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R
ecent advances in genome-scale metabolic network reconstruc-
tion paved the way to the use of quantitative modelings such as
FBA. However, despite the great interest of these techniques

to tackle quantitative features, microbial community modeling re-
mains unclear. Whereas studies represent a microbial community
with several compartments for each microbial strains and their com-
mon pool, others advocate for the use of a single compartment that
combines all reactions. Here we show that both modelings lead to
different optimal quantitative solutions. This study illustrates this
difference by the use of the flux module technique, that describes, in
a compact way, the optimal solution space as computed by FBA-like
techniques. For application, this paper computes the flux modules
of a hot spring microbial community (represented by Synechococcus
spp., Chloroflexus and Roseiflexus spp.) and a microbial methagenic
system (Desulvovibrio vulgaris and Methanococcus maripaludis) sul-
fate reducing bacteria), while emphasizing the quantitative changes
that occurs when one assumes either the consortium as a “single
compartment” or a multiple compartment.

Introduction

Following the surge of high throughput experiments to investigate microbial
ecosystems, network systems ecology techniques risen their interest by proposing
a qualitative description of ecosystems. For instance, by focusing on ”who is
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there and who is not” [13], these techniques emphasize networks of microbes
that co-occurred. However, the functional understanding of these communities
remains often challenging when techniques solely consider qualitative com-
munity description rather than introducing (partial) quantitative knowledge.
Considering the metabolic network of a community is one way to overcome this
weakness [21]. One assumes the microbial ecosystem behaviors driven by the
metabolic reactions encoded by each microbial genomes. In other words, thanks
to multiple metabolic enzymes, microbes interplay within the environment
and promote a whole metabolic network responsible for quantitative behavior
[6, 3]. Once the metabolic network identified, constraint-based modelings are
standardly used to reproduce quantitative properties of the whole metabolic
network at a molecular resolution (see [11] or [18] for review)

However, whereas these modeling techniques such as FBA-like approaches
became standard modeling routines for single cell systems, their applicative
conditions remain to be deeper investigated when applied on microbial commu-
nities. In particular, microbial community metabolic network could be either
reconstructed as a single integrated network by merging all reactions monitored
by all bacterial strains (i.e. Single Cell Hypothesis - SCH), or considering
natural boundaries between species by considering strain specific genes (i.e.
Multiple Compartment Hypothesis - MCH) as already promoted in tissu specific
networks [2, 10] or well-studied human gut microbial community [14]. Because
both assumptions implies a distinct experimental efforts, this study proposes
an analysis of SCH and MCH consequences on microbial community metabolic
models. It is worth to notice herein that such an approach is a natural extension
of a previous work of [9]. In 2010, Niels Klitgord and Daniel Segrè proposed
a study of the impact of compartmentalization in metabolic flux models via
the consideration of organelles within the metabolic network of yeast. However,
at the time of the study, no genome-scale metabolic description of microbial
community was available. We propose to overcome this weakness by taking
benefits from recent biotechnological progresses. We complete the previous
study by exploring herein the difference of both - MCH and SCH - hypotheses
on two distinct genome-scale community metabolic networks. First, we ana-
lyze a microbial mat model that uses three microbial strains: Cyanobacteria,
filamentous anoxygenic phototrophs and sulfate reducing bacterias [17], to
analyze quantitative and qualitative differences in the predictions; secondly, we
use Desulfovibrio vulgaris and Methanoccocus maripaludis microbial system, a
classical example of syntrophic growth in anaerobic environment [16].
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Figure 1: Quantitative simulations of Multiple Compartments Hypothesis
(MCH) and Single Compartments Hypothesis (SCH) models of
a hot spring microbial mat system. Flux variability simulation results
show an increase of the whole community biomass under a range of light
conditions. Simulations of MCH and SCH metabolic models are pictured in
red and blue respectively.

Results

For the sake of application, one first considered the phototrophic microbial
community system during day light composed Synechococcus spp., called SYN,
filamentous anoxygenic phototrophs related to Chloroflexus and Roseiflexus
spp., called FAP, and sulfate reducing bacteria (SRB) [17]. This community
consumes CO2 and releases O2 by photosynthesis. As a byproduct of the rubisco
activity, glycolate is produced by SYN, which will be later used as an organic
substrate by FAP, along with acetate. Besides, SRB can consume organic
compounds and reduce sulfate using H2. MCH community model describes a
metabolic network for each strain as well as external metabolites such as H2,
O2, NH3, glycogen and acetate (136 reactions) [17]. As a modeling contribution,
a community biomass function was included to represent the ecosystem growth
plus one extra reaction for preserving O2 / CO2 ratio as used by rubisco. As
reported in [17], the so-called ”Pool model” represents the SCH community
model (59 reactions: 48 core and 11 exchange reactions) - see Figure 2 and
Supp for details.

Both MCH and SCH models reproduce previous results and are qualitatively
consistant with available experiments [16, 22] (see Figure 1). Both models
show similar range of biomass increase when light increase. Naively, these
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similar predictions may lead to over-interpret that both model are identical,
which do not advocate for the use of MCH that is experimentally expensive.
However, solely, these interpretations are not sufficient and might lead to
misunderstandings. To overcome these shortcomings, one must indeed consider
extensive simulations to investigate all solutions as provided by both SCH and
MCH models, and not a unique optimal solution. Indeed, while constraint-
based modelings describe sets of fluxes that go through all metabolic reactions
at equilibrium, above simulations represent, among all fluxes, a unique flux
combination that maximizes one given objective - herein the biomass production.
More recent Flux Variability Analysis (FVA) improves this unique description
by pinpointing all satisfying solutions over a wide range of environmental
conditions. Promoting a systematic exploration of these solutions, Flux Module
(FM) technique [12] analyzes how, among all solutions, some reactions are
systematically correlated - emphasizing subnetworks that connect a subset of
substrates and products [7]. These subnetworks or modules are unique and result
from all potential quantitative solutions. Implicitly, different modules imply
different quantitative predictions (mathematically called optimal solution space).
From a biological viewpoint, its application on single cell organisms shows
modules as a sensitive description of biological functions (see supplementary for
E. coli modules).

MCH and SCH models produce distinct modules, which clearly emphasizes
fundamental differences between MCH and SCH solutions. SCH shows only one
module (purple in Figure 2), containing 31 reactions (52.2% of overall reactions):
20 reactions covered by MCH modules and 11 not previously highlighted.
7 MCH module reactions do not belong to the SCH module. MCH SYN
reactions are decoupled from other networks, confirming previous studies [17]
that highlights SYN as a primary producer for all possible microbial interactions.
Complementary, FAP and SRB are linked via acetate and H2 metabolisms. As
additional differences, the first glycolysis phase (R1-R2) and pentose phosphate
reactions (R5-R9) are connected in SCH, which is not true when each organism
is considered separately. SCH module is independent from uptake reactions;
whereas MHC modules depict acetate processing of FAP and SRB linked to O2,
H2 and CO2 exchanges.

For the sake of generalization, a similar modeling comparison was applied
on a methanogenic microbial system composed of Desulfovibrio vulgaris and
Methanococcus maripaludis. D. vulgaris uses lactate fermentation and sulfur
reduction to gain energy, while producing gaseous hydrogen. M. maripaludis
uses hydrogen to reduce CO2 into methane, which avoid the accumulation of
H2 that might decrease the chemical energetic potential of D. vulgaris. The
corresponding MCH model owns 243 reactions (respectively 145 and 97 reactions
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Figure 2: Description of metabolic networks related to the microbial mat
community system and corresponding modules illustrations. SYN,
FAP and SRB depict bacterial strains of the MCH metabolic model. SCH
model represents the same metabolic system with no consideration of the
compartments while conserving the naming convention of the MCH networks.
For the sake of illustration exchange reactions between compartments are not
shown. MCH model reveals 2 modules (26.5% of the whole set of metabolic
reactions). One module contains 28 reactions (red) that span through FAP
and SRB, whereas another (blue) involves 8 reactions. Reactions of the
SCH module are depicted in purple.
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for D. vulgaris and M. maripaludis) and the SCH model is composed of 221
unique reactions, after deletion of redundant reactions. Again MCH and SCH
modules are different (see Supplementary). Both models show a unique module:
124 reactions (48.6% of MCH model) and 187 reactions (84.6% of SCH model).
Reactions related to H2 and acetate transport are not related in SCH model,
whereas they are in MCH. Additionally, pentose phosphate cycle reactions of D.
vulgaris and M. maripaludis are linked in SCH module but not in MCH, which
might lead to misunderstand bacterial interpretations.

Discussions

Despite similar quantitative simulations, this study shows significant differences
between SCH and MCH. However, this communication do not advocate for
either of both modeling assumptions. Biologically, SCH models have been widely
employed to study metabolite exchanges between species (e.g., cocultures [20][5]
or species within a complex environment [8]), whereas MCH models have been
used to describe microbial communities, where each member seeks to maximize
their own biomass [19]. Both assumptions are equivalent when one is interested
by predicting overall quantitative behaviors of a microbial community, which is
mostly explained by similar exchange reactions between SCH and MCH models.
A protocol driven by SCH might be mostly sufficient for overall predictions
with non further functional investigations. Reversely, MCH driven protocols
present a significant cost to decipher boundaries between species and origin of
genes within a meta-genome [18], but appear as necessary to investigate fine
quantitative interactions within the community.

From a methodological viewpoint, this study advocates for the use of Flux
Modules to compare metabolic models. Modules represent an abstraction of
all Flux Variability simulations for a given metabolic model. Indeed Flux
Module technique is a natural way to resume the methodological work of [9]
that proposes an extensive analysis of yeast metabolic flux estimation with and
without compartmentalization. Since our study pinpoints similar conclusions
to [9], both studies reinforces the need for further constraint-based modelings
dedicated to multiple compartments simulations as motivated by [22, 23].
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1 Supplementary materials

1.1 Flux Modules are biologically relevant: illustration on
modules for E. coli metabolic network in aerobic and
anaerobic growth conditions

IList of the ntakes
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Above figure depicts modules of E. coli in both aerobic and anaerobic growth
conditions. The metabolic model composed of 2381 reactions is analyzed in
aerobic (left) and anaerobic conditions (right). For each conditions, one extracts
9 modules that are composed of distinct numbers of reactions (line width
is proportional). Each module is associated to the pathways in which the
flux module reactions are involved. Modules are in accordance to biological
conditions. When challenged by an oxidative stress, most of flux modules of E.
coli are conserved, except exchange reaction, respiration & electron transfert,
alternate carbon metabolism, which is in accordance to physiological knowledge.
To a lesser extent, nucleotide salvage pathway is impacted by oxygen growth
conditions.

1.2 Metabolic modules of a methanogenic microbial system
composed of Desulfovibrio vulgaris and Methanococcus
maripaludis

The metabolic model of D. vulgaris contains 145 reactions [22], whereas M.
maripaludis model is composed of 97 reactions [16]. In order to link both strains
within a MCH model, we duplicated exchange reactions of H2 in order to im-
port/export the metabolite with either the other microorganism or environment.
A similar procedure was done for Formate, Acetate and CO2, which overall
introduces 12 exchange reactions. Finally, the whole ecosystem biomass was
design to fit biomass functions of D. vulgaris and M. maripaludis as already

Flux Modules in Systems Ecology • Technical Report page 10 of 11

. CC-BY-NC-ND 4.0 International licensefor this preprint is the author/funder. It is made available under a 
The copyright holder; http://dx.doi.org/10.1101/018010doi: bioRxiv preprint first posted online April 15, 2015; 

http://dx.doi.org/10.1101/018010
http://creativecommons.org/licenses/by-nc-nd/4.0/


published, while maintaining a respective proportion of 2:1 for both strains.
SCH model of this community consist in merging both metabolic networks
and removing all replicated reactions for considering one unique representative
reaction. As results, SCH model is composed of 221 unique reactions, as a
reduction of 243 reactions MCH model (respectively 145 and 97 reactions for
D. vulgaris and M. maripaludis).

The SCH presents a disadvantage regarding the interplay between interchange
fluxes; in this case, acetate and H2 are major players of electron transfer in
anaerobic systems which role is an active area of research. Besides, for these
two systems, the SCH links the fluxes of pentose phosphate system which could
impact interpretations in future in silico developments
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