
interface 

Control Bus 

Figure 2. SPoRE buses representation.

As communication between nodes relies on Sockets, the
network itself is abstracted, and could take different shapes.
In our case, we use an Ethernet-based network. The SPoRE
platform contains one or more computing nodes, at least one
data server, and exactly one network manager node, from
which the user commands the platform.

SPoRE uses a XML description to build an application.
SPoRE applications are wrappers that indicate how to use
FPGA partial configuration files implementing IPs. SPoRE
partial reconfiguration mechanism and node management are
discussed in [6] and [11].

When user already has a HDL description of needed
computing kernels, a simple vision of SPoRE by user is as
follows:

• The user describes computation kernels as black
boxes containing in/out ports,

• The user writes an application by describing which
kernels are to be used, and for each one, associate
ports to application’s message paths,

• The application description (XML), the kernels de-
scriptions (XML) and the FPGA partial configura-

tion files implementing kernels (binary) are stored
on a data server,

• The user launches the application from the network
manager,

• The user retrieves the results from the data server.
SPoRE automatically handles application description and
bitstream download on computing nodes, does the recon-
figuration process, download and compute data, and upload
results to the data server.

IV. BUILDING THE PLATFORM
The way we chose for linking CosiMate and SPoRE was

to use the base representations of each platform to build a
bridge. The bridge should then be viewed as a simulator
by the CosiMate environment and as a computing node by
the SPoRE platform, as presented on Figure 3. CosiMate
supports C/C++ written simulators, and SPoRE only needs
Socket support to declare a node. We then choose to build
the bridge using C++ and Qt, to enhance portability.
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CosiMate interface 

Port Port 

SPoRE 
other 
nodes 

(incl. DS 
and NM) 

SPoRE Buses 

Bridge 

CosiMate interface 

Port Port 

SPoRE network 

CosiMate co-simulation 

Co-simulation bus 

Figure 3. Bridge between CosiMate and SPoRE.

SPoRE platform has been extended to support the bridge.
First, we replaced the scheduler to allow IP reconfiguration
being done depending on the co-simulation needs. Due to
SPoRE modular nature, this replacement does not override
the previous scheduler, the scheduler choice is proposed to
the user. The scheduler dynamically instantiates the modules
when needed in co-simulation, and can erase them when not
needed any more. The reconfiguration process itself relies on
SPoRE capabilities and is transparent to the user.

In SPoRE application descriptor, we added a reference
to a co-simulation descriptor. This reference is ignored
by common SPoRE nodes, but can be interpreted by the
bridge. The co-simulation descriptor indicates the relation
between SPoRE message paths and CosiMate ports. Using
this file, the bridge dynamically creates CosiMate ports,
allowing for the generation of the CosiMate configuration
file. The CosiMate ports are thus dynamic, and depend on
the application. There is no need to write a specific XML
configuration file for CosiMate, this is done automatically
to match SPoRE IP ports.

We use the co-simulation environment in event-driven
mode, using a simple request/acknowledge protocol for data



handling, as shown on Figure 4. Indeed, when declaring an

Port 

Port_req 

Port_ack 

Value Out 

Out 

In 

Figure 4. Bridge protocol for an output port.

output (resp. input) CosiMate port, the bridge actually de-
clares two additional single-bit ports, one output (resp. input)
for request, and one input (resp. output) for acknowledge.

In SPoRE environment, messages are referenced by a
data server. SPoRE uses a message path mechanism to link
messages to kernels. Message paths are FIFOs containing
messages identifiers (IDs) and owners.

In an application description, each kernel port actually
used in the application is linked to a message path. All
messages produced by an output port will be declared by
node to data server in the corresponding message path
using a unique message ID. Conversely, when a message is
available in a message path linked to an input port, the node
will be advised by data server, that will indicate which node
hosts the message. Messages are then downloaded directly
between nodes. Note that if a node hosts both ends of a
message path, the data server will still manage the message
path to ensure data coherency, but no download will be
necessary. This message path mechanism was initially added
to SPoRE while building this bridge, but is now the default
behavior for port management.

When an event comes to the bridge from CosiMate,
a SPoRE message is dynamically generated, and SPoRE
data server is advised of that creation. If a SPoRE node
is listening on the according message path, it will then
be able to download the message from the bridge. Con-
versely, the bridge listens on output messages path linked
to CosiMate ports. When a message is produced in such a
message path, the bridge is advised by SPoRE data server,
and will download the message from the producer node,
eventually initiating an event on corresponding CosiMate
port to transmit the message content.

V. IMPLEMENTING MODELS AS HARDWARE
Following the model-based prototyping method [3], the

co-simulation process begins by simulating high-level mod-
els of the system. The model is then progressively refined,
until a HDL implementation is done. This implementation
can be done manually by describing the IP core in HDL
language, or make use of model-to-text [12] or high-level
synthesis tools [13] to generate the code.

Second phase would be to simulate this code using a
HDL simulation tool plugged to the co-simulation bus. Mod-
elSim [14] is an example of tool supported by CosiMate.

Some minor signal adaptation may have to be done at this
phase, as data type representation can differ between soft-
ware and hardware, notably number of bits used to represent
a signal. Afterward the results of this simulation should not
differ from the simulation using high-level models, or the
error between simulations should be in an acceptable range
to validate the implementation [15].

Finally, the synthesis of the hardware module has to
be done following SPoRE bus-based architecture. SPoRE
implements computing kernels as cells plugged to a bus,
which notably allows IPs for direct access to data in RAM.
This bus-based interface will generally be easy to implement
for most IPs. In certain cases however, this mandatory
interface will cause some architectural restriction. Typically,
this can be the case of some IPs requiring to be fed two or
more messages at the same clock cycle. Nevertheless, this
can be easily worked around by adding small controllers that
will store messages and write them to the IP when all are
available.

When correctly wrapped in a SPoRE cell interface, the
user describes the IP ports and their protocol using SPoRE
descriptor syntax. This allows for use in any SPoRE appli-
cation, including co-simulation applications by instantiating
the bridge.

This integration can be seen on multiple levels. As
the bridge concentrates all data exchanges between the
two platforms, each platform can be seen by the other as
being the bridge. This means that we can see the complete
platform as a CosiMate co-simulation integrating a FPGA-
based simulator, or as a SPoRE platform integrating software
simulators. Moreover, due to SPoRE distributed nature and
CosiMate allowing multi-host co-simulation, we can easily
integrate two or more SPoRE platforms by using as many
bridges as necessary, in order to overcome a bottleneck if
needed.

For now, the bridge only supports integer transmission
between the platforms. If data size between a SPoRE mes-
sage path and a CosiMate port does not match, a stack is
automatically defined. As an example, we tested a FPGA-
based AES encryption that requires 128-bit word length,
and coupled it with 32-bit integer ports in CosiMate. To
do that, the bridge waits for 4 messages from the co-
simulation environment before it generate a SPoRE message.
Conversely, a SPoRE message will generate 4 successive
CosiMate messages when received. Another way to handle
this difference is to force data size matching by using
CosiMate array mechanism, and treat an array of 4 integers
as a single 128-bit message.

The test scenario we built is an AES encoder/decoder
prototype testing. The hardware part contains two modules:
an encoder and a decoder. The software part consists in
a small C++ software that allows for selecting a local
file and choosing whether to encrypt or decrypt it. The
software module then emits the data words composing the
file one after the other as events on the CosiMate bus. The
hardware part of the platform then automatically instantiates
the required module, reads the inputs, and sends the outputs
back to the bridge. The outputs are used by the software
application to build a new file. This test application allowed



us to validate the hardware/software communication part as
well as the dynamic behavior.

VI. PLATFORM USES
This platform can be used for different purpose. As

explained in a previous section, it allows accelerating a
simulation by implementing highly parallelizable models in
hardware, as well as testing a logic prototype in the same
environment its higher-level models were tested.

In both cases, debug features are of matter, as it is
important to obtain information from inside a model. This
can be easily done by adding Embedded Logic Analyzers
(ELA) in the FPGA. But using SPoRE also enables one
to add its specific observers inside the IP. Data will then
be retrieved from additional ports and uploaded to the data
server. Doing so will use Ethernet bandwidth, which may
interfere with IP if communication timing is of matter. But
this allows observability of the model without needing a
specific debug connection such as JTAG. This is especially
useful when using multiple FPGAs to deploy models, in
which case it is difficult to have specific debug links to all
devices.

Compared to other solutions depicted in Section II,
this platform adds support for partial reconfiguration. This
allows seeing an FPGA as a real SoPC, in which IPs are
independent from each other. This means if the simulation
needs some model at one point of the simulation, and some
other model at a different time, we can use both models on
the same device even if there is not enough logic to handle
both models at the same time. This is done by reconfiguring
the FPGA, replacing the unused model.

Moreover, by implementing a timeslicing scheduling
approach, we could do so even when both models are
needed at the same time. Timeslicing is a technique used
in software to simulate application parallelism by attributing
one resource (processor core) to different tasks depending
on the time. Here, resources are reconfigurable logic, but
this can be done the same way. However, this case needs
specific cares. This will be discussed in Section VII.

But the most promising use for this platform is for
modelling of dynamic systems. Indeed, by adding SPoRE
into the co-simulation environment, we provide support for
these systems. As for now, Partial Dynamic Reconfiguration
(PDR) is only used for resources management. But we
can imagine extending the PDR management to the SPoRE
application itself. This can be done by adding explicit
reconfiguration directives in the SPoRE application. Using
this, we will be able to simulate the behavior of dynamic
systems using native FPGA technology.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented a co-simulation platform

allowing to put together software and hardware models. The
main point of this platform is that is handles partial reconfig-
uration of FPGAs to turn these in dynamic multi-IP designs.
One FPGA can then handle various model implementations
at the same time, and the models implemented can vary
during the co-simulation. Moreover, various FPGAs can be
used at the same time if more reconfigurable logic is needed.
All reconfigurations are handled automatically without any

need for the user to be aware of the partial reconfiguration
mechanism.

The HIL co-simulation platform depicted in this article is
only a first step in our research projects. One main extension
we would like to do is to support synchronized mode up to
the FPGA. This will be the object of further work, and we
are exploring several leads on the subject. One idea would be
using a clocking process on hardware IPs that is independent
of the real time hardware clock, rather being provided by the
co-simulation environment, as done by Liao et. al [8].

Moreover, we would like to automatize the process of
designing SPoRE hardware kernels based on HDL IPs. This
could be done using a parsing tool that scans the HDL top
level entity interface, and generates both a co-simulation
interface for software simulation, and a SPoRE wrapper for
integration into HIL co-simulation. Some interface issues
should also emerge from this, notably type conversion han-
dling and floating/fixed point values representation. Using
standard interface definitions, such as IP-XACT [16] can
help automating the integration process.

Support of timeslicing simulation will also be inves-
tigated. Indeed, if the user is stuck with a number of
FPGAs, which does not allow for implementing all models
at the same time, timeslicing can solve this issue. It would
consist in instantiating one model on the resources, treat
the data related to it, then replace it by another model and
do the same. In synchronized mode, this would allow to
deal with multiple models on the same resources at each
simulated time step. The downside of this approach is the
reconfiguration time. Indeed, the reconfiguration time is an
uncompressible overhead in an IP lifetime. This overhead
gets negligible when the IP use time growth, but is of matter
if the reconfiguration is frequent.

This overhead then needs to be taken in consideration
if hardware is used for better performances. However, if
the hardware is used for implementing prototypes, with
no considerations of performances, this can be a useful
approach.

Finally, this platform has a potential for the simulation
of dynamic systems. If PDR is now used in background
by SPoRE, we could make it explicit. This approach will
concentrate our efforts, as we see here a promising use
of the platform. Indeed, if the user is able to indicate
how the reconfiguration should be handled, this opens new
perspectives for the simulation of dynamic and auto-adaptive
systems. To do so, we need to extend the SPoRE scheduler
used for co-simulation to allow direct reconfiguration orders
from the application itself.
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