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Automatic phase prediction from low-level surgical activities

Germain Forestier · Laurent Riffaud · Pierre Jannin

Abstract

Purpose Analyzing surgical activities has received a

growing interest in recent years. Several methods have

been proposed to identify surgical activities and sur-

gical phases from data acquired in operating rooms.

These context-aware systems have multiple applications,

including: supporting the surgical team during the in-

tervention, improving the automatic monitoring, de-

signing new teaching paradigms.

Methods In this paper, we use low-level recordings of

the activities that are performed by a surgeon to auto-

matically predict the current (high-level) phase of the

surgery. We augment a decision tree algorithm with the

ability to consider the local-context of the surgical ac-

tivities and a hierarchical clustering algorithm.

Results Experiments were performed on 22 surgeries of

lumbar disc herniation. We obtained an overall preci-

sion of 0.843 in detecting phases of 51,489 single activ-

ities. We also assess the robustness of the method with

regard to noise.
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Conclusion We show that using the local-context al-

lows us to improve the results compared to methods

only considering single activity. Experiments show that

the use of the local context makes our method very ro-

bust to noise and that clustering the input data first

improves the predictions.
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1 Introduction

In recent years, Operating Rooms (ORs) have undergo

tremendous changes with the increase of available tech-

nology to support and assist surgical teams. One of the

targeted goals is the development of context-aware sys-

tems [4] that continuously monitor the activities per-

formed in the ORs in order to provide an accurate and

reliable support. The key challenge in developing these

new methods is to process the data coming from sen-

sors and real-time detection systems in order to pro-

vide useful information and support decision making.

This task is challenging because of the complexity of

the OR environment and the high variability of surgi-

cal interventions due to patient abnormalities, surgeon

experience and OR specific constraints.
The field of Surgical Process Modeling (SPM) [11]

targets the development of new methods that lever-
age from OR activities monitoring. In this field, several
methods have already been proposed to automatically
detect surgical activities. These methods rely either on
manual annotations by an observer [5] or on sensors
present in the OR (e.g., camera) [8,12]. For example,
the task performed by a surgeon can be automatically
inferred by combining RFID (Radio Frequency Identi-
fication) chips on instruments (for identification) with
accelerometers [14]. Note that phases and su
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rgical activities are not the only interesting information

to analyze. For example, Franke et al. [8] proposed a

system to predict intervention time from low-level sur-

gical activities.

The automatic recognition of the current phase dur-

ing a surgery is of major interest for various applica-

tions in the OR. For example, peri-operative systems

that support medical decision have to be aware of the

current phase to understand the context upon which

a specific activity is performed. Depending of the cur-

rent phase, similar surgical activities do not have the

same semantic and the same medical goal. The phase

information can also be used to improve the coordina-

tion and communication among the surgical team or for

general monitoring purposes.

A surgery can traditionally be modeled with dif-

ferent levels of granularity [11] (e.g., procedure, steps,

substeps, tasks, subtasks etc.). In this paper, we target

the automatic prediction of high-level surgical phases

from the low-level recordings of the surgical activities

that are performed by surgeons. We model these activ-

ities as a triplet composed of action, anatomical struc-

ture and surgical instrument (e.g., to cut the skin with

a scalpel), in order to automatically infer the current

phase of the surgery (e.g., the opening phase).

In this paper, we propose a method based on a de-

cision tree [17] to perform the phase prediction from

low-level activities. We show that a good prediction ac-

curacy can be obtained by only considering the surgical

activities at a given time. We then further extend our

method to use the local context of surgical activities to

draw a more accurate prediction of the phases. In this

extension, we do not only consider the prediction from

the current activity but also the predictions made from



Automatic phase prediction from low-level surgical activities 3

the previous activities within a selected time window.

We show that using the local context both improves

the results of the prediction and increases the robust-

ness with regard to noise in the data. We also show

that a clustering of the input data allows us to improve

the quality of phases identification, which suggests that

information processing in CAI systems is critical.

Experiments were performed on a dataset of 22 lum-

bar disc surgeries which is the most commonly per-

formed spinal surgery world-wide. Sixty-thousand such

interventions are performed every year in France [2]. An

interesting feature of this type of surgery is the variabil-

ity of the number of phases needed during each inter-

vention. Some phases are indeed optional (e.g., hemo-

statis) and some phases have sometimes to be repeated

(e.g., disc removal/hemostatis). The number of phases

can be difficult to predict from pre-operative informa-

tion, as it depends upon the reaction of the patient to

the surgery. The dataset contains 51,489 single surgical

activities overall, classified into four phases.

The contributions of this paper are:

1. A system that can predict high-level surgical phases

from low-level surgical activities and its extension to

consider the local context of the activities.

2. An experimental study of the influence of noise in

low-level activities on the prediction of high-level

phases.

3. An evaluation of the influence of clustering the input

data prior to phases detection on the improvement

of the prediction accuracy.

2 Prediction of surgical phases

The prediction of our proposed method is based on de-

cision trees [17]. This classification method has shown

to be successful for the prediction of surgical phases.

Bardram et al. [1] proposed a system using embedded

and body-worn sensor data to train a decision tree in

order to predict surgical phases. They studied sensor

significance in order to identity the most important

features for surgical phase prediction. Stauder et al.

[21] used Random Forest (i.e., a bag of decision trees)

to predict surgical phases from sensors measurement.

While these methods are using sensors to predict the

phases, we target in this paper the prediction of the

current phase from the current surgeon’s activity. Our

goal is to predict the surgical phase knowing what the

surgeon is currently doing. Note that surgeons activities

can themselves be derived from sensors data in specific

contexts [10].

Other models like Hidden Markov Model (HMM)

were also considered by Padoy et al. [15,16] for on-

line recognition of surgical steps. In this work, surgical

activities were extracted using image processing tech-

niques on laparoscopic camera. Similarly, Bouarfa et al.

[3] used HMM with a pre-processing on the input sensor

data in order to improve the detection of high-level sur-

gical taks. SVM classifier was also considered by Lalys

et al. [12] to detect phases and low-level surgical tasks

using cameras in pituitary surgery. Varadarajan et al.

[22] used HMM to recognize and segment surgical ges-

tures for surgical assessment and training. Learning the

topology of an HMM is however still challenging and

improving this step continues to be investigated [20].

In this paper, we chose decision trees for the read-

ability of the produced model (i.e., a tree). They can

indeed be easily converted into decision rules that can

then be discussed with medical experts. Thus, even by

just analyzing manually the outputted tree, decisions

can be made on the organization of the OR without im-

plementing complex systems. Furthermore, the learning

step can be performed offline, and the online prediction

is not computationally expensive as it is linear with the

number of rules. This feature can be useful if the predic-

tion is implemented in the OR through wearable device

(e.g., Google Glass), as their computational capabilities

are limited. One drawback of using decision trees is the

loss of the temporal aspect, as each prediction is only

performed according to the current activity. However,

this feature is quite useful when the number of phases

is unknown and can be variable. In some applications,

according to patient abnormalities, the number and the

sequencing of the phases can be unknown. Thus, it is

possible that new surgeries exhibit a phase sequencing

that has never been used before. In that case, it can

be difficult for an HMM to detect a phase sequencing

that has not been present in the learning set. Another

feature of decision trees is the possibility to stop and

restart the prediction system. While HMMs generally

use the past to predict the future, decision trees systems

only use the present. HMM and decision trees system

are thus complementary depending of the amount of

available data, complexity of the temporal sequencing

of the phases and computational resources available.

Finally, using the local-context to draw the prediction,

as proposed in this paper, allows to partially take into

account the temporal aspect as it consist in using the

near past.

3 Materials and Methods

3.1 Problem statement

We consider surgeries as sequences of activities that are

performed by a surgeon during an intervention. Mehta

et al. [13] proposed to represent surgical activities as
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time

right hand activities
left hand activities

microscope use

surgical phases

approach to the disc disectomy hemostasis closure

(hold)(ligament)(suction tube)

(remove)(ligament)(rongeurs)

(remove)(disc)(forceps)

(hold)(fascia)(forceps)

(dissect)(nerveroot)(dissectors)

(remove)(vertebra)(rongeurs)

(dissect)(nerveroot)(hooks)

(dissect)(disc)(hooks)

legend:

Fig. 1 Visualization of a surgery, each color corresponds to a different activity (see legend on the bottom). Our goal is to
predict the phase (four phases in this example) by using the information of the activities.

triplet composed of an action, an anatomical structure

and an instrument. For example, the surgeon can cut

the skin using a scalpel with his/her right hand.

In this paper, we use this representation and use its

formalisation introduced in [6]. Let S = {S1, · · · , SN}
be the a set of surgeries. A surgery S can be modeled as

a sequence of surgical activities S =< a1, ..., an > where

ai denotes the ith activity. An activity ai belongs to A,

the set of all possible activities, and has a start time

and a stop time within the time-line of the surgery. In

general, activities that are performed by both hands are

recorded, as well as the use of the microscope. Thus, an

activity is a vector of seven nominal values correspond-

ing to:

– the triplet for the right hand ;

– the triplet for the left hand ;

– a binary information on the use of the microscope.

An example of activity could be {(cut, scissors, mu-

scle)r, (hold, retractors, muscle)l, false}. Each surgery

is subdivided into several phases P = {p1, ..., pm} (e.g.,

closure phase) which corresponds to a high-level seg-

mentation of the surgery. Each activity is performed

during certain phase of the surgery. The goal of this

paper is to predict the phase pj given an activity ai.

The Figure 1 presents an example of a surgery com-

posed of several activities. In this visualisation, each

colour corresponds to a different activity. The phases

we are targeting to predict are also displayed on the

figure.

To create the prediction function f : A → P that

affects a phase to an activity, we used of a decision

tree algorithm. In order to train this decision tree, a

training set is composed of surgeries from which activ-

ities and their corresponding phases are known: S =<

(a1, p1), ..., (an, pm) >. Note that the use of Random

Forest as presented in [21] is not relevant in our case as

we handled a limited amount of features. Consequently,

creating multiple trees with subsets of features is not

likely to improve the results.

3.2 Considering the local-context information

In the problem statement, we only considered the activ-

ity performed at a single instant to draw the prediction.

In order to take into account the local-context of the

current activity, we propose to also consider the previ-

ous actions performed by the surgeon. This allows to

take into account the local sequencing of the activities.

Our intuition is that the current activity is related to

the previously performed activities.

Let a(t) be the activity performed at time t. We

consider for the prediction the set of activities from

a(t) to a(t− w), w being the size of a time window we

are considering which is a parameter of the method.

We analyze the w previous activities and we com-

bine the probability density functions (PDF) of the pre-

dictions related to these previous activities. The num-

ber of bins of each PDF is equal to the number of dif-

ferent possible phases in the surgery. The PDF of an

activity a (pdfa) is computed according to the class dis-

tribution (i.e., phase distribution) of the instances (i.e.,

surgical activities) present in the tree node used to per-

form the prediction. The value pdfa(p) corresponds to

the fraction of instances of phase p in that node. Thus,

the probability of each phase is computed by summing

all the PDFs:

p̂(pj |Aw) =
∑
a∈Aw

pdfa(pj) (1)

with Aw = {a(t−w), ..., a(t−1), a(t)} the set of ac-

tivities performed during the time window. The prob-



Automatic phase prediction from low-level surgical activities 5

single activity

prediction

using the 

local-context
w

right hand

left hand 

microscope

phase

Fig. 2 Illustration of the activities used to draw the predic-
tion: using a single activity (left) or the local-context (right)
with the time widow w.

ability p̂(pj |Aw) corresponds to the probability of pre-

dicting the phase pj knowing the set of previous activ-

ities Aw. The final prediction is drawn by taking the

mode, i.e., the phase having the maximum probability:

arg max
pj∈P

{p̂(pj |Aw)} (2)

The optimal size w of the time window can be ex-

perimentally found using cross-validation for a specific

application. As presented later, 70 seconds gave the best

results in our experiments. Note that the time window

concerns the activities performed by the surgeon before

the current activity that the system aim at predicting.

Thus, there is no delay in the prediction, except for

the first 70s of the surgery. The Figure 2 illustrates the

two methods using a single activity and a window of

local-context information.

Using the PDFs also allows to provide a confidence

on the classification based on the highest probability

provided by Eq. 2. For example, if the mode is of 90%

for a specific phase, then the system is highly confident

on the prediction. Ties can appears in Eq. 2 if multiple

phases have same maximum probability. In that case,

the prediction is made randomly from the set of phases

having the maximum value. Note that this specific case

never happened in the experiment.

4 Experiments and Results

4.1 Dataset

We evaluate our method using clinical data composed of

22 surgeries of lumbar disc herniation which is the most

commonly performed spinal surgery [2]. The data were

recorded at the Neurosurgery Department of Leipzig.

The surgeries involved 9 male and 13 female patients,

with a median age of 52 years. These were exclusively

patients with newly diagnosed disc herniation, no pa-

tient had undergone previous lumbar spine surgery which

might be supposed to increase surgical difficulties due

to fibrosis. The herniated disc was approached via a

posterior intermyolamar route.

This procedure is composed of 4 phases: (1) ap-

proach to the spine (from skin incision to the incision

of the posterior longitudinal ligament or the removal

of an excluded portion of the disc), (2) disc removal

(from the end of the previous step to the beginning of

hemostasis or closure), (3) hemostasis (this step may

be not individualised if it was not performed), and (4)

closure (from the end of disc removal or hemostasis to

the end incision closure) [18].

Depending on patient specificities, a succession of

disc removal / hemostasis phases is sometimes required.

Thus, the number of phases is unknown at the begin-

ning of the surgery. This element motivates the need

for a method without assumption on the number of

phases. This variability on the number of phases is ac-

tually often present due to patient specificities. Among

the 22 lumbar disc herniation surgeries of the dataset,

4 (18,2%) required only 3 phases (no need for hemosta-

sis phase), 14 (63.6%) required 4 phases (one phase of

hemostasis), 3 required 6 phases (13.7%) (two succes-

sions of disc removal / hemostasis) and 1 (4.5%) re-

quired 8 phases (three successions of disc removal /

hemostasis). Each activity is labeled of the phase during

which it is performed. We do not differentiate between

disc removal / hemostasis that appear only once and

disc removal / hemostasis that appears multiple times

as their medical objective are identical.

For this surgery, the list of actions is: cut, coagulate,

hold, dissect, install, remove, irrigate, sew, swab and

drill. The list of anatomical structures is: skin, fascia,

muscle, vertebra, ligament, duramater, nerveroot and

disc. And the list of surgical instruments is: scalpel,

scissors, dissectors, rongeurs, hooks, high-speed drill,

suction tube, needle-holders, saline solution, retractors

and forceps. Theoretically, 880 (10 × 8 × 11) different

triplets could be created, which gives more that 1.5M

of possible different activities performed by the surgeon

at a single instant (considering right and left activities

and microscope use). However, as all triplets are not

present (some triplets of action, instrument, anatomi-

cal structure are irrelevant), our dataset contains only

108 different triplets, leading to 23 thousands possi-

ble different activities (108 × 108 × 2). The overall 22

surgeries contains 51,489 activities: 24,566 (48%) ac-

tivities for the approach phase, 15,587 (30%) activities

for the discectomy phase, 3,901 (8%) activities for the

hemostasis phase and finally, 7,435 (14%) for the clo-

sure phase. Note that these numbers of possibilities do
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Table 1 Confusion matrix of the different phases obtained
using a leave-one-out cross validation on the 22 surgeries.

classed as → App. Disc. Hemos. Clos.

Approach 21890.0 1858.0 652.0 166.0

Discectomy 3109.0 11215.0 1165.0 98.0

Hemostasis 1537.0 1148.0 1168.0 48.0

Closure 1172.0 88.0 43.0 6132.0

not consider the coordination between the hands of the

surgeon, which would adds constraints on the possible

combinations.

4.2 Phase prediction using single activity

In this experiment, we only considered the single ac-

tivity the surgeon is performing at a given instant to

draw the prediction of the current phase. We trained

the decision tree on all but one of the available surg-

eries and tested the tree on the remaining one. This

process was carried out for each surgery so that each

one was used for learning and testing in a leave-one-out

way. The evaluation were computed from the confusion

matrix obtained from this process. We used as deci-

sion tree the algorithm C4.5 and its implementation

in Weka (J48) [9] with default parameters. On average

during the leave-one-out process, the obtained decision

tree had 595 leaves and 662 nodes. However, by remov-

ing the leaves that do not contain instances, the tree

is on average composed of only 150 rules. An exam-

ple of decision tree and its corresponding rules set are

provided on the companion web-page of the paper.

The Table 1 presents the confusion matrix for the

four phases, rows are ground truth, columns are pre-

dictions. The Table 2 presents the precision, recall and

f-measure (harmonic mean of precision and recall) for

the four phases. The overall weighted (per class cardi-

nality) precision is of 0.781, weighted recall is of 0.785

and weighted f-measure of 0.780. The Figure 3 illus-

trates the prediction performed by the system on the

surgery presented in Figure 1 and the actual phases

(i.e., ground truth).

4.3 Phase prediction using local-context

In this experiment, we used the augmented version us-

ing the local-context. In order to use this evolution of

the method, the w parameter corresponding to the size

of the time window has to be fixed. To set-up this pa-

rameter on our dataset, we tested a range of time win-

dow sizes within [0; 200] with a step of 5. We used an

Table 2 Precision, recall and f-measure according to the four
different phases using a single activity.

Phase Precision Recall F-Measure

Approach 0.790 0.891 0.838

Discectomy 0.784 0.720 0.750

Hemostasis 0.386 0.299 0.337

Closure 0.952 0.825 0.884

Weighted mean 0.781 0.785 0.780

Table 3 Precision, recall and f-measure according to the four
different phases using local-context.

Phase Precision Recall F-Measure

Approach 0.834 0.967 0.896

Discectomy 0.817 0.802 0.810

Hemostasis 0.777 0.197 0.314

Closure 0.965 0.870 0.915

Weighted mean 0.843 0.845 0.828

identical leave-out-approach as presented in the previ-

ous experiment. The Figure 4 illustrates the evolution

of the f-measure according to the window size. We used

the f-measure as it combines the information from the

precision and the recall. From this experiment, we iden-

tified that the optimal value of w for our application was

70. The Table 3 presents the results for the different

phases with the parameter w = 70. In this experiment,

the f-measure is reaching 0.828 (Table 3) compared to

0.780 (Table 2) by considering only a single activity.

The precision is reaching 0.843 and the recall 0.845. It
is interesting to note from Figure 4 that the context has

to stay local as using many previous activities eventu-

ally reduces the quality of the prediction. Note that the

method is not sensible to small variations of this param-

eter as the f-measure is barely stable in the range 40 to

100 (Figure 4).

4.4 Phase prediction under noisy data

Noise is an important parameter when processing surgi-

cal activity data. It is often present in activities inferred

from sensors data [10] and even from data captured by

an observer [6]. Noise can deeply influence the quality of

phases prediction. In this experiment, we evaluate how

our phase prediction system is influenced by noisy data.

We artificially added noise to the available dataset by

randomly switching the value of a given feature of an

activity under a certain probability. This noise intro-

duction simulated errors in manual labelling or detec-
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Approach to the disc Disectomy Hemostasis Closure

prediction :

ground truth :

Fig. 3 Visualisation of the prediction of the phases for one surgery, the prediction (top) and the groundtruth phases (bellow).
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Fig. 5 Evolution of the F-Measure according to different
level of noise in the data.

tion errors of systems using sensors data. An example

of noise introduction could be to switch the instrument

of an activity from scalpel to forceps. A level of noise

of N% means that each feature of each activity has

N% of chance to have been modified randomly. With

an increasing level of noise it is becoming more diffi-

cult to predict the phase as the tree has difficulties to

identity valid decision rules. The Figure 5 presents the

evolution of the f-measure according to different levels

of noise (from 0% to 50%) for our prediction method

with and without local-context information.

4.5 Phase prediction among clusters of surgeries

In the previous experiments, we used the entire dataset

of 22 surgeries. In this experiment, we first perform a

clustering of this dataset to create groups of similar

surgeries. We then apply the phase prediction systems

to the surgeries present in each cluster. The influence

of reducing a training set using clustering techniques

before learning a decision tree has already been inves-

tigated in the past [19,23]. As surgeries can exhibit im-

portant differences, we are expecting to improve the
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Dendrogram of the surgeries

Cluster1

Cluster 2

Fig. 6 Hierarchical clustering of the 22 surgeries used in the
experiment. Two clusters are visually identifiable. On the bot-
tom of the tree, the sequences of right hand activities.

prediction results by creating clusters of highly similar

surgeries. To create the clusters, we used the method-

ology proposed by Forestier et al. [5,6] which relies on

Dynamic Time Warping (DTW) and ascendant hierar-

chical clustering. This methodology has proven its effi-

ciency in creating clusters of similar surgeries [7]. The

Figure 6 presents the dendrogram obtained from the hi-

erarchical clustering process. From the analysis of this

dendrogram, we identified two main clusters, named
Cluster 1 and Cluster 2 and containing respectively 15

and 7 surgeries. We then applied the system for phase

prediction proposed in this paper individually to each

cluster. The Table 4 presents the results of phases pre-

diction within the two clusters for the methods with and

without local-context usage. The results within Cluster

1 (15 surgeries) are quite interesting as they are better

than the ones obtained on the entire dataset. Without

the use of the local-context, we obtained a f-measure

of 0.804 compared to 0.780 using the entire dataset.

When using the local-context, the results further im-

proved, reaching 0.845 compared to 0.828 when using

the entire datasets. The results within Cluster 2 (7 surg-

eries) are however lower than using the entire dataset

with a f-measure of 0.693 without the local-context and

0.720 while using it. The results of the application of

the tree learned from the data of Cluster 1 to the entire

dataset (Cluster 1 + Cluster 2) is presented in Table 6.

In this Table, the f-measure is reaching 0.864 compared

to 0.828 when using all the dataset to learn the tree.
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Table 4 Precision, recall and f-measure according to the four different phases, with and without the use of local-context for
the two clusters of surgeries.

Cluster 1 Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.831 0.875 0.853 0.845 0.976 0.906

Discectomy 0.823 0.770 0.796 0.853 0.840 0.846

Hemostasis 0.396 0.248 0.305 0.783 0.182 0.296

Closure 0.858 0.971 0.911 0.966 0.881 0.921

Weighted mean 0.800 0.813 0.804 0.861 0.863 0.845

Cluster 2 Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.680 0.802 0.736 0.722 0.888 0.796

Discectomy 0.702 0.635 0.667 0.796 0.674 0.730

Hemostasis 0.518 0.207 0.296 0.526 0.184 0.273

Closure 0.858 0.857 0.829 0.898 0.869 0.883

Weighted mean 0.698 0.704 0.693 0.755 0.760 0.745

Table 5 Precision, recall and f-measure according to the four different phases, with and without the use of local-context using
the tree learned on Cluster 1 applied to Cluster 2.

Cluster 2 Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.742 0.830 0.784 0.752 0.947 0.838

Discectomy 0.818 0.578 0.678 0.867 0.640 0.736

Hemostasis 0.470 0.555 0.509 0.692 0.447 0.543

Closure 0.763 0.934 0.840 0.902 0.875 0.888

Weighted mean 0.749 0.739 0.735 0.806 0.797 0.788

5 Discussion

When using only the current activity of the surgeon

(Table 1 and Table 2) the results are quite accept-

able. Indeed, these results are interesting considering

the very limited amount of used data (only seven fea-

tures for each activity) representing what the surgeon

is currently doing. The precision ranges from 0.952 for

the closure phase to 0.386 for the hemostasis phase.

The high precision rate for the closure phase can be

explained as it is the most standardized phase of the

surgery. Consequently, it is quite easy to learn a set of

rules allowing to identify the activities of this phase.

On the contrary, the hemostasis phase is more com-

plex. First, it does not appear all the time, and sec-

ond the duration of hemostasis phase is less important

than the other phases of the surgery (i.e., it only repre-

sents 8% of the activities of the dataset). The approach

and disectomy phases have respectively a precision of

0.790 and 0.784 which is acceptable as they are the

most present phases of the dataset (respectively 48%

and 30% of whole the activities). The overall recall is

of 0.785 which is also a good result.

When considering the local-context of the activities

(Table 3), the overall f-measure increases from 0.780

to 0.828. Almost all the results increase, especially the

precisions. The precision of the hemostasis phase in-

creased from 0.386 to 0.777 but its recall fell from 0.299

to 0.197. This result means that the number of activity

affected to the hemostasis phase reduced but the pre-

cision in the prediction increased. Thus, by considering

what the surgeon did in his/her previous activities, the

level of prediction errors can be reduced.

The added value of the local-context adjustment is

even more visible when processing noisy data. In the

Figure 5, one can see that the use of local-context al-
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Table 6 Precision, recall and f-measure according to the four different phases, with and without the use of local-context with
the tree learned on Cluster 1 applied to the entire dataset.

Clusters 1+2 Without local-context With local-context

Phase Prec. Rec. F-M Prec. Rec. F-M

Approach 0.835 0.876 0.855 0.843 0.971 0.902

Discectomy 0.863 0.716 0.783 0.892 0.789 0.837

Hemostasis 0.544 0.583 0.563 0.818 0.513 0.630

Closure 0.835 0.964 0.895 0.946 0.885 0.915

Weighted mean 0.821 0.818 0.817 0.871 0.869 0.864

lows the method to be less impacted by noisy data. The

prediction system using only the current activity sees

its performance decrease linearly with the increasing

level of noise, while the method using the local-context

is more robust. This is explained by the fact that the

method relies on the predictions performed from pre-

vious activities. Thus, the influence of noise in one ac-

tivity among the set of considered activities (Aw) is

reduced.

The Figure 6 illustrates the clustering of the surg-

eries used in the experiment. We created two clusters

out of the dendrogram obtained by hierarchical cluster-

ing. The results of the Cluster 1 (see Table 4) are better

than the results on the entire dataset (Table 2 and 3).

These results show that using an important number of

surgeries does not necessarily improve the results. By

reducing the number of surgeries (15 instead of 22),

we substantially improved the results. This can be ex-

plained by the fact that the surgeries present in Cluster

1 are the most similar surgeries of the dataset. Conse-

quently, it is easier for the decision tree algorithm to

create decision rules that are valid for these 15 simi-

lar surgeries than a model for the entire dataset. How-

ever, the Cluster 2 shows lower results than when using

the entire dataset. This can be explained by the higher

dissimilarity within the clusters, which is visible from

the height of the dendrogram links in Figure 6. Fur-

thermore, Cluster 2 only contains 7 surgeries and with

the leave-one-out cross-validation, only 6 surgeries were

used at each fold to learn a predictive model. This lim-

ited number of instances and the higher variability can

explain these lower results.

Table 5 shows the result of the application of the

tree learned from Cluster 1 to the data of Cluster 2

(Cluster 2*). In this configuration, the f-measure in-

creased from 0.693 to 0.735 without the local-context

and from 0.745 to 0.788 with the local-context. This

result shows that using a model learned from one clus-

ter can actually improves the results when applied to

other clusters. Table 6 shows the result of the appli-

cation of the tree learned on Cluster 1 to the entire

dataset (Cluster 1 + Cluster 2). In that case, the f-

measure is reaching 0.864 which is better than using

the entire dataset (0.828). Thus, these results highlight

that in building a CAI system for phase prediction, the

data used for the learning step are really important and

can substantially affect the results. We advice to cre-

ate highly similar clusters of surgery specific to a group

of surgeons before training a system. Furthermore, our

experiments reveal that a model learned on a subset of

the data can improve the overall prediction accuracy of

the system.

Additional background knowledge could have been

used to improve the results. For example, a natural or-

dering of some phases (e.g., closure comes always af-

ter opening) could have been used to further improve

the results. However, we wanted the method to stay

as generic as possible to be easily reused in other con-

figurations (e.g., for other types of intervention). Not

relying on a temporal model also allows the system to

be paused and restarted very easily. This feature is in-

teresting in multiple situations: to save battery, due to

technical failure or problems in gesture recognition, etc.

Moreover, due to patient abnormality or intervention

specific context, the sequence of the phases can also be

totally original. In this situation, not relying on a tem-

poral model allows our system to be used anyway as

no assumption is made on the phase sequencing. Thus,

the system will work even if no data in the training

set exhibits the phase sequencing of the surgery being

processed. Furthermore, the system can be applied re-

gardless of the number of phases in the surgery.

The low computational complexity of decision tree

allows the system to be easily embedded on low powered

devices present the OR (e.g., Google Glass). Further-

more, decision tree can be visualized as a set of classifi-

cation rules that could be used alone to take actions in

the organization of the OR. Note that the source code

of the methods proposed in this paper is available for
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download 1 so that they can easily be integrated and

compared with other systems.

The number of phases, which is currently limited to

four, only partially reveals the potential of the proposed

method. However, as the method is totally generic, it

can be directly used to detect and predict more phases.

Furthermore, as surgical procedures have multiple lev-

els of granularity, our method could also be applied to

detect other levels than phases (e.g., steps, substeps,

etc.). The only limit is that the low-level surgical activi-

ties of these different levels have to exhibit specific char-

acteristics that the tree could capture. Finally, a pre-

cise comparison against existing methods (e.g., HMM

based) would also be needed to highlight the perfor-

mance of the proposed method. The fact that we re-

leased the source code of our application is a first step

towards such comparison.

6 Conclusion

In this paper, we used decision trees to automatically

predict high-level surgical phases from low-level activ-

ities. We proposed a method which uses the local con-

text of an activity to draw a better prediction than a

method using a single activity. Experiments highlighted

that using the local-context improves the quality of the

prediction. We also performed an evaluation to assess

the robustness of the method towards noisy data. The

use of the local context made the method more robust

to noise in the data. Furthermore, we showed that cre-

ating clusters of similar surgeries could be used as a

pre-processing step to improve the results of CAI phase

prediction systems. Indeed, we showed that using a sub-

set of 15 surgeries instead of the 22 of the entire dataset

allowed to improve the results of the proposed meth-

ods. In future work, we are planing to take into account

global information on the surgery and to combine global

and local contexts in order to improve the quality of the

prediction. Furthermore, we are currently investigating

if training the decision tree with short sequences of ac-

tivities would improve the prediction results.
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