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Discrimination of retinal images containing bright

lesions using sparse coded features and SVM

Désiré Sidibé∗, Ibrahim Sadek, Fabrice Mériaudeau

Université de Bourgogne - LE2I, CNRS, UMR 6306, 12 rue de la fonderie, 71200 Le
Creusot, France

Abstract

Diabetic Retinopathy (DR) is a chronic progressive disease of the retinal mi-

crovasculature which is among the major causes of vision loss in the world.

The diagnosis of DR is based on the detection of retinal lesions such as mi-

croaneurysms, exudates and drusen in retinal images acquired by a fundus

camera. However, bright lesions such as exudates and drusen share similar

appearances while being signs of different diseases. Therefore, discriminat-

ing between different types of lesions is of interest for improving screening

performances. In this paper, we propose to use sparse coding techniques

for retinal images classification. In particular, we are interested in discrim-

inating between retinal images containing either exudates or drusen, and

normal images free of lesions. Extensive experiments show that dictionary

learning techniques can capture strong structures of retinal images and pro-

duce discriminant descriptors for classification. In particular, using a linear

SVM with the obtained sparse coded features, the proposed method achieves
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superior performance as compared with the popular Bag-of-Visual-Word ap-

proach for image classification. Experiments with a dataset of 828 retinal

images collected from various sources show that the proposed approach pro-

vides excellent discrimination results for normal, drusen and exudates images.

It achieves a sensitivity and a specificity of 96.50% and 97.70% for the normal

class; 99.10% and 100% for the drusen class; and 97.40% and 98.20% for the

exudates class with a medium size dictionary of 100 atoms.

Key words: Diabetic retinopathy, Exudates, Drusen, Sparse coding,

Classification.

1. Introduction

Diabetic Retinopathy (DR) is a chronic progressive disease of the retinal

microvasculature that has became a major cause of vision loss in the world.

Due to the burden of diabetes over the past decades, the prevalence of DR is

expected to grow exponentially and affect over 300 millions people worldwide

by 2025 [1, 2]. Despite the high risk factor, it has been established that early

detection and timely treatment can reduce the development of severe vision

loss in 60% of cases [3]. However, DR does not exhibit any distinctive symp-

toms which the patient can easily perceive until a severe stage is reached. It

is therefore important to develop Computer Aided Diagnosis (CAD) systems

that can help clinicians in tasks such as large scale population screening and

early diagnosis. The benefit of such a CAD system is to quickly pre-screen

patients and orient those at risk to an ophtalmologist, reducing time and cost

of a visit.

The diagnosis of DR is based on the detection of lesions or other vascular
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abnormalities in retinal images acquired by fundus cameras. Lesions of in-

terest include microaneurysms, cotton wool spots, exudates, macular edema,

and hemorrhages [4]. Many algorithms have been developed for DR detection

over the past two decades, following a general pipeline: image quality ver-

ification, vessel segmentation, lesion detection, and automatic classification

with a machine learning technique [5, 6].

However, most of the existing algorithms are designed to detect a specific

type of lesions in retinal images, though different lesions might be present

in a single image indicating the stage of the disease. Morever, the lesions

can appear very similar while being signs for different diseases. For instance,

DR is caracterized, at early stages, by red lesions (microaneurysms) and

bright lesions (exudates) which appear as small white or yellowish deposits

with sharp edges in retinal images. On the other hand, Age Related Macular

Degeneration (ARMD) which causes a gradual loss of central vision, is mainly

caracterized by variable sized yellowish deposits in the retina called drusens.

Therefore, discriminating between different types of lesions is of great interest

for decision making in an automatic CAD system.

In this paper, we propose an automatic classification of retinal images

that discriminates between images containing different bright lesions. The

method is based on sparse signal representation techniques that can capture

strong structures of retinal images and produce discriminant descriptors for

classification. In particular, the proposed methodology does not require any

pre-processing of the images such as blood vessels segmentation or optic disc

removal, and achieves higher performance than other feature representation

techniques such as bag-of-visual-words approaches. This method can be used
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as an initial step for guessing the type of lesions a retinal image contains

and then specific detection algorithms can be used for each type of lesion,

increasing the performance of each specific detector by reducing the false

positives.

The rest of the paper is organized as follows. We briefly review existing

approaches for retinal images classification and discrimination in Section 2.

Section 3 gives a detailed presentation of the proposed approach. In Section 4,

different experiments are performed and the results are analyzed showing the

good performances of our approach. Finally, concluding remarks are given

in Section 5.

2. Related Works

Several approaches have been proposed in the literature for the detec-

tion of retinal features and lesions. The methods usually involve three main

steps [5, 6, 7]. First, a pre-processing step is applied in order to compen-

sate for the great variability between and within retinal images. The green

channel is usually considered the most preferable choice, because it provides

a maximum contrast between different retinal lesions and structures. The

second step detects candidate regions that may correspond to retinal lesions

and extracts features, while the last step classifies the candidate regions as

retinal lesions or not.

Many of the methods proposed in the literature deal with the detection

of a specific type of lesion, exudates or drusen for instance. A method to

detect hard exudates from color fundus images was introduced by Garcia et

al. [8]. The proposed method comprises a pre-prossessing step for luminos-

4



ity and contrast normalization, candidate regions extraction based on local

adaptive histogram thresholding, and classification using a neural network

classifier. Note that prior to classification, the optic disk is removed since

its characteristics are similar to that of exudate lesions. The method was

evaluated on a dataset of 117 images, and achieved a sensitivity of 100%, a

specificity of 77.78%, and a mean accuracy of 91.04%. An automatic method

for identification of hard exudates in retinal color fundus images was pro-

posed by Osareh et al. [9]. In this method, after image normalization via

histogram specification and local contrast enhancement, the images are seg-

mented using Fuzzy C-means (FCM) clustering algorithm. Finally, a three

layers perceptron neural network is used for classification. Using 75 color

images for training and 67 for testing, the method achieves a sensitivity of

95%, and a specificity of 88.9% for the image based classification task. Gi-

ancardo et al. [10] proposed a method for the diagnosis of diabetic macular

edema (DME) based on exudates detection. The method uses a SVM clas-

sifier trained with a single feature vector per image obtained through color

and wavelet analysis. The authors also provided a new publicly available

dataset (HEI-MED) consisting of 169 patients from various ethnic groups

and different levels of DME, and the method achieves an AUC (area under

curve) of 88%. A detection and classification approach of DME severity is

introduced by Deepak and Sivaswamy [11]. The detection is based on a su-

pervised learning of characteristics of normal images. Thus, any deviation

from these normal characteristics is considered an indication of abnormality.

The characteristics are computed from color and Radon features from differ-

ent orientations. The method achieves a sensitivity of 100% and a specificity
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between 74% and 90% on a dataset of 644 images from publicly available

datasets. Recently, Ali et al. [12] proposed an exudate detection method us-

ing a statistical atlas. The method first build a statistical atlas using a set of

normal color retinal images. The atlas captures the chromatic distribution

of the retinal images for a given ethnic group. Then, any test image from the

same group is warped to the atlas coordinates frame and a simple distance

map between the atlas and the test image suppresses anatomical structures

such as optic disk, vessels and macula, and gives a good segmentation of the

lesions. This method has the advantage of avoiding complex pre-processing

of the images.

Age Related Macular Degeneration (ARMD), which causes a gradual loss

of central vision, is mainly caracterized by drusens. Hijazi et al. [13] proposed

a method for drusen detection in retinal images based on angular and circular

decomposition. The output of the decomposing step is a set of trees repre-

senting the images, and a weighted frequent sub-tree mining approach is used

to determine the most frequent sub-trees. The weighted frequent sub-trees

are then employed as features to train a classifier. Two classifiers are used for

final classification, SVM and Naive Bayes. A total of 258 images from two

different publicly dataset were used and the system achieved an accuracy of

100% and 95% with SVM and Naive Bayes respectively. Akram et al. [14]

proposed an algorithm to automatically segment drusens in fundus images

for ARMD diagnosis. The images are first pre-processed using morpholog-

ical operations and contrast enhanced by applying an adaptive histogram

equalization. Then, Gabor filters are used to select candidate regions from

which color and texture features are extracted. Finally, a SVM is used for
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classification. The method achieves a sensitivity, a specificity and an accu-

racy of 95%, 98.4% and 97% respectively, using the STARE dataset of 400

images. Zheng et al. [15] introduced a system that uses a two-step proce-

dure for drusen detection. First, a pixel-wise classification is performed using

color features and SVM to predict whether a pixel corresponds to drusen or

not. Then, a group-wise classification is exploited to remove false positive

components from the pixel-wise classification. The system is validated by

comparing its output with manually segmented drusen on a pixel by pixel

basis. The system achieves an accuracy between 80% and 86% depending

on the dataset used. In [16], Garnier et al. proposed an ARMD detection

method from fundus images using a multiresolution texture analysis. The

texture is analyzed at several scales using a wavelet decomposition in order

to identify all the relevant texture patterns, and an image is finally described

with the textural pattern distributions of the wavelet coefficients images ob-

tained at each level of decomposition. The method achieves an accuracy of

93.3% on a small dataset of 45 images.

As mentioned in [17], a common limitation of current algorithms for the

detection and classification of bright lesions in retinal images is the need for

complex and empirical pre- and post-processing steps depending on the lesion

of interest. These include image size and illumination normalization [18], the

segmentation and removal of blood vessels [19, 20], and the detection and

removal of optic disc [21].

To avoid these pre- and post-processing steps, Rocha et al. [22] proposed

a framework based on bags-of-visual-words (BoVW) representation which

can be used for the detection of different lesions. This BoVW approach first
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extracts low-level features from the retinal images and build a visual vocab-

ulary, or codebook, by quantization of the low-level features. The visual

vocabulary is then employed to code each image and the obtained represen-

tation in terms of visual words in the dictionary is used to train a classifier

that can distinguish different retinal lesions. The method has shown promis-

ing results for detection of both hard exudates and microaneurysms [22],

and has been the basis of future work addressing the task of retinal images

discrimination [17]. In particular, the system achieved an AUC of 95.3 for

white lesion detection and 93.3 for red lesion detection using a dataset of

1232 images.

Few methods were proposed for the task of discriminating between reti-

nal images containing different types of bright lesions. Niemeijer et al. [23]

proposed a method that can automatically detect bright lesions in retinal

images and can differentiate among exudates, cotton wool spots, and drusen.

The method first detects potential lesions pixels in the images using a set of

14 digital filters and a k-nearest neighbour (k-NN) classifier. These pixels are

grouped into probable lesions regions from which features such as contrast,

shape and size characteristics, and proximity to vessels are extracted. Finally,

a linear discriminant analysis classifier is trained to classify bright lesions into

exudates, cotton-wool or drusen. The system achieves a sensitivity of 95%

and a specificity of 88% using a validation set of 300 images. Grinsven et

al. [24] proposed an algorithm to automatically retrieve and classify images

with bright lesions, namely drusen and exudates, using the BoVW approach.

The algorithm initially partions the image into a fixed number of square

patches and extracts a set of features from each patch. The features set
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includes color histograms, histogram of oriented gradients (HoG) and local

binary patterns (LBP). A visual dictionary is created using these features

and classification is performed with a weighted nearest neighbor classifier.

The method achieves an AUC of 0.9 for the classification task with a dataset

of 415 images. Pires et al. [25] have also used the BoVW approach in order

to identify images with bright lesions such as hard exudates, cotton wool

spots, and drusen, in addition to images with red lesions like hemorrhages

and microaneurysms. They created a visual vocabulary and trained a SVM

detector for each type of lesion. Then, the results of the individual detectors

are combined into a meta-classification step that indicates whether or not

a patient should be referred to an ophtalmologist for further review. The

system achieves an AUC score of 93.4 using a dataset of 1077 images. A

similar approach is adopted by Sadek et al. [26] where authors create a dic-

tionary for different features (LBP, HoG and SURF) and finally concatenate

the obtained histograms representation into a unique feature vector. This

representation is then used with a SVM classifier to distinguish between reti-

nal images containing drusen or exudates. Experiments with a dataset of

430 images show a mean classification accuray of about 97.2%. A different

approach for retinal images discrimination is proposed by Ujjwal et al. [27]

based on visual saliency framework. They used a visual saliency detection

method [28] to extract potential locations of abnormalities in retinal images,

and regions with lesions are detected based on their saliency values and LBP

features using a k-NN classifier. The method is reported to achieve a cor-

rect discrimination rate of 96.41% between respecticely 171 drusen and 217

hard-exudates images.
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Although the previously described methods reported high correct bright

lesions classification and discrimination rates, they still require some pre-

processing step or some manual annotation of the images. Indeed, the BoVW

approach [24] needs a prior knowledge about the location of the optic disk and

the macula, while the method described in [25] requires manual annotation of

unhealthy regions. The correct classification rate of the method of Ujjwal et

al. [27] depends on the output of the visual saliency detector, and the method

in [26] requires the removal of blood vessels. In this paper, we propose an

automatic classification and discrimination method for retinal images that

require no prior knowledge such as the locations of some retinal structures

(optic disc or macula), and that can learn discriminant features from the

images directly based on the sparse coding principle.

3. Methodology

This section describes the proposed method for the discrimination of

retinal images containing bright lesions based on sparse coding techniques.

Sparse signal representations are becoming increasingly popular and lead to

state-of-the-art results in various applications such as face recognition [29],

image denoising and impainting [30], and image classification [31]. The main

reason being the intrinsic sparse nature of images representations when using

fixed bases such as DCT or wavelets [32, 33]. In addition, the basis vectors

can be learned from the data itself and be constrained to produce a sparse

representation.
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3.1. A brief introduction to sparse coding

The goal of sparse modeling is to find efficient representations of signals

(or images viewed as two-dimensional signals) as a linear combination of

a few typical patterns, called atoms, selected from a dictionary. Given a

dictionary matrix D ∈ Rn×K that contains K atoms as column vectors dj ∈

Rn, j = 1, . . . K, the sparse coding problem of a signal y ∈ Rn can be stated

as finding the sparsest vector x ∈ RK such that y ' Dx. The problem is

therefore to solve the following optimization problem:

min
x
‖x‖0 subject to ‖y −Dx‖2 ≤ ε, (1)

where ε is the reconstruction error of the signal y using the dictionary D and

the sparse code x.

Alternatively, one can also solve the following optimization problem:

min
x
‖y −Dx‖2 subject to ‖x‖0 ≤ λ, (2)

where λ is a specified sparsity level.

The vector x ∈ RK contains the representation coefficients of the signal y

w.r.t. the dictionary D. As opposed to other representations such as PCA,

in sparse coding one is looking for the sparsest vector x, i.e. the vector with

the smallest number of nonzero coefficients. In the above formulation, the

l0-norm (which is actually a pseudo-norm) counts the nonzeros entries of a

vector.

Since exactly solving the above optimization problem is a NP hard prob-

lem [32], approximate solutions are obtained using greedy algorithms such as

matching pursuit (MP) [34] or orthogonal matching pursuit (OMP) [35]. A
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second class of methods relies on relaxation and replace the l0-norm with an

l1-norm making the optimization problem a convex one that can be solved

efficiently. Such methods are called basis pursuit (BP) [36].

A key issue for practical applications is the choice of the dictionary

D. One can use a pre-determined and fixed dictionary as is the case with

wavelets, curvelets, or steerable filters transforms. But, the pre-specified dic-

tionary do not necessary well describe a given signal at hand. Hence, it is

more appealing to learn the dictionary from a given set of training data.

The K-SVD algorithm [37] is a standard unsupervised dictionary learning

algorithm that generalizes the well known K-means clustering algorithm.

Given a set of training signals Y = [y1, . . . ,ym], where each yi ∈ Rn,

K-SVD jointly finds a dictionary D = [d1, . . . ,dK ] and an associated sparse

codes matrix X = [x1, . . . ,xm], xi ∈ RK , by solving the following problem:

min
D,X
‖Y −DX‖2 subject to ∀i, ‖xi‖1 ≤ λ. (3)

The K-SVD algorithms iteratively solves this optimization problem by

alterning between computing the sparse code matrix X and the dictionary

D. Given D, the sparse coding problem is solved using any pursuit algorithm

(MP, OMP or BP). Given the codes X, the dictionary is sequentially updated,

i.e. one atom at a time, using singular value decomposition (SVD). This

provides a very effective unsupervised dictionary learning technique. After

learning the dictionary, each given signal yi ∈ Rn is represented by the

corresponding feature vector (or sparse code) xi ∈ RK . This feature can

then be used for recognition or classification tasks.
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3.2. Image classification with sparse coded features

The first step in the process of using sparse representation for image

classification is to learn a dictionary that captures strong and discrimina-

tive structures of the images. We use the K-SVD algorithm for dictionary

learning [37].

3.2.1. Features extraction and representation

The dictionary is learnt from low-level features extracted from the train-

ing data. Several works have shown that applying sparse coding to local parts

or descriptors of the images can capture higher-level features compared to raw

image patches [38, 39]. In our work, we divide the image into square patches

of fixed size and extract low-level features from each of the patches. Since

the images used in the experiments are from different sources, as explained

in Section 4, we resize them to a fixed resolution of 512× 512 using bilinear

interpolation, then we extract the following types of low-level features:

• Color features: color features are extracted in image patches of size

8 × 8. For an image size of 512 × 512, one thus have 4096 feature

vectors extracted. Each of the feature vector is the concatenation of

color histograms from normalized r, g and b components from RGB

color space, and from h, s, v, Cb and Cr from HSV anb YCbCr color

spaces respectively. We use histograms of size 8 in our experiments, so

that, in total, every feature vector is of dimension 64.

• SIFT: dense SIFT features are extracted over a regular grid on the

image. The grid points correspond to the corners of the square patches,
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so we use a grid step size of 8 pixels. For every grid point, a SIFT

descriptor of dimension 128 is extracted.

• HOG: histogram of oriented gradients (HOG) are extracted over a

regular grid on the image, with a grid step size of 8 pixels. For every

grid point, a descriptor of dimension 31 is extracted.

• LBP: local binary patterns (LBP) are extracted over a regular grid on

the image, with a grid step size of 8 pixels. For every grid point, we

extract a feature vector of size 58.

Color features capture the local color appearance of image regions and

are good indicator of the presence of bright lesions which appear as small

white or yellowish deposits in the retina. LBP features capture the local

texture of image regions, while SIFT and HOG features are based on the

local distribution of gradient information. Thus, they capture the local shape

of the regions. Note that except for color features, all other features are

extracted from the green channel of the fundus image. For each feature

type, the features extracted from all training images are put as columns of a

matrix Y = [y1, . . . ,ym], where each yi ∈ Rn is a feature vector and m is the

total number of local patches from the training images. We use the K-SVD

algorithm, explained in Section 3.1, to learn a dictionary D = [d1, . . . ,dK ],

where K is the size of the dictionary.

Every image I can then be coded using the learnt dictionary D. First, a

set of low-level features is extracted from the image to form a feature matrix

FI ∈ Rn×p, where p is the number of local patches. Given the dictionary

D, the sparse codes matrix XI ∈ RK×p is found that solves the optimization
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Figure 1: Flowchart of the feature extraction and coding method.

problem in Equation 1, so that FI ' DXI . Note that each column of XI is a

sparse vector that represent the corresponding feature vector from the image

I, i.e. the corresponding column in FI . Finally, the set of sparse codes is

combined into a single and global descriptor as follows [31]:

fi = max
j

(|XI(i, j)|), ∀i = 1, . . . , K. (4)

Fig. 1 shows the overall flowchart of the proposed feature extraction

method based on sparse coding.

3.2.2. Image classification

After dictionary learning, every image is sparse coded using the obtained

dictionary and represented as a single feature vector as explained in Sec-
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tion 3.2.1. These feature vectors are then used as input for training a SVM

classifier. We used linear SVM as they can be implemented with linear com-

plexity in training and testing phases [40].

3.2.3. Relation with the BoVW model

The sparse coding technique described above is closely related to the

common bag-of-visual-worlds (BoVW) approach. In the BoVW model [41], a

visual dictionary, or codebook, is created by quantization of the low-level fea-

tures extracted from the training images. A traditional unsupervised method

for computing the dictionary is to apply K-means clustering technique to the

set of low-level features, and use the k centroids as codewords, i.e. elements

of the visual dictionary. A new image is then represented by a vector in-

dexed by the codewords: for each element di of the dictionary, ones counts

the number of low-level features in the image whose closest codeword is di.

The visual dictionary in the BoVW model corresponds to the one ob-

tained via sparse coding (Section 3.1). However, a key difference lies in the

fact that the BoVW approach creates the dictionary from quantization of the

low-level features directly and assigns each feature to the nearest codeword.

Sparse coding techniques, on the contrary, encode each low-level feature as

a weighted sum of dictionary elements, optimizing a tradeoff between recon-

struction error and the l1 norm of the reconstruction weights. This non-linear

encoding scheme provides better representation of the images, as we will see

in the experiments (Section 4).
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4. Experiments and Results

In this section, we describe the different experiments performed to evalu-

ate our method, and present the results obtained in discriminating between

retinal images containing bright lesions, namely exudates and drusen, and

normal retinal images which contain no lesions. In particular, we compare

different low-level features and compare our proposed method using sparse

coding with BoVW approaches used in [26, 24].

4.1. Dataset

We use in this study a dataset of 828 images with 452 normal images,

85 images with drusen and 291 images containing exudates. These images

are sampled from six public datasets and one private database, listed in

Table 1. The idea of using images from different datasets is to evaluate the

robustness of the proposed method to images acquisition variabilty. Indeed,

the images from the several datasets were collected in different environments

with different cameras. The partition of the images into the three classes is

given in Table 1, and some images are shown in Fig. 2. Note the variability

in the images appearances, different illumination and contrast.

In all our experiments, we have used the KSVD-box1 for sparse modeling,

and the Vlfeat library2 for features extraction.

1http://www.cs.technion.ac.il/∼ronrubin/software.html
2http://www.vlfeat.org
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Dataset Normal Drusen Exudate

ORNL3 36 61 20

HEI-MED4 20 - 26

STARE5 - 24 -

HRF6 15 - -

DRIDB7 10 - 27

DRIVE8 20 - -

MESSIDOR9 351 - 218

Combined 452 85 291

Table 1: Distribution of images from public datasets used in the experiments.

Figure 2: Example of images in the dataset. From left to right: a normal image, an image

with drusen and an image with exudates.

3private dataset kindly provided by T. Karnowski from ORNL.
4see (http://vibot.u-bourgogne.fr/luca/heimed.php)
5see (http://www.ces.clemson.edu/~ahoover/stare/)
6see (http://www5.cs.fau.de/research/data/fundus-images/)
7see (http://www.fer.unizg.hr/ipg/resources/image_database)
8see (http://www.isi.uu.nl/Research/Databases/DRIVE/)
9see (http://messidor.crihan.fr)
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4.2. Retinal images classification

In this section, we evaluate the performances of the proposed retinal

images discrimination method. We perform different experiments, and use

10-fold cross validation. The dataset is split into 10 subsets, and the dictio-

naries are learnt with 9 of the subsets while classification is performed with

the remaining subset. This process is repeated 10 times ensuring that each

image is used both for training and testing. Thus, the method is tested with

10 different training and testing sets and the average classification perfor-

mance is reported. The performance is evaluated in terms on classification

accuracy, sensitivity and specificity. Since, we have three classes (normal,

exudates and drusen) we compute the classification performance scores for

each invidual class in a one-vs-rest manner. For example, for the drusen

class we consider all drusen images as positive samples and all normal and

exudates images as negative samples.

In the experiments, we vary the size of the dictionary from 10 to 1000,

and we set the sparsity level (the parameter λ in Eq. 3) to 3 as this value

gives the best classification results.

4.2.1. Normal-vs-rest

In this experiment, we test the performance of the proposed method in

correctly identifying a normal image, i.e. a retinal image free of lesions. All

452 normal images in the dataset are used as positive examples and all drusen

and exudates images are used as negative ones. The results obtained with the

proposed sparse coding approach using SIFT features are given in Table 2.

As can be seen, the classification performance increases with the size of the

dictionary. For a medium size of 100, the method achieves an accuracy of
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97.50%, a sensitivity of 96.50% and a specificity of 97.70%. For a larger

dictionary of size 300, the method achieves near perfect classification results

despite the high variability in the images which are selected from various

sources. The method achieves an accuracy of 99.80%, a sensitivity of 100%

and a specificity of 99.70%. This shows that the proposed method is able to

correctly discriminate a retinal image containg no lesions from images with

bright lesions.

Dictionary size Accuracy Sensitivity Specificity

10 83.80 (±5.29) 56.50 (±9.83) 90.70 (±4.06)

20 88.20 (±4.24) 77.20 (±10.32) 91.00 (±4.27)

30 90.30 (±4.27) 79.20 (±17.81) 92.90 (±4.63)

50 93.70 (±3.71) 82.40 (±15.33) 96.60 (±3.17)

100 97.50 (±2.84) 96.50 (±5.76) 97.70 (±3.50)

200 99.40 (±0.97) 98.50 (±3.17) 99.7 (±0.95)

300 99.80 (±0.63) 100 (±0) 99.70 (±0.95)

500 99.60 (±0.84) 100 (±0) 99.5 (±1.08)

1000 99.80 (±0.63) 100 (±0) 99.7 (±0.95)

Table 2: Normal-vs-rest classification results with sparse coded features and SVM classifier.

The results indicate the mean measure and standard deviation obtained with 10-fold cross

validation.

4.2.2. Drusen-vs-rest

This second experiment aims at evaluating the performance of the pro-

posed method in correctly identifying an image containing drusen. All 85

drusen images of the dataset are used as positive examples and all normal

and exudates images are used as negative ones. The results obtained with the
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proposed sparse coding approach using SIFT features are given in Table 3.

As in the previous experiment, the classification performances increase as the

dictionary size increases. However, for the identification of drusen images,

near perfect results are obtained with a dictionary of medium size 100 with

an accuracy of 99.80%, a sensitivity of 99.10% and a specificity of 100%.

For a dictionary of size 300 or above, all drusen images are correctly identi-

fied and no other image is misclassified. The proposed method achieves an

accuracy, a sensitivity and a specificity of 100%.

Dictionary size Accuracy Sensitivity Specificity

10 91..90 (±3.38) 81.20 (±12.59) 95 (±2.79)

20 96.30 (±3.33) 87.90 (±15.44) 98.60 (±1.90)

30 96.60 (±2.41) 87.90 (±5.67) 98.60 (±2.37)

50 98.20 (±1.93) 92.40 (±9.57) 99.40 (±1.90)

100 99.80 (±0.63) 99.10 (±2.85) 100 (±0)

200 99.80 (±0.63) 99.20 (±2.53) 100 (±0)

300 100 (±0) 100 (±0) 100 (±0)

500 100 (±0) 100 (±0) 100 (±0)

1000 100 (±0) 100 (±0) 100 (±0)

Table 3: Drusen-vs-rest classification results with sparse coded features and SVM classifier.

The results indicate the mean measure and standard deviation obtained with 10-fold cross

validation.

4.2.3. Exudates-vs-rest

n this last experiment, we evaluate the performance of the proposed

method in correctly identifying an image containing exudates. All 291 ex-

udates images of the dataset are used as positive examples and all normal
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and drusen images are used as negative ones. The results obtained with the

proposed sparse coding approach using SIFT features are given in Table 4.

As can be seen, the proposed method performs well in this experiment and

is able to correctly identify retinal images containing exudates from other

images. In particular, the method achieves an accuracy, a sensitivity and a

specificity of 99.80%, 100% and 100% respectively, with a dictionary of size

300.

Dictionary size Accuracy Sensitivity Specificity

10 88.30 (±6.73) 91.80 (±9.83) 83.4 (±11.37)

20 91.50 (±3.66) 92.10 (±10.32) 90.90 (±7.06)

30 93.30 (±3.68) 94.10 (±17.81) 91.50 (±9.18)

50 95.70 (±3.06) 97.70 (±15.33) 92.40 (±6.72)

100 97.0 (±2.54) 97.40 (±5.76) 98.20 (±3.05)

200 99.60 (±0.84) 100 (±0) 99 (±2.11)

300 99.80 (±0.63) 100 (±0) 100 (±0)

500 99.80 (±0.63) 100 (±0) 100 (±0)

1000 99.80 (±0.63) 100 (±0) 100 (±0)

Table 4: Exudates-vs-rest classification results with sparse coded features and SVM classi-

fier. The results indicate the mean measure and standard deviation obtained with 10-fold

cross validation.

A comparison of the classification results obtained for each one of the

three classes is shown in Figures 3, 4 and 5. We can observe from these

figures that, the performances obtained for the normal class ( normal-vs-

rest experiment) are slightly lower than those obtained for the drusen class

(drusen-vs-rest experiment) and the exudates class (exudates-vs-rest exper-
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iment). For example with a dictionary of size 100, the acurracy values are

97.5%, 99.8% and 97% for the normal, drusen and exudates classes respec-

tively. The sensitivity values are 96.5%, 99.10% and 97.4% for the three

classes, and the specificity values are respectively 97.7%, 100% and 98.2%.

For larger dictionaries, size above 500 atoms, the method achieves perfect or

close to perfect results for all three classes.

Figure 3: Classification accuracy with SIFT sparse coded features and SVM classifier.

4.3. Comparison of the different features

In this section, we evaluate the performances of the different feature types

introduced in Section 3.2.1, namely SIFT, LBP, HOG and COLOR features.

Again, we evaluate the performances of the classification method using dif-

ferent types of features for each individual class in a one-vs-rest manner. We

use for this comparison a dictionary of size 100 (the main observations are

23



Figure 4: Sensitivity with SIFT sparse coded features and SVM classifier.

Figure 5: Specificity with SIFT sparse coded features and SVM classifier.
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similar for varying dictionary sizes).

The results for the experiments are given in Table 5 and in Figures 6, 7

and 8. We can see from these results that sparse coding applied to SIFT fea-

tures outperforms other feature types. The classification accuracy obtained

with SIFT features is higher than the ones obtained with other features whose

performances are comparable. We obtain an accuracy of 97.5%, 92.6%, 88.3%

and 92.3% with SIFT, COLOR, LBP and HOG features respectively, for the

normal class. For the drusen class, COLOR features achieve very good clas-

sification results but slightly below the results obtained with SIFT features.

However, for the exudates class, the difference is more significantly in favor of

SIFT features. For this class, using SIFT features we obtain an accuracy of

97.7%, a sensitivity of 97.4% and a specificity of 98.2%, while using COLOR

features these figures are respectively 93.8%, 95.4% and 91.7%.

From Figures 6, 7 and 8, we can conclude that SIFT features perform best

among all features for all three classes. In particular for the difficult class of

normal images, SIFT achieves a sensitivity of 96.5%, while the second best

feature COLOR achieves a sensitivity of only 80.6%. We can also see that all

features provide slightly better results for the drusen and exudates classes in

comparison with the normal class.

The results in Table 5 also show the standard deviation of the different

performance measures for each feature type. As can be seen, the results

obtained with SIFT features are more stable than results with other features

as shown by lower standard deviation values.
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Feature type

COLOR LBP HOG SIFT

Acc 92.60 (±5.42) 88.30 (±3.77) 92.30 (±3.13) 97.50 (±2.84)

Normal Sens 80.60 (±14.61) 75.10 (±16.35) 80.90(±17.88) 96.50 (±5.76)

Spec 96.20 (±4.02) 92.10 (±4.63) 95.00 (±2.00) 97.7 (±3.50)

Acc 98.00 (±2.36) 96.90 (±2.38) 95.90 (±2.56) 99.80 (±0.63)

Drusen Sens 95.60 (±10.63) 91.60 (±9.26) 94.30 (±6.34) 99.10 (±2.85)

Spec 98.20 (±1.99) 98.20 (±2.10) 97.00 (±2.58) 100 (±0)

Acc 93.80 (±3.91) 88.30 (±2.87) 93.50 (±2.27) 97.70 (±2.54)

Exudates Sens 95.40 (±2.59) 90.30 (±5.44) 93.50 (±3.63) 97.40 (±3.75)

Spec 91.70 (±9.04) 86.40 (±7.66) 93.40 (±7.50) 98.20 (±3.05)

Table 5: Comparison of different features. For each class, we give the classification ac-

curacy (Acc), the sensitivity (Sens) and the specificity (Spec). The results indicate the

mean value and standard deviation obtained with 10-fold cross validation.

4.3.1. Combination of features

In this section, we propose to combine different feature types to improve

the classification performances. Based on the results of previous section,

where we observed that SIFT features give the best classification perfor-

mances, we tested the combination of SIFT features with other features.

More precisely, we tested the following combinations: COLOR+SIFT, LBP+SIFT,

HOG+SIFT and LBP+HOG+COLOR.

The results in Figures 9, 10 and 11 show that combining SIFT features

with other features types slightly improve the classification results. In par-

ticular, we observe a slight improvement when using SIFT combined with

COLOR features. The classification accuracy increases from 97.50% with

SIFT to 98.90% COLOR+SIFT for the normal class, and from 97.7% to
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Figure 6: Comparison of different features: classification accuracy.

Figure 7: Comparison of different features: sensitivity.
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Figure 8: Comparison of different features: specificity.

99.8% for the exudates class. For the drusen class, the performances are the

same when using a dictionary of size 100. The combinations LBP+SIFT and

HOG+SIFT give similar results compared with SIFT features alone. It is also

interesting to observe that the combination LBP+HOG+COLOR performs

the worse achieving lower performance than SIFT alone. This is particularly

true for the sensitivity measure (Figure 10) as LBP+HOG+COLOR gives a

sensitivity of 80.4% for the normal class while SIFT achieves a sensitivity of

96.5% and COLOR+SIFT a sensitivity of 98.9%.

The good results obtained when combining COLOR and SIFT features

can be explained by the fact that SIFT features are extracted from the green

channel of the color fundus image, thus ignoring the chromatic information.

Thus adding color information to SIFT features, the descriptor captures more

information. However, as seen in the results, combining LBP, HOG and
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COLOR features does not provide better performances compared with SIFT.

Figure 9: Features combination: classification accuracy.

4.4. Comparison with bag-of-visual-words methods

In this section we compare the proposed method based on sparse coding

with the bag-of-visual-words (BoVW) approach. The BoVW approach is

used by Grinsven et al. [24] and by Sadek et al. [26] to create a dictionary

and represent an image by a histogram of visual words occurrences.

Table 6 shows the results of the comparison for the normal class. We can

see that both methods perform well for this class with the same accuracy

of 93.7% for a small dictionary of size 50, and a slightly better accuracy

for sparse coding for larger dictionaries. With a dictionary of size 100, the

sparse coding approach and the BoVW method give an accuracy of 97.50%

and 95.30% respectively. However, there is a significant difference when
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Figure 10: Features combination: sensitivity.

Figure 11: Features combination: specificity.
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Dictionary size

50 100 500 1000

Acc 93.70 (±3.71) 97.50 (±2.84) 99.40 (±0.97) 99.80 (±0.63)

Proposed method Sens 92.40 (±5.33) 96.50 (±5.76) 98.50 (±3.17) 100 (±0)

Spec 96.60 (±3.17) 97.70 (±3.50) 99.70 (±0.95) 99.70 (±0.95)

Acc 93.70 (±2.58) 95.30 (±2.06) 97.20 (±2.04) 97.70 (±2.06)

Bag-of-Words Sens 90.20 (±8.11) 87.30 (±12.59) 92.50 (±6.57) 92.20 (±12.04)

Spec 94.60 (±3.50) 96.60 (±3.50) 98.20 (±1.55) 98.80 (±1.55)

Table 6: Comparison between the proposed method based on sparse coding and the BoVW

approach for the Normal class, using SIFT features.

considering the sensitivity and specificity measures. For example, with a

dictionary of size 100, the BoVW approach achieves a sensitivity of 87.30%

while the sparse coding approach achieves a sensitivity of 96.50%. With a

larger dictionary, 500 atoms, these two figures are respectively 92.5% and

98.5%. Thus, we can see that the sensitivity of BoW, for the normal class,

reaches a plateau around 92% when the sensitivity value of sparse coding

keep increasing to reach 100% with 1000 atoms. The same observations

apply to the other classes and the results are shown in Tables 7 and 8. It is

important to note that the classification results obtained with the proposed

sparse coding approach are more stable than those obtained with the BoVW

approach with respect to the training set used. This can be seen in the

standard deviation values in Table 6, 7 and 8.

31



Dictionary size

50 100 500 1000

Acc 98.20 (±1.93) 99.80 (±0.63) 99.80 (±0.63) 100 (±0)

Proposed method Sens 92.40 (±9.57) 99.10 (±2.85) 98.60 (±4.43) 100 (±0)

Spec 99.40 (±1.90) 100 (±0) 100 (±0) 100 (±0)

Acc 97.90 (±3.84) 98.80 (±1.03) 99.10 (±1.66) 99.80 (±0.63)

Bag-of-Words Sens 90.40 (±8.42) 96.70 (±5.33) 98.20 (±5.69) 100 (±0)

Spec 98.80 (±2.10) 99.10 (±1.45) 99.40 (±1.26) 99.70 (±0.95)

Table 7: Comparison between the proposed method based on sparse coding and the BoVW

approach for the Drusen class, using SIFT features.

Dictionary size

50 100 500 1000

Acc 95.70 (±3.06) 97.60 (±2.54) 99.80 (±0.63) 99.80 (±0.63)

Proposed method Sens 97.70 (±4.06) 97.40 (±3.75) 99.70 (±0.95) 99.70 (±0.95)

Spec 92.40 (±6.72) 98.20 (±3.05) 100 (±0) 100 (±0)

Acc 94.80 (±2.78) 95.70 (±2.45) 98.00 (±2.36) 97.90 (±2.18)

Bag-of-Words Sens 94.00(±4.45) 96.00 (±3.20) 98.10 (±3.21) 97.80(±2.53)

Spec 92.60 (±3.86) 94.90 (±5.32) 97.60 (±3.13) 97.90 (±3.41)

Table 8: Comparison between the proposed method based on sparse coding and the BoVW

approach for the Exudates class, using SIFT features.

5. Conclusion

In this paper, we have proposed an automatic classification of retinal im-

ages that discriminates between images containing different bright lesions,

namely drusen and exudates. The method is based on sparse signal rep-

resentation techniques that capture strong structures of retinal images and
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produce discriminant descriptors for classification. In particular, the pro-

posed methodology does not require any pre-processing of the images such

as blood vessels segmentation or optic disc removal, and achieves higher per-

formence than other feature extraction schemes such as bag-of-visual-words

approaches. We obtained excellent classification results with a dataset of 828

retinal images from various sources, showing the robustness of the approach

to images acquisition variabilty such varying illumination, contrast and res-

olution. In particular, using a dictionary of size 100 and a linear SVM with

sparse coded features, the method achieves a sensitivity and a specificity of

96.50% and 97.70% for the normal class; 99.10% and 100% for the drusen

class; and 97.40% and 98.20% for the exudates class.

The proposed framework can easily be extended to include other type

of lesions such microaneurysms which are subtle and difficult to distinguish.

Another future work direction would be the identification of the precise lo-

cation of the lesions as well as their size and quantity in order to estimate

the degree of severity of the disease.
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