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Abstract
Purpose Analyzing surgical activities has received a growing interest in recent
years. Several methods have been proposed to identify surgical activities and sur-
gical phases from data acquired in operating rooms. These context-aware sys-
tems have multiple applications, including: supporting the surgical team during
the intervention, improving the automatic monitoring, designing new teaching
paradigms.
Methods In this paper, we use low-level recordings of the activities that are per-
formed by a surgeon to automatically predict the current (high-level) phase of the
surgery. We augment a decision tree algorithm with the ability to consider the
local-context of the surgical activities and a hierarchical clustering algorithm.
Results Experiments were performed on 22 surgeries of lumbar disc herniation.
We obtained an overall precision of 0.843 in detecting phases of 51,489 single ac-
tivities. We also assess the robustness of the method with regard to noise.
Conclusion We show that using the local-context allows us to improve the results
compared to methods only considering single activity. Experiments show that the
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use of the local context makes our method very robust to noise and that clustering
the input data first improves the predictions.

Keywords Surgical Process · Temporal Analysis · Prediction · Surgery

1 Introduction

In recent years, Operating Rooms (ORs) have undergo tremendous changes with
the increase of available technology to support and assist surgical teams. One of
the targeted goals is the development of context-aware systems [4] that continu-
ously monitor the activities performed in the ORs in order to provide an accurate
and reliable support. The key challenge in developing these new methods is to
process the data coming from sensors and real-time detection systems in order to
provide useful information and support decision making. This task is challenging
because of the complexity of the OR environment and the high variability of surgi-
cal interventions due to patient abnormalities, surgeon experience and OR specific
constraints.

The field of Surgical Process Modeling (SPM) [11] targets the development of
new methods that leverage from OR activities monitoring. In this field, several
methods have already been proposed to automatically detect surgical activities.
These methods rely either on manual annotations by an observer [5] or on sen-
sors present in the OR (e.g., camera) [8,12]. For example, the task performed by
a surgeon can be automatically inferred by combining RFID (Radio Frequency
Identification) chips on instruments (for identification) with accelerometers [14].
Note that phases and surgical activities are not the only interesting information to
analyze. For example, Franke et al. [8] proposed a system to predict intervention
time from low-level surgical activities.

The automatic recognition of the current phase during a surgery is of major
interest for various applications in the OR. For example, peri-operative systems
that support medical decision have to be aware of the current phase to understand
the context upon which a specific activity is performed. Depending of the current
phase, similar surgical activities do not have the same semantic and the same
medical goal. The phase information can also be used to improve the coordination
and communication among the surgical team or for general monitoring purposes.

A surgery can traditionally be modeled with different levels of granularity [11]
(e.g., procedure, steps, substeps, tasks, subtasks etc.). In this paper, we target the
automatic prediction of high-level surgical phases from the low-level recordings of
the surgical activities that are performed by surgeons. We model these activities as
a triplet composed of action, anatomical structure and surgical instrument (e.g.,
to cut the skin with a scalpel), in order to automatically infer the current phase
of the surgery (e.g., the opening phase).

In this paper, we propose a method based on a decision tree [17] to perform the
phase prediction from low-level activities. We show that a good prediction accuracy
can be obtained by only considering the surgical activities at a given time. We then
further extend our method to use the local context of surgical activities to draw a
more accurate prediction of the phases. In this extension, we do not only consider
the prediction from the current activity but also the predictions made from the
previous activities within a selected time window. We show that using the local
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context both improves the results of the prediction and increases the robustness
with regard to noise in the data. We also show that a clustering of the input
data allows us to improve the quality of phases identification, which suggests that
information processing in CAI systems is critical.

Experiments were performed on a dataset of 22 lumbar disc surgeries which
is the most commonly performed spinal surgery world-wide. Sixty-thousand such
interventions are performed every year in France [2]. An interesting feature of
this type of surgery is the variability of the number of phases needed during each
intervention. Some phases are indeed optional (e.g., hemostatis) and some phases
have sometimes to be repeated (e.g., disc removal/hemostatis). The number of
phases can be difficult to predict from pre-operative information, as it depends
upon the reaction of the patient to the surgery. The dataset contains 51,489 single
surgical activities overall, classified into four phases.

The contributions of this paper are:

1. A system that can predict high-level surgical phases from low-level surgical
activities and its extension to consider the local context of the activities.

2. An experimental study of the influence of noise in low-level activities on the
prediction of high-level phases.

3. An evaluation of the influence of clustering the input data prior to phases
detection on the improvement of the prediction accuracy.

2 Prediction of surgical phases

The prediction of our proposed method is based on decision trees [17]. This clas-
sification method has shown to be successful for the prediction of surgical phases.
Bardram et al. [1] proposed a system using embedded and body-worn sensor data
to train a decision tree in order to predict surgical phases. They studied sensor
significance in order to identity the most important features for surgical phase
prediction. Stauder et al. [21] used Random Forest (i.e., a bag of decision trees) to
predict surgical phases from sensors measurement. While these methods are using
sensors to predict the phases, we target in this paper the prediction of the current
phase from the current surgeon’s activity. Our goal is to predict the surgical phase
knowing what the surgeon is currently doing. Note that surgeons activities can
themselves be derived from sensors data in specific contexts [10].

Other models like Hidden Markov Model (HMM) were also considered by
Padoy et al. [15,16] for online recognition of surgical steps. In this work, sur-
gical activities were extracted using image processing techniques on laparoscopic
camera. Similarly, Bouarfa et al. [3] used HMM with a pre-processing on the in-
put sensor data in order to improve the detection of high-level surgical taks. SVM
classifier was also considered by Lalys et al. [12] to detect phases and low-level sur-
gical tasks using cameras in pituitary surgery. Varadarajan et al. [22] used HMM
to recognize and segment surgical gestures for surgical assessment and training.
Learning the topology of an HMM is however still challenging and improving this
step continues to be investigated [20].

In this paper, we chose decision trees for the readability of the produced model
(i.e., a tree). They can indeed be easily converted into decision rules that can then
be discussed with medical experts. Thus, even by just analyzing manually the
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Fig. 1 Visualization of a surgery, each color corresponds to a different activity (see legend
on the bottom). Our goal is to predict the phase (four phases in this example) by using the
information of the activities.

outputted tree, decisions can be made on the organization of the OR without im-
plementing complex systems. Furthermore, the learning step can be performed of-
fline, and the online prediction is not computationally expensive as it is linear with
the number of rules. This feature can be useful if the prediction is implemented
in the OR through wearable device (e.g., Google Glass), as their computational
capabilities are limited. One drawback of using decision trees is the loss of the
temporal aspect, as each prediction is only performed according to the current ac-
tivity. However, this feature is quite useful when the number of phases is unknown
and can be variable. In some applications, according to patient abnormalities, the
number and the sequencing of the phases can be unknown. Thus, it is possible
that new surgeries exhibit a phase sequencing that has never been used before. In
that case, it can be difficult for an HMM to detect a phase sequencing that has not
been present in the learning set. Another feature of decision trees is the possibility
to stop and restart the prediction system. While HMMs generally use the past to
predict the future, decision trees systems only use the present. HMM and decision
trees system are thus complementary depending of the amount of available data,
complexity of the temporal sequencing of the phases and computational resources
available. Finally, using the local-context to draw the prediction, as proposed in
this paper, allows to partially take into account the temporal aspect as it consist
in using the near past.

3 Materials and Methods

3.1 Problem statement

We consider surgeries as sequences of activities that are performed by a surgeon
during an intervention. Mehta et al. [13] proposed to represent surgical activities
as triplet composed of an action, an anatomical structure and an instrument. For
example, the surgeon can cut the skin using a scalpel with his/her right hand.

In this paper, we use this representation and use its formalisation introduced
in [6]. Let S = {S1, · · · , SN} be the a set of surgeries. A surgery S can be
modeled as a sequence of surgical activities S =< a1, ..., an > where ai denotes
the ith activity. An activity ai belongs to A, the set of all possible activities, and
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has a start time and a stop time within the time-line of the surgery. In general,
activities that are performed by both hands are recorded, as well as the use of the
microscope. Thus, an activity is a vector of seven nominal values corresponding
to:

– the triplet for the right hand ;
– the triplet for the left hand ;
– a binary information on the use of the microscope.

An example of activity could be {(cut, scissors, muscle)r, (hold, retractors, muscle)l,
false}. Each surgery is subdivided into several phases P = {p1, ..., pm} (e.g., clo-
sure phase) which corresponds to a high-level segmentation of the surgery. Each
activity is performed during certain phase of the surgery. The goal of this paper
is to predict the phase pj given an activity ai. The Figure 1 presents an example
of a surgery composed of several activities. In this visualisation, each colour cor-
responds to a different activity. The phases we are targeting to predict are also
displayed on the figure.

To create the prediction function f : A → P that affects a phase to an activity,
we used of a decision tree algorithm. In order to train this decision tree, a training
set is composed of surgeries from which activities and their corresponding phases
are known: S =< (a1, p1), ..., (an, pm) >. Note that the use of Random Forest as
presented in [21] is not relevant in our case as we handled a limited amount of
features. Consequently, creating multiple trees with subsets of features is not likely
to improve the results.

3.2 Considering the local-context information

In the problem statement, we only considered the activity performed at a single
instant to draw the prediction. In order to take into account the local-context of
the current activity, we propose to also consider the previous actions performed by
the surgeon. This allows to take into account the local sequencing of the activities.
Our intuition is that the current activity is related to the previously performed
activities.

Let a(t) be the activity performed at time t. We consider for the prediction
the set of activities from a(t) to a(t − w), w being the size of a time window we
are considering which is a parameter of the method.

We analyze the w previous activities and we combine the probability density
functions (PDF) of the predictions related to these previous activities. The num-
ber of bins of each PDF is equal to the number of different possible phases in the
surgery. The PDF of an activity a (pdfa) is computed according to the class distri-
bution (i.e., phase distribution) of the instances (i.e., surgical activities) present
in the tree node used to perform the prediction. The value pdfa(p) corresponds
to the fraction of instances of phase p in that node. Thus, the probability of each
phase is computed by summing all the PDFs:

p̂(pj |Aw) =
∑

a∈Aw

pdfa(pj) (1)

with Aw = {a(t − w), ..., a(t − 1), a(t)} the set of activities performed during
the time window. The probability p̂(pj |Aw) corresponds to the probability of pre-
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Fig. 2 Illustration of the activities used to draw the prediction: using a single activity (left)
or the local-context (right) with the time widow w.

dicting the phase pj knowing the set of previous activities Aw. The final prediction
is drawn by taking the mode, i.e., the phase having the maximum probability:

arg max
pj∈P

{p̂(pj |Aw)} (2)

The optimal size w of the time window can be experimentally found using
cross-validation for a specific application. As presented later, 70 seconds gave the
best results in our experiments. Note that the time window concerns the activi-
ties performed by the surgeon before the current activity that the system aim at
predicting. Thus, there is no delay in the prediction, except for the first 70s of
the surgery. The Figure 2 illustrates the two methods using a single activity and
a window of local-context information.

Using the PDFs also allows to provide a confidence on the classification based
on the highest probability provided by Eq. 2. For example, if the mode is of 90%
for a specific phase, then the system is highly confident on the prediction. Ties
can appears in Eq. 2 if multiple phases have same maximum probability. In that
case, the prediction is made randomly from the set of phases having the maximum
value. Note that this specific case never happened in the experiment.

4 Experiments and Results

4.1 Dataset

We evaluate our method using clinical data composed of 22 surgeries of lumbar
disc herniation which is the most commonly performed spinal surgery [2]. The data
were recorded at the Neurosurgery Department of Leipzig. The surgeries involved 9
male and 13 female patients, with a median age of 52 years. These were exclusively
patients with newly diagnosed disc herniation, no patient had undergone previous
lumbar spine surgery which might be supposed to increase surgical difficulties due
to fibrosis. The herniated disc was approached via a posterior intermyolamar route.

This procedure is composed of 4 phases: (1) approach to the spine (from skin
incision to the incision of the posterior longitudinal ligament or the removal of
an excluded portion of the disc), (2) disc removal (from the end of the previous
step to the beginning of hemostasis or closure), (3) hemostasis (this step may be
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not individualised if it was not performed), and (4) closure (from the end of disc
removal or hemostasis to the end incision closure) [18].

Depending on patient specificities, a succession of disc removal / hemostasis
phases is sometimes required. Thus, the number of phases is unknown at the
beginning of the surgery. This element motivates the need for a method without
assumption on the number of phases. This variability on the number of phases
is actually often present due to patient specificities. Among the 22 lumbar disc
herniation surgeries of the dataset, 4 (18,2%) required only 3 phases (no need
for hemostasis phase), 14 (63.6%) required 4 phases (one phase of hemostasis), 3
required 6 phases (13.7%) (two successions of disc removal / hemostasis) and 1
(4.5%) required 8 phases (three successions of disc removal / hemostasis). Each
activity is labeled of the phase during which it is performed. We do not differentiate
between disc removal / hemostasis that appear only once and disc removal /
hemostasis that appears multiple times as their medical objective are identical.

For this surgery, the list of actions is: cut, coagulate, hold, dissect, install,
remove, irrigate, sew, swab and drill. The list of anatomical structures is: skin,
fascia, muscle, vertebra, ligament, duramater, nerveroot and disc. And the list
of surgical instruments is: scalpel, scissors, dissectors, rongeurs, hooks, high-speed
drill, suction tube, needle-holders, saline solution, retractors and forceps. Theoret-
ically, 880 (10× 8× 11) different triplets could be created, which gives more that
1.5M of possible different activities performed by the surgeon at a single instant
(considering right and left activities and microscope use). However, as all triplets
are not present (some triplets of action, instrument, anatomical structure are ir-
relevant), our dataset contains only 108 different triplets, leading to 23 thousands
possible different activities (108×108×2). The overall 22 surgeries contains 51,489
activities: 24,566 (48%) activities for the approach phase, 15,587 (30%) activities
for the discectomy phase, 3,901 (8%) activities for the hemostasis phase and fi-
nally, 7,435 (14%) for the closure phase. Note that these numbers of possibilities
do not consider the coordination between the hands of the surgeon, which would
adds constraints on the possible combinations.

4.2 Phase prediction using single activity

In this experiment, we only considered the single activity the surgeon is perform-
ing at a given instant to draw the prediction of the current phase. We trained the
decision tree on all but one of the available surgeries and tested the tree on the
remaining one. This process was carried out for each surgery so that each one was
used for learning and testing in a leave-one-out way. The evaluation were com-
puted from the confusion matrix obtained from this process. We used as decision
tree the algorithm C4.5 and its implementation in Weka (J48) [9] with default
parameters. On average during the leave-one-out process, the obtained decision
tree had 595 leaves and 662 nodes. However, by removing the leaves that do not
contain instances, the tree is on average composed of only 150 rules. An example
of decision tree and its corresponding rules set are provided on the companion
web-page of the paper.

The Table 1 presents the confusion matrix for the four phases, rows are ground
truth, columns are predictions. The Table 2 presents the precision, recall and f-
measure (harmonic mean of precision and recall) for the four phases. The overall
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Table 1 Confusion matrix of the different phases obtained using a leave-one-out cross valida-
tion on the 22 surgeries.

classed as → App. Disc. Hemos. Clos.

Approach 21890.0 1858.0 652.0 166.0

Discectomy 3109.0 11215.0 1165.0 98.0

Hemostasis 1537.0 1148.0 1168.0 48.0

Closure 1172.0 88.0 43.0 6132.0

Table 2 Precision, recall and f-measure according to the four different phases using a single
activity.

Phase Precision Recall F-Measure

Approach 0.790 0.891 0.838

Discectomy 0.784 0.720 0.750

Hemostasis 0.386 0.299 0.337

Closure 0.952 0.825 0.884

Weighted mean 0.781 0.785 0.780

Approach to the disc Disectomy Hemostasis Closure

prediction :

ground truth :

Fig. 3 Visualisation of the prediction of the phases for one surgery, the prediction (top) and
the groundtruth phases (bellow).

weighted (per class cardinality) precision is of 0.781, weighted recall is of 0.785 and
weighted f-measure of 0.780. The Figure 3 illustrates the prediction performed by
the system on the surgery presented in Figure 1 and the actual phases (i.e., ground
truth).

4.3 Phase prediction using local-context

In this experiment, we used the augmented version using the local-context. In
order to use this evolution of the method, the w parameter corresponding to the
size of the time window has to be fixed. To set-up this parameter on our dataset,
we tested a range of time window sizes within [0; 200] with a step of 5. We used an
identical leave-out-approach as presented in the previous experiment. The Figure 4
illustrates the evolution of the f-measure according to the window size. We used the
f-measure as it combines the information from the precision and the recall. From
this experiment, we identified that the optimal value of w for our application was
70. The Table 3 presents the results for the different phases with the parameter
w = 70. In this experiment, the f-measure is reaching 0.828 (Table 3) compared
to 0.780 (Table 2) by considering only a single activity. The precision is reaching
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Fig. 4 Evolution of the Precision according to different size of Window time (t).

Table 3 Precision, recall and f-measure according to the four different phases using local-
context.

Phase Precision Recall F-Measure

Approach 0.834 0.967 0.896

Discectomy 0.817 0.802 0.810

Hemostasis 0.777 0.197 0.314

Closure 0.965 0.870 0.915

Weighted mean 0.843 0.845 0.828

0.843 and the recall 0.845. It is interesting to note from Figure 4 that the context
has to stay local as using many previous activities eventually reduces the quality
of the prediction. Note that the method is not sensible to small variations of this
parameter as the f-measure is barely stable in the range 40 to 100 (Figure 4).

4.4 Phase prediction under noisy data

Noise is an important parameter when processing surgical activity data. It is often
present in activities inferred from sensors data [10] and even from data captured
by an observer [6]. Noise can deeply influence the quality of phases prediction.
In this experiment, we evaluate how our phase prediction system is influenced
by noisy data. We artificially added noise to the available dataset by randomly
switching the value of a given feature of an activity under a certain probability.
This noise introduction simulated errors in manual labelling or detection errors of
systems using sensors data. An example of noise introduction could be to switch the
instrument of an activity from scalpel to forceps. A level of noise of N% means that
each feature of each activity has N% of chance to have been modified randomly.
With an increasing level of noise it is becoming more difficult to predict the phase
as the tree has difficulties to identity valid decision rules. The Figure 5 presents
the evolution of the f-measure according to different levels of noise (from 0% to
50%) for our prediction method with and without local-context information.
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Fig. 5 Evolution of the F-Measure according to different level of noise in the data.

4.5 Phase prediction among clusters of surgeries

In the previous experiments, we used the entire dataset of 22 surgeries. In this
experiment, we first perform a clustering of this dataset to create groups of similar
surgeries. We then apply the phase prediction systems to the surgeries present in
each cluster. The influence of reducing a training set using clustering techniques
before learning a decision tree has already been investigated in the past [19,23].
As surgeries can exhibit important differences, we are expecting to improve the
prediction results by creating clusters of highly similar surgeries. To create the
clusters, we used the methodology proposed by Forestier et al. [5,6] which relies
on Dynamic Time Warping (DTW) and ascendant hierarchical clustering. This
methodology has proven its efficiency in creating clusters of similar surgeries [7].
The Figure 6 presents the dendrogram obtained from the hierarchical clustering
process. From the analysis of this dendrogram, we identified two main clusters,
named Cluster 1 and Cluster 2 and containing respectively 15 and 7 surgeries. We
then applied the system for phase prediction proposed in this paper individually
to each cluster. The Table 4 presents the results of phases prediction within the
two clusters for the methods with and without local-context usage. The results
within Cluster 1 (15 surgeries) are quite interesting as they are better than the
ones obtained on the entire dataset. Without the use of the local-context, we
obtained a f-measure of 0.804 compared to 0.780 using the entire dataset. When
using the local-context, the results further improved, reaching 0.845 compared to
0.828 when using the entire datasets. The results within Cluster 2 (7 surgeries)
are however lower than using the entire dataset with a f-measure of 0.693 without
the local-context and 0.720 while using it. The results of the application of the
tree learned from the data of Cluster 1 to the entire dataset (Cluster 1 + Cluster
2) is presented in Table 6. In this Table, the f-measure is reaching 0.864 compared
to 0.828 when using all the dataset to learn the tree.

5 Discussion

When using only the current activity of the surgeon (Table 1 and Table 2) the
results are quite acceptable. Indeed, these results are interesting considering the
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Fig. 6 Hierarchical clustering of the 22 surgeries used in the experiment. Two clusters are
visually identifiable. On the bottom of the tree, the sequences of right hand activities.

very limited amount of used data (only seven features for each activity) represent-
ing what the surgeon is currently doing. The precision ranges from 0.952 for the
closure phase to 0.386 for the hemostasis phase. The high precision rate for the
closure phase can be explained as it is the most standardized phase of the surgery.
Consequently, it is quite easy to learn a set of rules allowing to identify the activi-
ties of this phase. On the contrary, the hemostasis phase is more complex. First, it
does not appear all the time, and second the duration of hemostasis phase is less
important than the other phases of the surgery (i.e., it only represents 8% of the
activities of the dataset). The approach and disectomy phases have respectively
a precision of 0.790 and 0.784 which is acceptable as they are the most present
phases of the dataset (respectively 48% and 30% of whole the activities). The
overall recall is of 0.785 which is also a good result.

When considering the local-context of the activities (Table 3), the overall f-
measure increases from 0.780 to 0.828. Almost all the results increase, especially
the precisions. The precision of the hemostasis phase increased from 0.386 to 0.777
but its recall fell from 0.299 to 0.197. This result means that the number of activity
affected to the hemostasis phase reduced but the precision in the prediction in-
creased. Thus, by considering what the surgeon did in his/her previous activities,
the level of prediction errors can be reduced.

The added value of the local-context adjustment is even more visible when
processing noisy data. In the Figure 5, one can see that the use of local-context
allows the method to be less impacted by noisy data. The prediction system using
only the current activity sees its performance decrease linearly with the increasing
level of noise, while the method using the local-context is more robust. This is
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Table 4 Precision, recall and f-measure according to the four different phases, with and
without the use of local-context for the two clusters of surgeries.

Cluster 1 Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.831 0.875 0.853 0.845 0.976 0.906

Discectomy 0.823 0.770 0.796 0.853 0.840 0.846

Hemostasis 0.396 0.248 0.305 0.783 0.182 0.296

Closure 0.858 0.971 0.911 0.966 0.881 0.921

Weighted mean 0.800 0.813 0.804 0.861 0.863 0.845

Cluster 2 Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.680 0.802 0.736 0.722 0.888 0.796

Discectomy 0.702 0.635 0.667 0.796 0.674 0.730

Hemostasis 0.518 0.207 0.296 0.526 0.184 0.273

Closure 0.858 0.857 0.829 0.898 0.869 0.883

Weighted mean 0.698 0.704 0.693 0.755 0.760 0.745

Table 5 Precision, recall and f-measure according to the four different phases, with and
without the use of local-context using the tree learned on Cluster 1 applied to Cluster 2.

Cluster 2* Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.742 0.830 0.784 0.752 0.947 0.838

Discectomy 0.818 0.578 0.678 0.867 0.640 0.736

Hemostasis 0.470 0.555 0.509 0.692 0.447 0.543

Closure 0.763 0.934 0.840 0.902 0.875 0.888

Weighted mean 0.749 0.739 0.735 0.806 0.797 0.788

explained by the fact that the method relies on the predictions performed from
previous activities. Thus, the influence of noise in one activity among the set of
considered activities (Aw) is reduced.

The Figure 6 illustrates the clustering of the surgeries used in the experiment.
We created two clusters out of the dendrogram obtained by hierarchical clustering.
The results of the Cluster 1 (see Table 4) are better than the results on the entire
dataset (Table 2 and 3). These results show that using an important number of
surgeries does not necessarily improve the results. By reducing the number of
surgeries (15 instead of 22), we substantially improved the results. This can be
explained by the fact that the surgeries present in Cluster 1 are the most similar
surgeries of the dataset. Consequently, it is easier for the decision tree algorithm to
create decision rules that are valid for these 15 similar surgeries than a model for
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Table 6 Precision, recall and f-measure according to the four different phases, with and
without the use of local-context with the tree learned on Cluster 1 applied to the entire
dataset.

Clusters 1+2 Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.835 0.876 0.855 0.843 0.971 0.902

Discectomy 0.863 0.716 0.783 0.892 0.789 0.837

Hemostasis 0.544 0.583 0.563 0.818 0.513 0.630

Closure 0.835 0.964 0.895 0.946 0.885 0.915

Weighted mean 0.821 0.818 0.817 0.871 0.869 0.864

the entire dataset. However, the Cluster 2 shows lower results than when using the
entire dataset. This can be explained by the higher dissimilarity within the clusters,
which is visible from the height of the dendrogram links in Figure 6. Furthermore,
Cluster 2 only contains 7 surgeries and with the leave-one-out cross-validation,
only 6 surgeries were used at each fold to learn a predictive model. This limited
number of instances and the higher variability can explain these lower results.

Table 5 shows the result of the application of the tree learned from Cluster 1 to
the data of Cluster 2 (Cluster 2*). In this configuration, the f-measure increased
from 0.693 to 0.735 without the local-context and from 0.745 to 0.788 with the
local-context. This result shows that using a model learned from one cluster can
actually improves the results when applied to other clusters. Table 6 shows the
result of the application of the tree learned on Cluster 1 to the entire dataset
(Cluster 1 + Cluster 2). In that case, the f-measure is reaching 0.864 which is
better than using the entire dataset (0.828). Thus, these results highlight that in
building a CAI system for phase prediction, the data used for the learning step
are really important and can substantially affect the results. We advice to create
highly similar clusters of surgery specific to a group of surgeons before training a
system. Furthermore, our experiments reveal that a model learned on a subset of
the data can improve the overall prediction accuracy of the system.

Additional background knowledge could have been used to improve the results.
For example, a natural ordering of some phases (e.g., closure comes always after
opening) could have been used to further improve the results. However, we wanted
the method to stay as generic as possible to be easily reused in other configurations
(e.g., for other types of intervention). Not relying on a temporal model also allows
the system to be paused and restarted very easily. This feature is interesting in
multiple situations: to save battery, due to technical failure or problems in gesture
recognition, etc. Moreover, due to patient abnormality or intervention specific
context, the sequence of the phases can also be totally original. In this situation,
not relying on a temporal model allows our system to be used anyway as no
assumption is made on the phase sequencing. Thus, the system will work even
if no data in the training set exhibits the phase sequencing of the surgery being
processed. Furthermore, the system can be applied regardless of the number of
phases in the surgery.

The low computational complexity of decision tree allows the system to be
easily embedded on low powered devices present the OR (e.g., Google Glass).
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Furthermore, decision tree can be visualized as a set of classification rules that
could be used alone to take actions in the organization of the OR. Note that the
source code of the methods proposed in this paper is available for download 1 so
that they can easily be integrated and compared with other systems.

The number of phases, which is currently limited to four, only partially reveals
the potential of the proposed method. However, as the method is totally generic,
it can be directly used to detect and predict more phases. Furthermore, as surgical
procedures have multiple levels of granularity, our method could also be applied
to detect other levels than phases (e.g., steps, substeps, etc.). The only limit is
that the low-level surgical activities of these different levels have to exhibit specific
characteristics that the tree could capture. Finally, a precise comparison against
existing methods (e.g., HMM based) would also be needed to highlight the perfor-
mance of the proposed method. The fact that we released the source code of our
application is a first step towards such comparison.

6 Conclusion

In this paper, we used decision trees to automatically predict high-level surgi-
cal phases from low-level activities. We proposed a method which uses the local
context of an activity to draw a better prediction than a method using a single
activity. Experiments highlighted that using the local-context improves the qual-
ity of the prediction. We also performed an evaluation to assess the robustness of
the method towards noisy data. The use of the local context made the method
more robust to noise in the data. Furthermore, we showed that creating clusters
of similar surgeries could be used as a pre-processing step to improve the results
of CAI phase prediction systems. Indeed, we showed that using a subset of 15
surgeries instead of the 22 of the entire dataset allowed to improve the results of
the proposed methods. In future work, we are planing to take into account global
information on the surgery and to combine global and local contexts in order to
improve the quality of the prediction. Furthermore, we are currently investigating
if training the decision tree with short sequences of activities would improve the
prediction results.
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