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ABSTRACT: The suitability of a commonly used accumulation aash-off model for continuous modelling

of urban runoff contamination was evaluated based bmonth turbidity and flow-rate records from wban
street. Calibration and uncertainty analysis weeefqgmed using a Markov Chain Monte-Carlo sampling
method for both suspended solids loads (dischaigs)yand concentration modelling. Selected mddééd at
replicating suspended solids concentration overcitiaplete monitoring period. The studied datasdeéa
suggests that the accumulation process is rath@edittable and cannot be satisfactorily represewith usual
accumulation models unless short periods are ceresid Regarding suspended solid loads modelling,
noticeably better performance was achieved, builaimesults could as well be obtained with mucimer
constant concentration models. Unless providing eecurate estimates of concentrations in runaffpanting
for their temporal variability during rain eventsayntherefore not always be necessary for pollutaatis

modelling, as loads are in fact mostly explainedunoff volumes.
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1.INTRODUCTION

Since the early eighties, several research progteame identified urban runoff as a major sourcaliffiise
contamination and evidenced the need for bettemstater pollution control (Saget, 1994; US-EPA, 3p8
Today, many local communities have already undertakitigation efforts to minimize the adverse impaaf
stormwater discharge on the environment. More $ipally, Low Impact Development (LID), advocatingrf

on-site runoff and pollution control, has becomeréasingly popular (Ahiablame et al., 2012; Di&207). In



this context, simulation of temporal variations mfllutant concentrations in runoff originating froommban
surfaces such as streets during rainfall (and faostorm to another) is of great interest to boseaecher and
practitioners for various applications related he tlevelopment of relevant stormwater managemeategtes

for diffuse pollution control.

Various models have therefore been proposed ipdlse among which, “accumulation and wash-off’ nisde
implemented in most software solutions (Aryal et aD09; Obropta and Kardos, 2007) are often rediedo
replicate time series of concentrations. While suwbdels have been shown to perform relatively well
(Crobeddu and Bennis, 2011; Piro and Carbone, 2018ng et al., 2011), investigation of the temporal
variability of concentrations in runoff has, howevir a long time been restricted by experimentaistraints
related to sampling methods and thus relied ortivelst scarce observations, with limited numberaih-events
and very partial information on pollutant wash-difnamics (Métadier and Bertrand-Krajewski, 2012%. &
consequence, these models have generally not begfied against long-term continuous water quality
measurements and several recent findings sudugsthieir ability to simulate temporal variability pollutant
concentrations in runoff might have been overedtohgDotto et al., 2011; Freni et al., 2009; Kaasal., 2005;

Shaw et al., 2010).

The use of long-term continuous water quality measents, which have only recently been made aveilab
provides significant opportunities for in depth éstigation of the processes associated with stotemwa
contamination (Deletic, 1998; Hannouche et al.,£QIbannis et al., 2014; Métadier and Bertrand-éwaki,
2012). The main purpose of this study is theretoreliscuss and clarify the capacity of conventiowater
quality models to simulate sediment wash-off dyreamibased on continuous monitoring of flow-rate and
turbidity from an urban street over an 11-monttiqeerWhile models’ ability to replicate both susped solids
loads (e.g. discharge rates) and concentrationsbeilinvestigated, application of a “Markov ChairoMe-
Carlo” (MCMC) method for calibration will furtherme enable quantification of uncertainties assodiatéh

parameters values so as to better identify potditidations of usual accumulation and wash-offrfalations.

2. MATERIAL AND METHODS

2.1.EXPERIMENTAL SETTINGS

The experimental site is located in “Sucy-en-Bmelinicipality, a residential district within Parisrarbation.

The studied catchment consists in a 800m?2 porfibrrqadway width + sidewalk) of an urban road cawgyi



moderate traffic loads (~8 000 vehicles per daydh & runoff length of 160m and an average slop8.8%b.
Runoff was collected by a storm drain where the itbong equipment was installed. 11-litres tippingckets

were used for flow-rate measurement correspondairsg®.014mm resolution in runoff height over drgmarea.

Runoff quality was monitored with a YSI 6820VZ mparameter probe. In order to save storage capanid
reduce power consumption, the probe was driverhéylow-metre and measurements were performednainl-
time step during runoff periods only (from the fiilsucket tipping of a rain event up to 30min aftee last
tipping). Turbidity measurements were here considesis a surrogate for runoff contamination. In prige
facilitate the interpretation of results and conmam with other studies, turbidity data was howesenverted
into Total Suspended Solids concentrations (TS&nfa linear TSS-turbidity relationship adjustednirevent
mean runoff samples performed for 7 rain events@®%). Implication of the accuracy of this relation the
TSS values calculated or modelled will not be disedl here (further details on TSS-turbidity refalip may
be found in Bertrand-Krajewski, 2004; Hannouchalgt2011; the impact of input data uncertaintdiscussed
in Kleidorfer et al., 2009). A rain gage locatecari®y (500m from studied site), additionally provddeainfall

measurements over the entire monitoring period.

Data were collected from September 2012 to Dece@®&8. Technical maintenance was performed eveoy tw
weeks to remove litter from the storm drain andedfy the measurement system (turbidity probe rulegand
tipping bucket system control). Despite regularpawdion of the experimental system, several mechani
problems were encountered with the tipping buckestesn during the monitoring period, resulting irsaice of
record over several weeks. Snow periods were akexeluded from the dataset (as selected wateritgual
models do not apply for snowmelt). Overall, 175 ravents from January 2013 to November 2013 (cerisigl

a 30 minutes minimum inter-event time for theirritigcation) were fully monitored.

As indicated in figure 1, a sudden increase initlityo values, followed by a slower return to prexsoturbidity
levels, was observed at the beginning of the manioperiod (after mid-January). This trend preshinaloes
not result from a failure of the multi-parameteolpe, for which calibration was verified three tinthging the

experiment (from standard formazin solutions) aitctv never showed any drift in the measurements.

2.2.EXPONENTIAL ACCUMULATION AND WASH -OFF MODELS

The models selected for this study are based on BM@&ponential” accumulation and wash-off formutats

(Huber and Dickinson, 1988). Although widely adaht¢hese models have often been reported to fail to



replicate the variability of concentrations in réin@ai and Li, 2013; Shaw et al., 2010) and selstadies cast
doubt on their relevance for loads and concentatimodelling as compared to simpler formulation®ifi-et
al., 2009; Joannis et al., 2014; Kanso et al., 20@&zaro, 2008). Simpler modelling approaches wieus also

considered in this study so as to evaluate theflieiné accumulation and wash-off equations.

“Event mean concentration” (or EMC) models assuh@ toncentrations in runoff remain invariant dgrin
rain event. While such approaches do not allowsiimulation of wash-off dynamics, recent studiecombined
sewers suggest that it could be relevant for loasi$mation (Joannis et al., 2014). Two “Event Mean
Concentration” models were thus adopted for loaddetiing, with, on the one hand, a constant comaéioh
over the whole simulation period (referred to asstant EMC hypothesis, Eq. 1), and consideringhenother
hand, an exponential EMC decrease from JanuaryaeeMber in accordance with turbidity measurements
(referred to as decreasing EMC hypothesis, Egln2hoth cases, concentrations are hence assummeaingin

constant during a rain event i and can be compubea:
[TSS} = Cesr 1)
[TSS] = (Gni— Cum) EXp (-K X T;) + G (2)

Where: [TSS]= Event Mean Concentration (EMC) for suspendeitis§ng/l); G.s= constant EMC value
(mg/l), Gni= EMC at the beginning of simulation (mg/l); = EMC at the end of simulation (mg/l); K = model

parameter (d); T; = beginning date of rain event i (d).

Contrary to EMC models, the exponential wash-offatpn allows for a description of both the intend intra-
event variability of pollutant concentrations. Basmn experimental measurements by Sartor and Bt§d4(),
pollutant removal during rain event has traditibpdleen described as a “source-limited” processhirgzis
and Hamid, 2001). Exponential wash-off functionsstitonsider that amount of sediment washed-ofiira t
directly depends on the mass available over roddea While initial equations assumed that remoatd only
depends on cumulative runoff volume, modified exquial wash-off models have been implemented in
SWMM to account for non-linear dependency on rurmafie (Shaw et al., 2010). The general exponential

equation can be written as follow:

D(t) = Mace (1) x C.a(t) (3



Mace (t+dt) = Macc (1) - D(t) x dt (4)

Where:®(t) = pollutant discharge rate washed off at t dgiime step dt (g.ths?); Macc (t) = available mass at
time t on road surface (g1 q(t) flow-rate over street surface (mmMhC1 = wash-off coefficient and C2 =

wash-off exponent.

From previous equation, determination of the ihgkdiment storage Mc (to;) (g.ni?) at the beginning of a rain
eventi (e.g. t =) is needed to compute suspended fluxes or coratemts. Pollutant accumulation is generally
assumed to result from the equilibrium betweenypaiit deposition and removal due to traffic or werdsion

during dry periods (Alley and Smith, 1981) .84 (to.) (g.m?) can therefore be computed as follow:

Macc (to,) = Dacc/Dero* [1 - EXP (-DBero X Tory,i)] + Mres. EXP (-Dero X Tory,i) (5)

Where: Mkes = residual pollutant loads remaining on streefamar at the end of previous rain event (m
Tpry,i = antecedent dry period duration associated with @vent i (in days); R.c = pollutant accumulation rate
(9.m%d? and Qo = pollutant removal rate coefficient ¥d Pollutant load accumulated over road surface
when equilibrium is reached (e.gprk; = +o) is therefore Qcc/Dero (g9.m?). (Note that the initial sediment

storage Mcc(t=0) at the beginning of simulation is also a paeter of the model)

Previous equation was however reported to be imgpate because of the little explanatory values of
antecedent dry period duration in loads variabilfganso et al., 2005; Shaw et al., 2010). Altensti
accumulation model were thus tested assuming sithariant initial storage Ic (to;) from an event to another
(Eq. 6) or an exponential decrease of the init@lutant load Mcc (to;) available at the beginning of each rain

event over the studied period (Eq. 7) so as to eggheturbidity measurements (cf. 2.1):
Macc (to,) = Mcst (6)
Macc (to,) = (Mini = Mum) * EXp (-K X ) + My (7)

Where: My = initial sediment load over road surface (§mMy v = limit value for Mycc (g.m?); to,; =

beginning date of rain event (d); K = model paraméd?).

2.3.CALIBRATION AND PERFORMANCE ASSESSMENT

2.3.1. Metropolis-Hasting algorithm



While automatic calibration procedures are usuatiplemented to estimate parameter values that ndgim
discrepancies between model outputs and measurgnseith approaches have often been reported tergrev
meaningful assessment of models adequacy (Deletit,e2012; Gaume et al., 1998; Kavetski et &006). A
Markov Chain Monte-Carlo sampling method based @trdpolis-Hasting (1970) algorithm is hence adojited
perform model calibration from water quality measuents according to the approach proposed by Kainab

(2004; 2005).

The Bayesian approach assumes that uncertainti@sodtel parameter, considering a dataset D, can be
represented by a probability distributiorBp), corresponding to prior knowledge about modebmeters Bj
updated by observations D (Congdon, 2006). FromeBatheorem, posterior probability distribution mig

written as follow:
P@©|D) = PQ)x P(Dp) /] P(Dp).P@).do (8)

Where| P(DP).P().d0 can be seen as a normalising constant andPighthe probability of observed outcomes
D given parameters valu@sdenoted as the likelihood &P) function of accumulation and wash-off model. In
this study, FY) is considered as uniform since no prior knowledfeut parameters is available (Kanso et al.,
2005). Assuming that residuaisbetween model’'s outputs and observations are amwtgnt and normally

distributed ¢ ~ N (0p)), likelihood function L§|D) becomes:

[Yi-f(xiﬂ]] .

P(D|8)=L®|D)= u{ojﬁ exp{ Py

Where (Y;,...,Yy) is a vector corresponding to measurements (egpended solids concentrations or loads
records), (%,...,Xy) are input data associated withy(Y.,Yy), and f(X, 0) represents model’s response far X

and a set of parametdrsBoths and6 are considered as parameters to be estimatedgthialibration.

While direct analytical calculation of posterior opability distribution P|D) is generally impossible
Metropolis-Hasting (1970) algorithm can be implemeginto approximate B|D). The principle of this method
lies in its ability to generate a random walk ttgbiparameter space that converges to the posfanbability
distribution (Chib and Greenberg, 1995). For edehation, a set of parametedsis drawn from a normal
candidate generating-density and likelihood assediwith6’ is computed. Parameter acceptance depends upon
a transition probability defined to ensure convergetowards posterior distribution®fid) (for further details,

see Chib and Greenberg, 1995)



2.3.2. Uncertainty analysis and bias description

Posterior distributions computed from Metropoligaithm represent uncertainties associated with ehod
parameters and therefore provide relevant infolmnatin the significance of calibration results. likeod as
given in equation 9 is typically a least-squareecobye function and similar to the widely used N&ltcliffe
(1970) model efficiency coefficient model (E). Faonvenience, model performance is here expresseatrirs

of E rather than L§|D).

It is however important to acknowledge that likeldl function assumes that residuals between model
predictions and measurements are independent anthhy distributed £ ~ N (0p)). While such hypothesis is
seldom questioned in urban hydrology, it is vekelly to be violated (Del Giudice et al., 2013) aad expected,
model errors were here neither found to be indepeiner normally distributed (cf. figure 2). Data
transformation to ensure normality and homoscecigstf residuals has often been applied in hydygl¢Li et

al., 2011; Yang et al., 2007). While such approaak found to allow for “a more detailed” model exaation,
requiring the model to fit a wider portion of meesilidata (Dotto et al., 2013), it may not alwaysibsirable as
resulting in a change in the objective function {Det al., 2011). Moreover, transformed residadien remain
auto-correlated (Del Giudice et al., 2013) and @ptibn of formal Bayesian Inference methods withrect

bias description is yet a challenge (Evin et @13).

In this study, posterior distributions were compluteder the unverified assumption of normally distted and
independent residuals so as to preserve the lgaates objective function. Although such a simpdifion
probably introduces a bias in parameters unceyta@stimation (Dotto et al., 2013; Thyer et al., 900t was
also found to produce similar results as non-forteahniques (such as Generalized Likelihood Uniesta
Estimation) and remains relevant for sensitivityalgeis (Dotto et al., 2012, 2011; Vrugt et al., 8001-99%
confidence intervals associated with parameter riaicéies were thus computed from loads or conegiotis
simulated for each set of parameter of sampleibiigton (cf. Kanso et al., 2005). Conversely, viaa of the
Gaussian error assumption clearly prevents reasomsbimation of total predictive uncertainty (Do#t al.,
2011). As indicated in figure 2c, residuals betwsinulated and measured concentrations appearpendeon
measured values (similar results were observedofmis) and total predictive uncertainty cannot ¢fee be
plotted on the basis ef value. In this paper, the 10-90% (total uncertgiobnfidence intervals were estimated
from the structure of the residuals, accordinchmrmethod outlined by Dotto et al (2011), assunaimgpn-linear

relationship between residuals and simulated values



2.3.3. Application to dataset

The selected water quality model assumes thatrtitouat of pollutant available at the beginning o event
depends on antecedent weather conditions and nemerajly results from a succession of wet and @ryopls.
Calibration and evaluation of these models hengeires continuous modelling of accumulation and hwaf§
processes over the studied period from runoff nmemsents. A simple hydrological model (runoff coeiént +
non linear reservoir model) was thus calibrated0(F4, total runoff volume error = 0.8%) to generiéev-rate
measurements during missing data periods from lomialfall records. Although higher model performanc
might have been expected, this inability to pelfemplicate flow-rate measurements is presumaeélgted to
the distance between studied site and the rain @éggzaro et al., 2012). It should nonetheless uténed that
simulated flow-rates here only aim at modellinglisti@ evolution of available suspended solid loatsroad

surface when runoff measurements are missing.

The whole monitoring period (January 2013 to Noven013) was first considered to perform calibratior
concentrations and loads modelling from flow-rateasurements completed by simulated data. 175 vaint®
were identified using a 30 min minimum inter evehiration (period without runoff). Calibration was
successively conducted with and without the fir8telents (cf. 3.1.1.). Model's ability to replicatediment
concentrations and fluxes was later evaluated faharter calibration period (03/06 to 23/07, 14 resg
Whereas calibration only reflects how well the mockn reproduce TSS measurements, validation alfows
predictive power assessment and can therefore deofuirther information on model consistency for avat
quality modelling. Four contiguous periods (7 rune¥ents each), ranging from 30/05 to 13/09, wdnest
identified to perform validation. Each of them wagcessively considered for calibration and modedligtions
were hence each time evaluated for the three oterummary of calibration and validation periodghw
corresponding water quality models is given ineabl For each simulation, Metropolis algorithm was for
500.000 iterations from optimal parameter valueg.(maximum of likelihood) previously identifiedoim an

“initialization” run (500.000 iterations) to ensuwsampling from a stationary parameter distribution.

3. RESULTS AND DISCUSSION

3.1.LONG-TERM SIMULATION OF ACCUMULATION AND WASH -OFF

3.1.1. Results for concentration modelling
Unsatisfactory results were first obtained fromilraltion over the entire monitoring period (NashtcBffe

efficiency coefficient E=0.33). This poor model foemance was attributed to model’s inability to eopith the



sudden increase in turbidity measurements thatrecaiter mid-January (cf. figure 1). Calibratiorripd was

thus redefined so as to eliminate the first 12 eai@nts occurring before 19/01.

A noticeably higher performance is apparently aodikafter modification of the calibration period=(E61).
However, while E value appears relatively high caneg to other results from the literature (Dottalet2011),
the model seems mostly unable to properly simdlattuations in TSS concentration during a giveim vent
(cf. figure 3). Conversely, the accumulation andskvaff model succeeds in replicating overall deseeaf
concentrations in runoff over the calibration pdr{@videnced in figure 1). Optimal parameter val(efstable
2) indeed indicate that the initial sediment sterad.cc (t = 0) is much higher than the equilibrium load
Dacc/Dero(Tory,i = +0 in EqQ. 5). Simulated concentrations are thereffanethe first events, driven by this high
initial load Macc (t = 0), and progressively decrease as the stdvgge returns to its equilibrium value. The
value calculated for E may therefore simply redottm model's ability to adapt to this trend in TSS

concentrations over the calibration period.

Dispersion of posterior probability distributiond.(figure 4) is generally moderate, although mamportant for
accumulation model parameterade and Qkro, Which indicates that an optimal set of parameterdd easily
be identified. As a consequence, uncertaintiescisgal with calibration can be regarded as relbtivew.
Concerning simulated concentrations, narrow confideintervals are obtained for parameter unceytain
whereas the model fails to simulate wash-off dymamat the event scale and displays a very higH tota
predictive uncertainty (cf. figure 3). This firsuggests that calibration results may be largelyedriby the
annual decrease in TSS concentrations; optimalnaglagion parameters would therefore not necesseaflgct
the ability of the model to simulate sediment acalation between rain events. This hypothesis ipetted by
(1) the more important dispersion ohd and D:roand (2) the cross-correlation observed betweerethes
parameters (not shown here). An increase grolls indeed compensated by a decrease @t Dthe effect of
these parameters as “erosion” or “accumulatiorstade the likelihood function is hence much lowkan the
effect of the equilibrium load [ c/Dero and the dispersion of 2c/Derois thus lower than the one of,E and
Dero (cf. Figure 4)From figure 3 it is however quite clear that thepfit between simulated concentrations and
calibration data does not only result from errorseprediction of sediment loads at the beginningaof events.
The performance of wash-off model itself will besclissed in 3.2, considering shorter calibratioriogerto

attempt to avoid the influence of incorrect repnéaion of long-term accumulation process.



So as to better evaluate the significance of presalibration results, an alternative accumulatmdel (Eq. 7)
is tested under the assumption that antecedenpehigd has no effect on the initial pollutant losldcc (to;)

which simply decreases over the studied period.

Calibration results indicate that the omission oflygant accumulation process modelling during geriods
does not significantly affect model performance @66 vs. E=0.61 previously). The little change irvdue
confirms that exponential accumulation and washaudtiel performance period is here essentially edlad its
ability to replicate the annual decrease of TSScenfrations, with successions of wet and dry periocaving
only a limited effect on simulated concentratiokghile antecedent dry periodpdy has traditionally been
considered as a reliable predictor of suspendemiss@oncentrations or loads in runoff, represeortatdf
pollutant accumulation as a process solely depdénoiarthis factor may therefore not be relevant. $¢apt al
(2005) also found the initial sediment loadd(to;) to be independent frompky and suggested that it might be
considered as constant from an event to another §EqOur results rather indicate thahdd (to,) is highly
variable and are thus consistent with those regdajeShaw et al (2010) who found pollutant accurtioreto be

mostly unpredictable and influenced by stochasiiut of particulate matter.

In this study, the increase of TSS concentratidumsng the first half of the monitoring period cduhot be
explained by direct on-site observations. It mayéweer be hypothesized that various circumstanasd) as
construction work in the neighbourhood, or seasphahomena such as leaf fall or application oficiteg salts
during winter periods (Deletic and Orr, 2005), cegsult in an acceleration of sediment deposition
(independently from dry periods duration). The ttebserved in TSS concentrations therefore indictiat
such unpredictable occurrences can completely aftdrdrive the accumulation process which sugdkeatshe
traditional assumption of a pollutant accumulatanity related to dry period duration may not be vatg for

long term runoff quality modelling.

3.1.2. Results for load modelling

Calibration for suspended solids loads modelling warformed over the period ranging from Januar 1®
November 2013. Model's ability to replicate suspeshdsolids discharge rates seems much better than fo
concentrations (E=0.79 vs. E=0.61) (cf. figure Blis performance increase is in agreement withditere
results which generally show that traditional wajeality models produce more accurate estimatésaals than

concentrations (Crobeddu and Bennis, 2011; Dottd. e2011; Shaw et al., 2010).
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Optimal parameter values for loads however sigaifity differ from those calculated for concentratio(cf.
table 2); TSS concentrations computed from thesampeters hence do not really fit with measuremants
result in a poor model performance (E=0.35 vs. BXD. Correspondingly, Nash efficiency coefficiest i
significantly affected when suspended solids loads simulated from parameters associated with ts b

prediction of TSS concentrations (E=0.46 vs. E=).79

Despite the poor performance observed at the esesmie for TSS concentration modelling (cf. 3.1theg
exponential accumulation and wash-off model appbreprovides relatively accurate load estimates. As
suggested by Joannis et al (2014) in the casembiteed sewers, suspended solid loads variabilightrthus be
largely explained by runoff volumes (which can beasured or easily simulated) and satisfactory model
performance for loads may not always be meaningftévious results indeed demonstrate that reasehaddi
prediction does not necessarily reflect the modabdity to replicate pollutant wash-off dynamicadaTSS
concentrations (and reciprocally). Model's relevarfior loads estimation, as compared to simpler Evaan

Concentrations (EMC) formulations (cf. Eq. 1), sldathherefore probably be questioned.

Calibration was thus performed for the two EMC nied&q. 1 and 2) assuming either a constant coraiont
over the simulation period or an exponential desgeaf concentrations from mid-January to Novemblash
model efficiency coefficients calculated for botbhohstant EMC” and “decreasing EMC” hypotheses are
relatively high (E=0.61 and E=0.77 respectively&s0.79). These results therefore support the thiaasimple
models may as well produce very acceptable loaidhatts as long as flow-rates are correctly measored
simulated. Eventually, “decreasing EMC” hypothepisrforms almost as well as the initial exponential
accumulation and wash-off model. Accounting for penal variability in TSS concentrations thereforevyides
only slight improvement for loads prediction, whiabain indicates that this high E-value (associatid the
decreasing EMC hypothesis) is mostly associatetl thi¢ replication of TSS concentration decrease the

studied period.
3.2.APPLICATION OVER SHORTER PERIODS

Calibration over the 11 month period primarily sagts that the exponential accumulation and wasimofiel
fails at simulating concentration variations at thent scale. Random occurrences, resulting inagigiable
sediment inputs, are indeed likely to disrupt thecpss of sediment deposition and thus traditifovahulations
relating accumulation to antecedent dry periodpaodably inappropriate when applying these modeés tong

periods.
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The model investigated here was however reportgeetform relatively well (at similar or wider scajewhen
applied to shorter periods or a limited numberaii ievents (Freni et al., 2009; Mannina and Vivi@0i10; Piro
and Carbone, 2010). Several studies additionaligesved that antecedent dry period was a relevatigior
for pollutant accumulation between rain events {@&yeatta and Goonetilleke, 2006; Vaze and Chiew2p00
although, as suggested by Shaw et al (2010), adetiom rate may significantly vary over time. A stey
period, ranging from June™3to July 23 (14 rain events over 51 days), far enough from-daiduary
concentration peak, was thus selected to evaluatiehsuitability for concentration and loads regiion and

prediction.

3.2.1. Results for TSS concentration modelling

Model calibration for the studied period resultsansatisfactory fit with TSS concentration measwgets
(E=0.55, cf. Figure 7a). Posterior distributionsnpauted from Metropolis Hasting algorithm (figure iijlicate
that uncertainties associated with most parametegslow. The dispersion obtained for,d4 (t=0) simply
demonstrates that the effect of initial sedimentage on model outputs quickly becomes negligikiace
accumulation and wash-off are simulated for the lehmonitoring period, although calibration is only

performed over 51 days).

Values associated withglo and Dicc are however surprisingly high and similar to thos¢éained by Kanso et
al (2004) who concluded that sediment despositmriccbe modelled as an instantaneous process @éndept
from antecedent dry period). Indeed, fogB= 2.65 d*, 93% of the equilibrium load (fc/Dero.cf. EQ. 5) is
reached within 24h. While uncertainties associatétth these parameters appear as relatively modetiage
relevance of accumulation process representatioy tmas once again be questioned and current mods| w
compared to a simpler formulation. Assuming cortstaitial sediment storage Mc (t,;) from an event to
another results in a moderate decrease in E v&l@.42 vs. 0.55 for the exponential accumulatiordetp The
Alley and Smith (1981) model can hence be regardsdsuitable for the studied period even though
instantaneous accumulation assumption does notadiatly affect model performance. The highkgB value
indeed indicates that initial sediment storage @stiy identical from an event to another unlessyvamort
antecedent dry periods are considered. The inciadSesalue would therefore suggest that TSS camatons
during rainy periods, with successive rain evemai® better represented when accumulation is sieuilat

although this conclusion is as well very dependsmntain event definition.
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Even if satisfactory model performance is obtaifeda studied period, calibration results may hoevediffer
from a period to another and do not reflect modabsity to replicate TSS concentrations for a widenge of
events. So as to determine whether (1) calibratsnlts are likely to differ from a period to anettand (2) to
assess the short-term predictive power of the maadébration and validation was thus performed4aifferent
periods. Studied period (from Jun¥ ® July 2%') was therefore split in two 7-events intervals and other

intervals were additionally considered on each sidéae June "3 to July 28 period.

As indicated in table 3, results remain decenbag las validation and calibration is performed imitthe June
3% to July 2& interval, which is not really surprising since aogomodel performance was observed for
calibration over the whole period (E=0.55). Cone&rsconsidering either first or last period fofilseation or
validation systematically produces very poor vdlima results (cf. figure 7b.), which reveals thia¢ fpredictive
power of the exponential accumulation and washawdtlel should overall be regarded as unsatisfactorgss

considering very limited number of events immediabefore or after calibration period.

The inability of the model to predict concentragoim runoff clearly reflects the fact that no sieglet of
parameter can correctly simulate sediment washigfiamics for the 4 studied periods. As found by ddér
(2011) for larger catchments, optimal parametduasmay indeed significantly vary from a caliboatiperiod
to another (cf. table 4). These results are alswistent with those of Bai and Li (2012), who sugjgd that
governing forces in suspended solids wash-off,ltiegufrom both sediment supply and runoff abilityremove
them, usually differ from an event to another. lestingly, comparison of optimal parameters fordid
periods evidences relatively small variations irskvaff parameter values, whereas accumulation peteas)
which dictate the amount of pollutant availabléhet beginning of each event, significantly diffesrh a period
to another. The lack of predictive power of the eloid thus very likely to be explained by its inpito

simulate sediment deposition between rain events.

It should nonetheless be underlined that this peoformance does not solely results from erronestimations
of Mges (to). As indicated in figure 7b, while the model indefails at predicting the order of magnitude of
concentrations in runoff, replication of the temglopattern of sediment concentrations is as weltequ
inaccurate. As a consequence, calibration reshi#mselves remain quite unsatisfactory, althoughtively
short periods are considered. At this point it @vaver unclear whether this problem originates frima

formulation of wash-off or data itself. As a mattdifact, while errors in turbidity or flow-rate gerds cannot be
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completely excluded, the use of precise and highuency data may also exacerbate discrepanciesdéetw

measurements and simulated values (Del Giudick, &04.3).

3.2.2. Results for suspended solid loads modelling

Optimal parameter values identified for loads aver June % to July 23 period are, once more, very different
from those calculated for concentrations modellifed. table 5). While the model apparently produces
outstanding results for loads estimation (E=0.98)y high uncertainties are nevertheless associaféu

accumulation model parameters (cf. figure 8).

As illustrated by scatter-plot in figure 8, thedilhood L@|D) in fact appears to be almost insensitive tgdD
and Dicc, which are again strongly cross-correlated (natwsh here) and for which very high values,
corresponding to an instantaneous pollutant accation, are identified through Metropolis algorithm.
Assuming constant initial sediment storaggecFE Dacc/Dero (EQ. 6) for all rain events indeed results in &ami
model performance (E=0.96). Extreme simplificatioansidering constant TSS concentration (Eq. lyever
lead to a noticeable drop in Nash efficiency ce#fit (E=0.81). These results therefore suggest dtthough
accounting for pollutant wash-off dynamics mightl sie relevant for loads modelling, attempts tonglate

sediment deposition with the exponential modelchearly vain.

Interestingly, conclusions upon model suitabilitppear to depend on modelling objectives: whereas
accumulation parameters have almost no effectkaetitiood function when simulating sediment disclearates,
opposite results are indeed obtained for concéni®t This difference presumably lies in the chemastics of

the objective function 1§]D) which assigns more importance to higher obskmadues. As measured flow-rates
generally exhibit a much wider range of variatibart concentrations, calibration for loads basicdéipends on
the correct replication of concentrations assodiateith the highest flow-rates, while calibrationrfo

concentrations basically requires model outpufi to the whole pollutograph.

Another consequence of the difference in the vagarof loads and concentrations is that model redidn
(with a least-square objective function) is gergrahsier for loads (cf. tables 2 & 5), as cornegilication of
the entire concentration record is not necessaglgded. For the same reason, validation resultdbeaguite
disappointing when considering short calibrationigus (cf. table 6). Indeed, model fitting over ery limited
number of event (and sediment discharge peaks)leaayto completely unrealistic short term (and |dexgm)
prediction of concentrations. It is thus presumatlycial that sufficiently long periods are useddalibration to

expect any predictive power for loads modelling.
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3.3.DISCUSSION AND PERSPECTIVES FOR FUTURE RESEARCH

From previous results, the traditional assumptioat tsediment accumulation can be described by alsim
function of dry period duration is an obvious liatibn of the model. The findings related to antecédiry
period duration (Bry) are consistent with several recent literaturailteswhich suggest that accumulation
believably does not occur at a steady rate (Detgit Orr, 2005; Shaw et al., 2010) and that thematation
equation has thus little or no explanatory poweot{(® et al., 2011, 2010; Kanso et al., 2005). bt be
however acknowledged that the dataset used insthdy displays a particular temporal concentrapattern,
presumably due to a large punctual sediment inpeit street surface. While such occurrences aréyltkeoccur
at any time and in any situation, the erratic béhavof accumulation (and the inter-event variapilof
concentrations) might have been exacerbated bfattehat a relatively small catchment is considdrere. The
effect of isolated and unusual sediment inputsi{sag construction works) is indeed likely to be sthed for
larger catchments, which might explain why satigfac performance of conventional accumulation medek
sometimes reported (Freni et al., 2009; Vezzar0820Nonetheless, seasonal phenomena such asaleaf-f
application of de-icing salts, which result in armdiffuse sediment supply, may still produce obakle effects
for larger catchments. Besides, further researgirabably needed to better understand externalegees that

might affect pollutant accumulation and its longatevariability.

Regarding the wash-off function, this study indésathat both model performance and optimal parametaes
may differ from a calibration period to another. 8f2.1.). This variability suggests that the acfaemulation,
for which runoff-rate is the main explanatory vatega may not be able to capture all the processasied in
sediment wash-off. Previous results, based on &by and field experiment have indeed evidenced th
importance of both raindrop energy (related to brathdrop diameter and intensity) or particle siz¢éhe wash-
off process (Brodie and Rosewell, 2007; Egodawattaal.,, 2007; Vaze and Chiew, 2003). Other model
structures should therefore probably be testeddemaately replicate concentrations in runoff (altfio much

simpler models may as well be acceptable for bggptications such as loads estimation).

More generally, in the perspective of stormwaternaggement practices development, implementation of
alternative modelling approaches, that incorpottagestochasticity of accumulation and wash-offyrissumably

needed for simulation of realistic TSS concentraiover long periods.

Eventually, while MCMC method was shown to provateinteresting framework for sensitivity and unagrty

analysis and clearly evidenced the limitationshef exponential accumulation and wash-off mode§ gtudy
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illustrates the issues arising from the selectidnttee likelihood function. Because the normalitydan
independence of residuals assumption is usuallenified, rigorous implementation of the Bayesiaamfiework
generally requires data transformation or precise ldescription which inevitably dictates the natof the
likelihood function (Del Giudice et al., 2013; D@lidice et al., 2014). This likelihood function mahgwever
not systematically represent the modeller's peioaptf model performance, which is generally assgdsom
much simpler criterion (Dotto et al., 2011; McMilland Clark, 2009). In this paper, model’s abil@yreplicate
loads and concentrations was for instance evalufited the widely used Nash-Sutcliffe coefficienhet
normality assumption was hence deliberately violade as to preserve a least-square objective amdtr
calibration. The choice of a performance criterisralways arguable and somewhat subjective (lepsire
objective functions for instance assigns more ifgare to highest measurement values). Nonetheless,
implementation of informal likelihood functions (duas the Nash-Sutcliffe coefficient) that bettepresent
modeller’'s judgement and allow for more completplesation of the space of parameters (McMillan &iark,

2009) is probably advisable as it provides morxiliiity than formal Bayesian approaches.

4. CONCLUSION

The ability of a commonly used accumulation and twaff’ model to simulate total suspended solids $JS
concentrations and loads in street runoff was itigated. Calibration and uncertainty analysis wayaducted
for both long and shorter periods from 11-monthtowous turbidity and flow rate records, using anfal

Bayesian approach (MCMC). From this analysis, it faund that:

e The accumulation and wash-off model did not martagerrectly replicate TSS concentrations for the
11-month period. Calibration was presumably hinddrg an important increase of sediment deposition
at the beginning of the monitoring period. The mpddich assumes that accumulation solely depends

on dry period between rain events, was thus urtabterrectly simulate this process.

* When considering shorter periods for calibratigptjrmal accumulation parameter values were found to
be significantly different from a period to anoth€onsequently, the predictive power of the modas$ w

mostly inexistent, unless considering very limised of rain events.

*  While assuming that sediment deposition and erosimurs at steady rate might be acceptable for

larger catchments (where the variability of seditmaputs may be smoothed), the results presented
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here suggest that accumulation should rather beribed as a stochastic process when small urban

surfaces are considered.

« Eventually, suspended solid load predictions weetatively accurate despite the poor model
performance for concentrations modelling. Accoumtfor fluctuations in TSS concentration during
rain events may thus not systematically be releaadtrespectable results can as well be obtaiead fr

very simple “event mean concentrations” models.

Confrontation of the “accumulation and wash-off” deb with long-term continuous water quality records
therefore clearly indicates that its relevance Joth concentration and loads modelling should sshobe
questioned. While simpler formulation can provideasonable estimates of suspended solid loads,efurth
research is believably needed to satisfactorilyutabe concentrations. More specifically, analysislanger
water quality time-series could provide a bettedanstanding of the accumulation process, whichradably

essential to capture the temporal variability afigentrations in runoff.
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Figure 1 — Turbidity measurements from Januaryeppt&@nber 2013 (dry periods were excluded for bet@aability)
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Figure 2 — Residuals analysis for concentration rtiode (a) Distribution, (b) first-order autocorgagion, (c) residuals
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Figure 3 — Calibration results for 10/02 to 11/02 80/05 rain events. The black dashed line repteseeasured
concentrations, the black bold line is simulatedaemtrations, dark shaded area is 1-99% parametertainty, light shaded
area is 10-90% total uncertainty and the black exélaw-rate over street surface.

MACC(l:O) Da“ Dero C1 C2 Dacc/Dero
03 N 03 N 03 03 03 03
0.25 1 025 1 025 0.25 0.25 0.25
02 1 0.2 1 02 0.2 0.2 02
0.15 1 015 1 015 0.15 0.15 0.15
0.1 N 0.1 N 0.1 0.1 0.1 0.1
0.05 1 0.05 1 0.05 0.05 0.05 0.05
0 0 0 0 0 0
40 60 0.1 0.2 03 0 0.02 0.04 0,05 0,065 008 1.05 11 115 0 10 20

Figure 4 — Posterior probability distribution foodel parameters
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Fig. 5a (10/02/2013 and 11/02/2013) Fig. 5b (30/05/2013)
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Figure 5 — Calibration results for 10/02 to 11/08 80/05 rain events - The black dashed line repteskixes computed
from flow-rate and turbidity measurements, the bllaald line is simulated loads, light shaded ass@fal uncertainty and
the black area is flow rate over street surface.
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Figure 6 — Posterior probability distribution foodel parameters (calibration on the JulfegJuly 2% period)
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Figure 7 — Comparison between calibration (03/083®7) and validation results (30/05). The blac&taal line represents
measured concentrations, the black bold line isiited concentrations, dark shaded area is 1-99&reder uncertainty,
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Parameters Calibration for concentrations Calibrafior loads

Mge<(t=0) (g.n¥) 47.3 31.9
Dacc (g.m? dh) 1.73x10" 8.8x10°
Dero(d?) 1.90x10° 0.4x10°
(o 0.065 0.021
C, 1.10 1.18

Table 1 — Optimal parameter values for both comeéionh and load modelling

Calibration period Validation period
Dates 30/05 to 02/06 03/06 to 13/06 13/06 to 23/07 26/07 to 13/09
30/05 to 02/06 E.. = 0.40 -1.98 -1.67 -18.8
03/06 to 13/06 -0.17 & =0.65 0.35 -1.51
13/06 to 23/07 -0.13 0.29 ck =0.63 -2.39
26/07 to 13/09 -0.79 0.16 -0.03 A = 0.26

Table 2 — Validation results (concentrations): NSsitcliffe efficiency criterion considering fourekents periods for
calibration (considering same period for calibmatémd validation gives model performance for caliion B, )

Calibration period Rec Derc Dacc / Derc C, C
30/05 to 02/06 0.361 0.337 1.071 0.364 1.107
03/06 to 13/06 1.130 2.572 0.439 0.405 1.144
13/06 to 23/07 2.956 2.442 1.211 0.139 1.225
26/07 to 13/09 4,195 18.47 0.227 0.411 1.041

Table 3 — Optimal parameter values for 4 calibraperiods

Parameters Calibration for concentrations Calibrafor loads
Mge<(t=0) (g.n?) 3.15 5.2

Dacc (g.m? db) 1.79 16.5

Dero(d?) 2.65 17.9

C 0.24 0.16

C, 1.21 1.34

Table 4 — Optimal parameter values for both corraéion and loads modelling (Calibration over theel@fto July 2%
period)

Validation period
Calibration Period

Dates 30/05 to 02/06 03/06 to 13/06 13/06 to 23/07 26/07 to 13/09
30/05 to 02/06 EaL = 0.96 0.75 -2.87 -2.99
03/06 to 13/06 0.92 d&aL = 0.99 0.44 -0.21
13/06 to 23/07 0.72 0.87 ck =0.96 0.78
26/07 to 13/09 0.54 0.72 0.90 A& = 0.96

Table 5 — Validation results (loads): Nash Suteléfficiency criterion considering four 7-eventsipés for calibration
(considering same period for calibration and valaagives model performance for calibratiog.B)
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