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Abstract

We present a framework, named the Montagovian generative lexicon, for computing the semantics

of natural language sentences, expressed in many-sorted higher order logic. Word meaning is

described by several lambda terms of second order lambda calculus (Girard’s system F): the

principal lambda term encodes the argument structure, while the other lambda terms implement

meaning transfers. The base types include a type for propositions and many types for sorts of

a many-sorted logic for expressing restriction of selection. This framework is able to integrate

a proper treatment of lexical phenomena into a Montagovian compositional semantics, like the

(im)possible arguments of a predicate, and the adaptation of a word meaning to some contexts.

Among these adaptations of a word meaning to contexts, ontological inclusions are handled by

coercive subtyping, an extension of system F introduced in the present paper. The benefits of this

framework for lexical semantics and pragmatics are illustrated on meaning transfers and coercions,

on possible and impossible copredication over different senses, on deverbal ambiguities, and on

“fictive motion”. Next we show that the compositional treatment of determiners, quantifiers,

plurals, and other semantic phenomena is richer in our framework. We then conclude with the

linguistic, logical and computational perspectives opened by the Montagovian generative lexicon.

Keywords and phrases type theory, computational linguistics
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1 Introduction: word meaning and compositional semantics

The study of natural language semantics and its automated analysis, known as computational

semantics, is usually divided into formal semantics, usually compositional, which has strong

connections with logic and with philosophy of language, and lexical semantics which rather

concerns word meaning and their interrelations, derivational morphology and knowledge

representation. Roughly speaking, given an utterance, formal semantics tries to determine

who does what according to this utterance, while lexical semantics analyses the concepts

under discussions and their interplay i.e. what it speaks about.
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(1) a. A sentence: Some club defeated Leeds.

b. Its formal semantics: ∃x : e (club(x) & defeated(x, Leeds))

(2) Lexical semantics as found in a dictionary: defeat:

a. overcome in a contest, election, battle, etc.; prevail over; vanquish

b. to frustrate; thwart.

c. to eliminate or deprive of something expected

Although applications in computational linguistics require both aspects of semantics,

some applications rather focus on formal and compositional semantics, e.g. man machine

dialogue, non statistical translation, text generation while other applications like information

retrieval, classification, statistical translation rather stress lexical semantics.

Herein we refine compositional semantics with a treatment of some of lexical semantics

issues, in particular for selecting the right word meaning in a given context. Of course any

sensible analyser, including human beings, or Moot’s Grail parser [49] combines both the

predicate argument structures and the relations between lexical meanings to build a semantic

representation and to understand an utterance.

We define a framework named the Montagovian generative lexicon, written ΛTynas it

extends Tyn of Muskens [55] with the second order Λ operator and the corresponding

quantified Π types. It is based on Montague view of formal and compositional semantics [46],

but we provide a faithful and computable account of some phenomena of lexical semantics,

which have been addressed in particular by Pustejovsky and Asher [62, 5, 6]: correctness,

polysemy, adaptation of word meaning to the context, copredication over different senses

of a given expression. Our framework ΛTyn also suggests a finer grained analysis of some

formal and compositional semantic issues such as determiners, quantification, or plurals.

Compositional semantics is usually described within simply typed lambda calculus:

therefore its implementation is rather straightforward in any typed functional programming

language like ML, CaML or Haskell. The computational framework for natural language

semantics that we present in this paper, as well as the precise description of some semantics

constructions, is defined in a subsystem of system F (second order lambda calculus), which

does not go beyond the type systems of the afore mentioned functional programming languages.

Hence our proposals can easily be implemented in such a language, for instance in Haskell

along the lines of the good and recent book by van Eijck and Unger on computational

semantics with functional programming [73].

1.1 The syntax of compositional semantics

As opposed to many contributions to the domain of linguistics known as “formal semantics”

the present paper neither deals with reference nor with truth in a given situation: we only

build a logical formula (first order or higher order, single sorted or many-sorted) that can

be thereafter interpreted as one wants, if he wishes to. Hence we are not committed to any

particular kind of interpretation like truth values, possible worlds, game semantics,. . .

In the traditional Montagovian view, the process of semantic interpretation of a sentence,

consists in computing from syntax and word meanings, a logical formula (which possibly

includes logical modalities and intensional operators), and in interpreting this formula in

possible world semantics. Although Montague thought that intermediate representations,

including the logical formulae, should be regarded as unimportant, and should be wiped off

just after computing truth values and references, in this paper we precisely focus on the

intermediate representations, in particular on the logical formulae, which can be called the



logical forms of sentences, with particular attention to the way they are computed – for the

time being, we leave out the interpretation of these formulae. A reason for doing so is that

we can encompass subtle questions, like vague predicates, generalised and vague quantifiers,

for which standard notions of truth and references are inadequate: possibly some interactive

interpretation would be better suited, as that proposed by Lecomte and Quatrini [33] or by

Abrusci and Retoré [1].

1.2 A brief reminder on Montague semantics

Let us briefly remind the reader how one computes the logical forms according to the

Montagovian view. Assume for simplicity that a syntactic analysis is a tree specifying how

subtrees apply one to the other – the one that is applied is called the function while the other

is called its argument. A semantic lexicon provides a simply typed λ-term [w] for each word

w. The semantics of a leaf (hence a word) w is [w] and the semantic [t] of a sub syntactic

tree t = (t1 , t2 ) is recursively defined as [t] = ([t1 ] [t2 ]) that is [t1 ] applied to [t2 ], in case

[t1 ] is the function and [t2 ] the argument – and as [t] = ([t2 ] [t1 ]) otherwise, i.e. when [t2 ] is

the function and [t1 ] the argument. In addition to these functional applications, the tree

could possibly include some λ-expressions, for instance if the syntactic structure is computed

with a categorial grammar that includes hypothetical reasoning like Lambek calculus and its

extensions, see e.g. [53, Chapter 3].

The typed λ-terms from the lexicon are given in such a way that the function always has a

semantic type of the shape a → b that matches the type a of the argument, and the semantics

associated with the whole tree has the semantic type t, that is the type of propositions.

This correspondence between syntactical categories and semantic types, which extends to

a correspondence between parse structures and logical forms is crystal clear in categorial

grammars, see e.g. [53, Chapter 3]. Typed λ-terms usually are defined out of two base types,

e for individuals (also known as entities) and t for propositions (which have a truth value).

Logical formulae can be defined in this typed λ-calculus as first observed by Church a long

time ago. This early use of lambda calculus, where formulae are viewed as typed lambda

terms, cannot be merged with the more familiar view of typed lambda terms as proofs. The

proof such a typed lambda term corresponds to is simply the proof that the formula is well

formed, e.g. that a two-place predicate is properly applied to two individual terms of type e

and not to more or fewer objects, nor to objects of a different type etc. This initial vision of

lambda calculus was designed for a proper handling of substitution in deductive systems à la

Hilbert. One needs constants for the logical quantifiers and connectives:

Quantifier Constant Type

there exists ∃ (e → t) → t

for all ∀ (e → t) → t

Connective Constant Type

and & t → t → t

or ∨ t → t → t

implies ⊃ t → t → t

Constant Type

defeated e → e → t

won, voted e → t

Liverpool, Leeds e

· · · · · ·

as well as predicates for the precise language to be described – a binary predicate like won

has the type e → e → t – as usual the type a → b → c → u stands for a → (b → (c → u))

and the term h t s r stands for (((h t) s) r) (h being a function of arity at least 3).



word semantic type u∗

semantics : λ-term of type u∗

xv the variable or constant x is of type v

some (e → t) → (e → t) → t

λP e→t. λQe→t. (∃(e→t)→t (λxe. (&t→t→t(P x)(Q x))))

club e → t

λxe. (clube→t x)

defeated e → e → t

λye. λxe. ((defeatede→e→t x)y)

Leeds e

Leeds

Figure 1 A simple semantic lexicon.

A small example goes as follows. Assume the syntax says that the structure of the

sentence “Some club defeated Leeds.” is

(some (club)) (defeated Leeds)

where the function is always the term on the left. If the semantic terms are as in the lexicon

in Figure 1, placing the semantical terms in place of the words yields a large λ-term that can

be reduced:((
λP e→t. λQe→t. (∃(e→t)→t (λxe. (&t→t→t(P x)(Q x))))

)(
λxe. (clube→t x)

))
((

λye. λxe. ((defeatede→e→t x)y)
)

Leedse

)

↓ β(
λQe→t. (∃(e→t)→t (λxe(&t→t→t(clube→t x)(Q x))))

)
(
λxe. ((defeatede→e→t x)Leedse)

)

↓ β(
∃(e→t)→t (λxe. (&t→t→t(clube→t x)((defeatede→e→t x)Leedse)))

)

This λ-term of type t can be called the logical form of the sentence. It represents the

following formula of predicate calculus (admittedly more pleasant to read):

∃x : e (club(x) & defeated(x, Leeds))

The above described procedure is quite general: starting with a properly defined semantic

lexicon whose terms only contain the logical constants and the predicates of the given

language one always obtains a logical formula. Indeed, such λ-terms always reduce to a

unique normal form and any normal λ-term of type t (preferably η long, see e.g. [53, Chapter

3]) corresponds to a logical formula.

If we closely look at the Montagovian setting described above, we observe that it is

weaving two different “logics”:

Logic/calculus for meaning assembly (a.k.a glue logic, metalogic,. . . ) In our example, this

is simply typed λ-calculus with two base types e and t – these terms are the proof in

intuitionistic propositional logic.

Logic/language for semantic representations In our example, that is higher-order predic-

ate logic.1

1 It can be first-order logic if reification is used, but this may induce unnatural structure and exclude
some readings.



The framework we present in this paper mainly concerns the extension of the metalogic

and the reorganisation of the lexicon in order to incorporate some phenomena of lexical

semantics, first of all restrictions of selection. Indeed, in the standard type system above

nothing prevents a mismatch between the real nature of the argument and its expected

nature. Consider the following sentences:2

(3) a. * A chair barks.

b. * Jim ate a departure

c. ? The five is fast

Although they can be syntactically analysed, they should not receive a semantical analysis.

Indeed, “barks” requires a “dog” or at least an “animate” subject while a “chair” is neither

of them; “departure” is an event, which cannot be an “inanimate” object that could be eaten;

finally a “number” like “five” cannot do anything fast – but there are particular contexts in

which such an utterance makes sense and we shall also handle these meaning transfers.

1.3 The need of integrating lexical semantics in formal semantics

In order to block the interpretation of the semantically ill formed sentences above, it is quite

natural to use types, where the word type should be understood both in its intuitive and

in its formal meaning. The type of the subject of barks should be “dog”, the type of “fast”

objects should be “animate”, and the type of the object of “ate” should be “inanimate”.

Clearly, having, on the formal side a unique type e for all entities is not sufficient.

The traditional view with a single type e for entities has another related drawback. It is

unable to relate predicates whose meanings are actually related, although a usual dictionary

does. A common noun like “book” is usually viewed as a unary predicate “book:e → t” while

a transitive verb like “read” is viewed as a binary predicate “read: e → e → t” This gives the

proper argument structure of Mary reads a book. as (∃x : ebook(x) & reads(Mary, x)) but

this traditional setting cannot relate the predicates book and read – while any dictionary

does. With several types, as we shall have later on, we could stipulate that the object of

“read” ought to be something that one can “read”, and a “book” can be declared as something

that one can “read”, “write”, “print”, “bind”, etc. Connections between a predicate like

“book” and predicates like “write”, “read”, etc. allow to interpret sentences like “I finished

my book” which usually means “I finished to read my book” and sometimes “I finished to

write my book”, the other possible senses being even rarer.

Hence we need a more sophisticated type theory than the one initially used by Montague

to filter semantically invalid sentences. But in many cases some flexibility is needed to accept

and analyse sentences in which a word type is coerced into another type. In sentence (3c), in

the context of a football match, the noun “five” can be considered as a player i.e. a “person”

who plays the match with the number 5 jersey, who can “run”.

There is a vast literature on such lexical meaning transfers and coercions, starting from

1980 [11, 12, 21, 57] – see also [32, 13] for more recent surveys of some lexical theories. In

those pioneering studies, the objective is mainly to classify these phenomena, to find the

rules that govern them. The quest of a computational formalisation that can be incorporated

into an automated semantic analyser appears with Pustejovsky’s generative lexicon in 1991

2 We use the standard linguistic notation: a “*” in front of a sentence indicates that the sentence is
incorrect, a “?” indicates that the correctness can be discussed and the absence of any symbol in front
means that the sentence is correct.



[61, 62]. The integration of lexical issues into compositional semantics à la Montague and

type theories appears with the work by Nicholas Asher [5, 6] which led to the book [3], and

differently in some works of Robin Cooper with an intensive use of records from type theory

to recover frame semantics with features and attributes inside type-theoretical compositional

semantics [19, 20]

1.4 Type theories for integrating lexical semantics

As the aforementioned contributions suggest, richer type systems are quite a natural frame-

work for formal semantics à la Montague and for selectional restriction and coercions. Such

a model must extend the usual ones into two directions:

1. Montague’s original type system and metalogic should be enriched to encompass lexical

issues (selectional restriction and coercions), and

2. the usual phenomena studied by formal semantics (quantifiers, plurals, generics) should

be extended to this richer type system and so far only Cooper and us did so [19, 20, 16,

52, 41, 35, 64]

At the end of this paper, we shall provide a comparison of the current approaches, which

mainly focuses on (1). Let us list right now what the current approaches are:

The system works with type based coercions and relies on some Modern Type Theory

(MTT) 3 – this corresponds to the work of Zhaohui Luo [38, 39, 77, 16].

The system works with type based coercions and relies on usual typed λ-calculus extended

with some categorical logic rules – this approach by Asher [5, 6] culminated in his book

[3]

The system works with term based coercions and relies on second order λ-calculus – this

is our approach, first introduced with Bassac, Mery, and further developed with Mery,

Moot, Prévot, Real-Coelho. [8, 51, 50, 52, 41, 34, 35, 64, 63].

In fact our approach differs from the concurrent ones mainly because of the organisation

of the lexicon and of the respective rôles of types and terms. It can be said to be word-driven,

as it accounts for the (numerous) idiosyncrasies of natural language in particular the different

behaviour of words of the same type is coded by assigning them different terms, while others

derive everything from the types.

The precise type system we use, namely system F, could be replaced by some other type

theory. However, as far as the presentation of the system is concerned, it is the simplest

of all systems, because it only contains four term building operations (two of them being

the standard λ-calculus rules, the two others being their second order counterparts) and

two reduction rules (one of them being the usual beta reduction and the other one being

its second order counterpart). Dependent types, which are types defined from terms, are

a priori not included although they could be added if necessary.

3 This name Modern Type Theory (MTT) covers several variants of modern type theories, including
Martin-Löf type theory, the Predicative Calculus of (Co)Inductive Constructions (pCic), the Unifying
Theory of dependent Types (UTT), . . . – the latter one being the closest to the system used by Zhaohui
Luo



2 A Montagovian generative lexicon for compositional semantic and
lexical pragmatics

We now present our solution for introducing some lexical issues in a compositional framework

à la Montague.

2.1 Guidelines for a semantic lexicon

We should keep in mind that whatever the precise solution presented, the following questions

must be addressed in order to obtain a computational model, so here are the guidelines of

our model:

What is the logic for semantic representation?

We use many-sorted higher order predicate calculus. As usual, the higher order can be

reified in first order logic, so it can be first order logic, but in any case the logic has to be

many-sorted. Asher [3] is quite similar on this point, while Luo use Type Theory [39].

What are the sorts?

The sorts are the base types. As discussed later on these sorts may vary from a small

set of ontological kinds to any formula of one variable. We recently proposed that they

correspond to classifiers in language with classifiers: this give sorts a linguistically and

cognitively motivated basis [43].

What is the metalogic (glue logic) for meaning assembly?

We use second order λ-calculus (Girard system F) in order to factor operations that

apply uniformly to a family of types. For specific coercions, like ontological inclusions we

use subtyping introduced in the present paper. Asher [3] uses simply typed λ-terms with

additional categorical rules, while Luo also use Type Theory with coercive subtyping [39].

What kind of information is associated with a word in the lexicon?

Here it will be a finite set of λ-terms, one of them being called the principal λ-term while

the other ones are said to be optional. Other approaches make use of more specific terms

and rules.

How does one compose words and constituents for a compositional semantics?

We simply apply one λ-term to the other, following the syntactic analysis, perform some

transformations corresponding to coercions and presupposition, and reduce the compound

by β-reduction.

How is the semantic incompatibility of two components rendered?

By type mismatch, between a function of type A → X and an argument of type B Ó=

A. Most works that insert lexical considerations into compositional semantics model

incompatibility by type mismatch.

How does one allow an a priori impossible composition?

By using the optional λ-terms, which change the type of at least one of the two terms

being composed, the function and argument. Both the function and the argument may

provide some optional lambda terms. Other approaches rather use type-driven rules.

How does one allow or block felicitous and infelicitous copredications on various aspects

of the same word?

An aspect can be explicitly declared as incompatible with any other aspect. More recently

we saw that linear types (linear system F) can account for compatibility between arbitrary

subsets of the possible aspects. [42]

Each word in the lexicon is given a principal term, as well as a finite number, possibly

nought, of optional terms that licence type change and implement coercions. They may be



inferred from an ordinary dictionary, electronic or not. Terms combine almost as usual except

that there might be type clashes, which account for infringements of selectional restriction:

in this case optional terms may be used to solve the type mismatch. In case they lead to

different results these results should be considered as different possible readings – just as

the different readings with different quantifier scopes are considered by formal semantics as

different possible readings of a sentence.

Let us first present the type and terms and thereafter we shall come back to the composition

modes.

2.2 Remarks on the type system for semantics

We use a type system that resembles Muskens Tyn [55] where the usual type of individuals,

e is replaced with a finite but large set of base types e1 , . . . , en for individuals, for instance

objects, concepts, events,. . . These base types are the sorts of the many-sorted logic whose

formulae express semantic representations. The set of base types as well as their interrelations

can express some ontological relations as Ben Avi and Francez thought ten years ago [10].

For instance, assume we have a many-sorted logic with a sort ζ for animals, a sort φ

for physical objects and a predicate eat whose arguments are of respective sort φ and ζ

the many-sorted formula ∀z : ζ ∃x : φ eat(z, x) is rendered in type theory by the λ-term:

∀ζ(λzζ . (∃φ(λxφ. ((eat x)z)))) with eat a constant of type φ → ζ → t. Observe that the

type theoretic formulation requires a quantifier for each sort α of objects, that is a constant

∀α of type (α → t) → t.4

What are the base types? We have a tentative answer, but we cannot be too sure of

this answer. Indeed, this is a subtle question depending on one’s philosophical convictions,

and also on the expected precision of the semantic representations,5 but it does not really

interfere with the formal and computational model we present here. Let us mention some

natural sets of base types that have been proposed so far, from the smallest to the largest:

1. A single base type e for all entities (but as seen above it cannot account for lexical

semantics).

2. A very simple ontology defines the base types: events, physical objects, living entities,

concepts, . . . (this resembles Asher’s position in [3]).

3. Classifiers. Many Asian languages (Chinese, Japanese, Korean, Malay, Burmese, Nepali,

. . . ) and all Sign Languages, have classifiers that are pronouns specific to classes of

nouns (100–400) especially detailed for physical objects that can be handled, and for

animals.There are almost no classifiers in European languages. Nevertheless a word like

“head” in “Three heads of cattle.” can be considered as a classifier. Hence classifiers are a

rather natural set of base types, or the importation of the classifiers of a language in one

that does not have any [43]. But we do not claim that this is the definitive answer. For

instance, for a specific task, some other set of base types may be better.

4. A base type per common noun (thousands of base types) as proposed by Luo in [39]).

5. A type for every formula with a single free variable.

Our opinion is that types should be cognitively natural classes and rich enough to express

selectional restrictions. Whatever types are, there is a relation between types and properties.

4 We do not speak about interpretations, but if one wishes to, we do not necessarily ask for the usual
requirement that sorts are disjoint: this is coherent with the fact that in type theory, nothing prevents
a pure term from having several types.

5 For instance, a dictionary says that pregnant can be said of a “woman or female animal”, but can it be
said of a “grandma” or of a “heifer”?



With base types as in (5), the correspondence seems quite clear, but, because types can be

used to express new many-sorted formulae, the set of types is in this case defined as a least

fixed point. For other sets of base types, e.g. (4) or (2) for each type T there should be a

corresponding predicate which recognises T entities among entities of a larger type. For

instance, if there is a type dog there should be a predicate d̂og : α → t but what should be

the type α of its argument? Should it be “animal”, “animate”,. . . the simplest solution is to

assume a type of all individuals, that is Montague’s e, and to say that corresponding to any

base type a, there is a predicate, namely â of type e → t.6

Let us make here a remark on the predicate constants in the language. If a predicate

constant, say Q, has the type u → t with u ( e – sometimes another type u is more natural

than the standard e – then there is a canonical extension Qe of Q to e which should be

interpreted as false for any object that cannot be viewed as a u-object. Predicates constants

from the first or higher order logical language do also have restrictions. Given a type u that

is smaller than the domain q of Q one can define Q|u which is defined as Q on q ∩ u and as

false elsewhere.

2.3 ΛTy
n
: many-sorted formulae in second order lambda calculus

Since we have many base types, and many compound types as well, it is quite convenient

and almost necessary to define operations over family of similar terms with different types,

to have some flexibility in the typing, and to have terms that act upon families of terms and

types. Hence we shall extend further Tyn into ΛTyn by using Girard’s system F as the type

system [25, 24]. System F involves quantified types whose terms can be specialised to any

type.

The types of ΛTynare defined as follows:

Constant types ei and t are (base) types.

Type variables α, β, . . . are types.

Whenever T and α respectively are a type and a type-variable, the expression Πα. T is a

type. The type variable may or may not occur in the type T .

Whenever T 1 and T 2 are types, T 1 → T 2 is a type as well.

The terms of ΛTyn, which encode proofs of quantified propositional intuitionistic logic,

are defined as follows:

A variable of type T i.e. x : T or xT is a term, and there are countably many variables of

each type.

In each type, there can be a countable set of constants of this type, and a constant of

type T is a term of type T . Such constants are needed for logical operations and for the

logical language (predicates, individuals, etc.).

(f t) is a term of type U whenever t : T and f : T → U .

λxT . t is a term of type T → U whenever x : T and t : U .

t{U} is a term of type T [U/α] whenever t : Λα. T and U is a type.

Λα. t is a term of type Πα. T whenever α is a type variable and t : T is a term without

any free occurrence of the type variable α in the type of a free variable of t.

The later restriction is the usual one on the proof rule for quantification in propositional

logic: one should not conclude that F [p] holds for any proposition p when assuming that a

property G[p] of p holds – i.e. when having a free hypothesis of type G[p].

6 An alternative solution, used by us and others [64, 17] would be Πα. α → t, using quantification over
types to be defined in the next section.



The reduction of the terms in system F or its specialised version ΛTynis defined by the

two following reduction schemes that resemble each other:

(λxφ. t)uφ reduces to t[u/x] (usual β reduction).

(Λα. t){U} reduces to t[U/α] (remember that α and U are types).

As an example, we earlier said that in Tyn we needed a first order quantifier per sort (i.e.

per base type). In ΛTynit is sufficient to have a single quantifier ∀, that is a constant of type

Πα. (α → t) → t. Indeed, this quantifier can be specialised to specific types, for instance to

the base type ζ, yielding ∀{ζ} : (ζ → t) → t, or even to properties of ζ objects, which are

of type ζ → t, yielding ∀{ζ → t} : ((ζ → t) → t) → t. We actually do quantify over higher

types, for instance in the examples below we respectively quantify over propositions with a

human subject (Example 4), and over all propositions (Example 5):

(4) He did everything he could to stop them.

(5) And he believes whatever is politically correct and sounds good.

As Girard showed [25, 24] reduction is strongly normalising and confluent every term of

every type admits a unique normal form which is reached no matter how one proceeds.7 The

normal forms, which can be asked to be η-long without loss of generality, can be characterised

as follows (for a reference see e.g. [28]):

◮ Proposition 1. A normal Λ-term N of system F, β normal and η long to be precise, has

the following structure:8

sequence of head sequence of {· · · } and (· · · ) applications

λ and Λ abstractions variable to types W k and normal terms tl
X l

N =

︷ ︸︸ ︷
( λxi

Xi | ΛX j )∗

︷ ︸︸ ︷
(· · · ( h

(ΠXk |X l→)∗Z

︷ ︸︸ ︷
({W k} | tl

X l )∗ ) · · · )

This has a good consequence for computational semantics, see e.g. [53, Chapter 3]:

◮ Property 1 (ΛTynterms as formulae of a many-sorted logic). If the predicates, the constants

and the logical connectives and quantifiers are the ones from a many-sorted logic of order

n (possibly n = ω) then the normal terms of ΛTyn of type t unambiguously correspond to

many-sorted formulae of order n.

Let us illustrate how F factors uniform behaviours. Given types α, β, two predicates

P α→t, Qβ→t, over entities of respective kinds α and β for any ξ with two morphisms from ξ

to α and to β (see Figure 2), F contains a term that can coordinate the properties P, Q of

(the two images of) an entity of type ξ, every time we are in a situation to do so – i.e. when

the lexicon provides the morphisms.

◮ Term 1. [Polymorphic AND] is defined as

&Π = Λα. Λβ. λP α→t. λQβ→t. Λξ. λxξ. λfξ→α. λgξ→β . (&t→t→t (P (f x))(Q (g x))) .

Such a term is straightforwardly implemented in Haskell along the lines of [73]:

7 This is one way to be convinced of the soundness of F, which defines types depending on other types
including themselves: as it is easily observed that there are no normal closed terms of type ΠX. X ≡ ⊥ ,
the system is necessarily coherent. Another way is to construct a concrete model, for instance coherence
spaces, where types are interpreted as countable sets with a binary relation (coherence spaces), and
terms up to normalisation are interpreted as structure preserving functions (stable functions) [25].

8 This structure resembles the structure of (weak) head normal form, in functional programming, but the
terms inside the structure are also asked to be normal.



Figure 2 Polymorphic conjunction: P (f(x))&Q(g(x)) with x : ξ, f : ξ → α, g : ξ → β.

andPOLY :: (a -> Bool) -> (b -> Bool) -> c -> (c -> a) -> (c -> b) -> Bool

andPOLY = \ p q x f g -> p (f x) && q (g x)

This can apply to say, a “book”, that can be “heavy” as a “physical object”, and “interesting”

as an “informational content” – the limitation of possible over-generation, that is the

production or recognition of incorrect phrases or sentences, is handled by the rigid use of

possible transformations, to be defined thereafter.

2.4 Organisation of the lexicon and rules for meaning assembly

The lexicon associates each word w with a principal λ-term [w] which basically is the

Montague term reminded earlier, except that the types appearing in [w] belong to a much

richer typed system. In particular, the numerous base types can impose some selectional

restriction. In addition to this principal term, there can be optional λ-terms also called

modifiers or transformations to allow, in some cases, compositions that were initially ruled

out by selectional restriction.

There are two ways to solve a type conflict using those modifiers. Flexible modifiers can

be used without any restriction. Rigid modifiers turn the type, or the sense of a word, into

another one which is incompatible with other types or senses. For a technical reason, the

identity, which is always a licit modifier, is also specified to be flexible or rigid. In the lalter

rigid case, it means that the original sense is incompatible with any other sense, although

two other senses may be compatible. Consequently, every modifier, i.e. optional λ-term is

declared, in the lexicon, to be either a rigid modifier, noted (r) or a flexible one, noted (f).

More subtle compatibility relations between senses can be represented by using the linear

version of system F as we did in [42].

The reader may be surprised that we repeat the morphisms in the lexical entries, rather

than having general rules. For instance, one could also consider morphisms that are not

anchored in a particular entry: in particular, they could implement the ontology at work

in [62] as the type-driven approach of Asher does [3]. For instance, a place (type Pl) could

be viewed as a physical object (type φ) with a general morphism Pl2φ turning places into

physical objects that can be “spread out”. We are not fully enthusiastic about a general use of



word principal λ-term optional λ-terms rigid/flexible

book B̂ : e → t IdB : B → B (f)

b1 : B → φ (f)

b2 : B → I (f)

town T̂ : e → t IdT : T → T (f)

t1 : T → F (r)

t2 : T → P (f)

t3 : T → Pl (f)

Liverpool LplT IdT : T → T (f)

t1 : T → F (r)

t2 : T → P (f)

t3 : T → Pl (f)

spreadout spread_out : Pl → t

voted voted : P → t

won won : F → t

where the base types are defined as follows:

B book

φ physical objects

I information

T town

P l place

P people

F football team

Figure 3 A sample lexicon.

such rules since it is hard to tell whether they are flexible or rigid. As they can be composed

they might lead to incorrect copredications, while their repetition inside each entry offers a

better control of incorrect and correct copredications. One can think that some meaning

transfer differs although the words have the same type. An example of such a situation in

French is provided by the words “classe” and “promotion”, which both refer to groups of

pupils. The first word “classe” (English: “class”) can be coerced into the room where the

pupils are taught, (the “classroom”), while the second, “promotion” (English: “class” or

“promotion”) cannot.

Consequently, we in general prefer word-driven coercions, i.e. modifiers that are anchored

in a word. An exception are ontological inclusions that are better represented by type-driven

rules: “cars” are “vehicles” which are “artefacts” etc. This is the reason why we also allow

optional terms that are available for all words of the same type. This is done by subtyping

and more precisely by the notion of coercive subtyping that is introduced in Section 3.4.

3 A proper account of meaning transfers

In this section we shall see that the lexicon we propose, provides a proper account of the lexical

phenomena that motivated its definition: ill typed readings are rejected, coerced readings

are handled, felicitous copredications are analysed while infelicitous ones are rejected. Some

particular case of coerced readings are given a finer analysis as the polysemy of deverbals

(nouns derived from verbs, like “construction”), or fictive motion. Finally we introduce

coercive subtyping for system F which handles general coercions corresponding to ontological

inclusion.



3.1 Coercions and copredication

One can foresee what is going to happen, using the lexicon given in Figure 3 with sentences

like:

(6) a. Liverpool is spread out.

b. Liverpool voted.

c. Liverpool won.

(7) Liverpool is spread out and voted (last Sunday).

(8) # Liverpool voted and won (last Sunday).

Our purpose is not to discuss whether this or that sentence is correct, nor whether this

or that copredication is felicitous, but to provide a formal and computational model which

given sentences that are assumed to be correct, derives the correct readings, and which given

sentences that are said to be incorrect, fails to provide a reading.

Ex. (6a) This sentence leads to a type mismatch spread_outPl→tLplT , since “spread out”

applies to “places” (type Pl) and not to “towns” as “Liverpool”. It is solved using the

optional term t3
T→Pl provided by the entry for “Liverpool”, which turns a town (T ) into

a place (Pl) spread_outPl→t(t3
T→PlLplT) – a single optional term is used, the (f) /

(r) difference is useless.

Ex. (6b) and (6c) are treated as the previous one, using the appropriate optional terms.

Ex. 7 In this example, the fact that “Liverpool” is “spread out” is derived as previously,

and the fact that “Liverpool voted” is obtained from the transformation of the town into

people, who can vote. The two can be conjoined by the polymorphic “and” defined above

as term 1 (&Π) because these transformations are flexible: one can use one and the other.

We can make this precise using only the rules of second order typed lambda calculus.

The syntax yields the predicate (&Π(spread_out)Pl→tvotedP→t) and consequently the

type variables should be instantiated by α := Pl and β := P and the exact term is

&Π{Pl}{P}spread_outPl→tvotedP→t which reduces to:

Λξ. λxξ. λfξ→α. λgξ→β . (&t→t→t (spread_outPl→t (f x))(voted (g x))).

Syntax says that this term is applied to “Liverpool”. Consequently, the instantiation

ξ := T happens and the term corresponding to the sentence is, after some reduction steps,

λfT→Pl . λgT→P . (&t→t→t(spread_outPl→t (f LplT ))(votedP→t (g LplT ))).

Fortunately the optional λ-terms t2 : T → P and t3 : T → Pl are provided by the lexicon,

and they can both be used, since none of them is rigid. Thus we obtain, as expected

(&t→t→t (spread_outPl → t (t3
T→Pl LplT ))(votedPl→t (t2

T→P LplT ))).

Ex. 8 The last example is rejected as expected. Indeed, the transformation of the town into

a football club prevents any other transformation (even the identity) to be used in the

polymorphic “and” that we defined above. We obtain the same term as above, with won

instead of spread_out. The corresponding term is:

λfT→Pl . λgT→P . (&t→t→t (wonF→t (f LplT ))(votedP→t (g LplT )))

and the lexicon provides the two morphisms that would solve the type conflict, but

the one turning the Town into its football club is rigid, i.e. we can solely use this one.

Consequently the sentence is semantically invalid.

3.2 Fictive motion

A rather innovative extension is to apply this technique to what Talmy called fictive motion

[72]. Under certain circumstances, a path may introduce a virtual traveller following the



path, as in sentences like:

(9) Path GR3 descends for two hours.

Because of the duration complement “two hours”, one cannot consider that descends means

that the altitude decreases as the curvilinear abscissa goes along the path. One ought to

consider someone who follows the road. We model this by one morphism associated with

the “Path GR3” and one with “descends”. The first coercion turns the “Path GR3” from

an immobile object into an object of type “path” that can be followed and the second one

coerces “descends” into a verb that acts upon a “path” object and introduces an individual

following the path downwards – this individual, which does not need to exist, is quantified,

yielding a proposition that can be paraphrased as “any individual following the path goes

downwards for two hours”. [51, 50]

3.3 Deverbals

Deverbals are nouns that correspond to action verbs, as “construction” or “signature”. Usually

they are ambiguous between result and process. We showed that our idiosyncratic model is

well adapted since their possible senses vary from one deverbal to another, even if the verbs

are similar and the suffix is the same.

(10) a. The construction took three months.

b. The construction is of traditional style.

c. * The building that took three months was painted white.

(11) a. The signature was illegible.

b. The signature took three months.

c. * Although it took three months the signature was illegible.

d. Although it took one minute, the signature was illegible.

We showed that a systematical treatment of deverbal meaning as the one proposed by the

type-driven approach does not properly account for the data. Indeed, the possible meanings

of a deverbal are more diverse than result and event, and there are no known rules to make

sure the deverbal refers to the event. Consequently, word entries in the lexicon must include

lexical information such as the possible meanings of the deverbal. These meanings can be

derived from the event expressed by the verb: meanings usually include the event itself (but

not always), the result (but not always), and other meanings as well like the place where the

event happens (e.g. English noun “pasture”). This lexical information can be encoded in our

framework, with one principal meaning and optional terms for accessing other senses and

the flexibility or rigidity of these optional terms – they are usually rigid, and copredication

on the different senses of a deverbal is generally infelicitous. We successfully applied our

framework and treatment to the semantic of deverbals, to the restrictions of selection (both

for the deverbal and for the predicate that may apply to the deverbal), to meaning transfers,

and to the felicity of copredications on different senses of a deverbal [63].

3.4 Coercive subtyping and ontological inclusions

As we said earlier on, ontological inclusions like “Human beings are animals.”, would be

better modelled by optional terms that are available for any word of the type, instead of

anchoring them in words and repeating these terms for every word of this type. The model

we described can take these subtyping inclusions into account as standard coercions, by
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transitivity

A < B B < C

A < C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

covariance and contravariance of implication

(if identity coercions are allowed only the left most rule is needed)

A < B C < D

D → A < C → B

A < B

T → A < T → B

A < B

B → T < A → T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

quantification over types

U < T [X]
X not free in U

U < ΠX. T [X]

U < ΠX. T [X]

U < T [W ]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4 Rules for coercive subtyping in system F.

specifying that a word like “human being” introduces a transformation into an “animal”.

But this is somehow heavy, since one should also say that “human beings” are “living beings”

etc. Any predicate, that applies to a class, also applies to an ontologically smaller class. For

instance, “run” that applies to “animals” also applies to “human beings”, because “human”

is a subtype of “animals”. These subtype coercions look type-driven, and, consequently,

would be more faithfully modelled with a proper notion of subtyping.

Coercive subtyping, introduced by Luo and Soloviev [40, 70] for variants of Martin-Löf

type theory, corresponds quite well to these particular transformations. One starts with a

transitive and acyclic set of coercions between base types, with at most one coercion between

any two base types, and from these given coercions rules derive coercions between complex

types, preserving the property that there is at most one coercion between any two types.

This kind of subtyping seems adequate for modelling ontological inclusions. Indeed, such

ontological inclusions when viewed as functions always are the identity on objects, hence there

cannot be two different manners to map them in the larger type. Furthermore, other notions

of subtyping that have been studied for higher order type theories are very complicated with

tricky restrictions on the subtyping rules. [15, 37]

Coercive subtyping, noted A0 < A, can be viewed as a short hand for allowing a predicate

or a function which applies to A-objects to apply to an argument whose type A0 is not the

expected type A but a subtype A0 of A. Hence coercive application is exactly what we were

looking for:

coercive application

f : A → B u : A0 A0 < A

(f u) : B

The subtyping judgements, which have the structure of categorical combinators, are

derived with very natural rules given in Figure 4. These rules simply encode transitivity,

covariance and contravariance of implicative types (arrow types), and quantification over

type variables.

It should be observed that, given constants ci→j representing the coercions from a base

type ei to a base type ej , any derivable coercion T < U can be depicted by a linear Λ-term



m : U of system F or ΛTynwith a single occurrence of a free variable x : T and occurrences of

the constants ci→j . The construction of the term according to the derivation rules is defined

as follows:

transitivity

x : A < t : B y : B < u : C

x : A < u[y := t] : C

covariance and contravariance of implication

x : A < t : B z : C < u : D

f : D → A < λzC . t[x := f(u)] : C → B

x : A < t : B

f : T → A < λwT . t[x := f(w)] : T → B

x : A < t : B

g : B → T < λxA. g(t) : A → T

quantification over types

u : U < t : T [X]
X not free in U

u : U < ΛX. t : ΠX. T [X]

u : U < t : ΠX. T [X]

u : U < t{W} : T [W ]

As easy induction shows that:

◮ Proposition 2. All terms derived in this system are linear, with a single occurrence of a

single free variable (whose type is on the left of “<”).

From this one easily concludes that:

◮ Proposition 3. Not all Λ-terms of system F can be derived in the subtyping system.

Any derivation c of ei < ej for base types ei , ej is equivalent to a coercion ci→j , i.e. our

derivation system does not introduce new coercions between base types. This kind of result is

similar to coherence in categories: given a compositional graph G, the free cartesian category

over G does not contain any extra morphism between objects from the initial compositional

graph. Here is the precise formulation of this coherence result:

◮ Proposition 4. Given a derivation of ei < ej for base types ei , ej whose associated Λ-term

is C̃, the normal form C of C̃ is a compound of ch→k applied to x : ei , which, because of the

assumptions on coercions, must be ci→j .

Proof. As seen above, a deduction of T < U clearly corresponds to a linear Λ-term of system

F, whose only free variable is x : T with the ci→j as constants. Hence it has a normal from

which also has a single free variable x : T and ci→j as constants.

Let us show that any normal Λ-term C of type ej with a single free variable x : ei and

constants ci→j : ei → ej is a compound of ci→j applied to xei , i.e. is a term of Ci defined by:

xei ∈ Ci

if cej ∈ Ci then (cj→k(c))ek ∈ Ci



We proceed by induction on the number of occurrences of variables and constants in the

normal term C, whose form is, as said in Proposition 1:

sequence of head sequence of {· · · } and (· · · ) applications

λ and Λ abstractions variable to types W k and normal terms tl
X l

C =

︷ ︸︸ ︷
( λxi

Xi | ΛX j )∗

︷ ︸︸ ︷
(· · · ( h

(ΠXk |X l→)∗Z

︷ ︸︸ ︷
({W k} | tl

X l )∗ ) · · · )

If the term C corresponds to a proof of ei < ej there is no ( λxi
X i | ΛX j ) in front, because

ej is neither of the form U → V nor of the form ΠX. T [X]. What may be the head variable?

It is either the only free variable of this term, namely xei , or a constant i.e. some coercion

ck→l.

If the head variable is xei then, because of its type, the ( {W k} | tl
X l )∗ part of the term

contains no application to a type nor to a term, hence ei = ej and the normal form is xei ,

which is in Ci

If the head variable is is some ck→l, which because of its type, may only be applied to a

normal term tl
X l of type ek . This normal term is a normal term of type ek with xei as its

single free variable and the constants cj→l. As tl
X l has one symbol less than C, we can

conclude that tl
X l is in Ci hence C ∈ Ci .

Hence in any case the normal form C : ej of the term C̃ : ej is in Ci .

Now, given that the coercions ci→j enjoy ck→j ◦ ci→j = ci→k (as part of our condition on

base coercions) it is easily seen that the only term of type ej in Ci is ci→j . ◭

We think that this coherence result can be improved by showing that there is at most

one normal term corresponding to a derivation S < T , although the proof is likely to use

some variant of reducibility candidates [24, 25].

An alternative presentation. The rules for coercive subtyping given above follow a natural

deduction style, as lambda terms of system F. Nevertheless, an alternative formulation of

the quantifier elimination rule is possible. It requires identity axioms (whose term is identity)

to derive obvious subtyping relations.

alternative quantifier elimination rule (sequent calculus style)

s : S[T ] < t : U

ṡ : ΠX. S[X] < t[s := ṡ{T}]

4 Compositional semantics issues: determiners, quantifiers, plurals

So far we have focused on phenomena in lexical semantics that are usually left out of standard

models but properly accounted for by our model. However, we must also have a look at

compositional semantics, that is the logical structure of a sentence, to see whether our

model still properly analyses what standard compositional models do, and possibly, provide

a better analysis. Fortunately, sentence structures are correctly analysed but furthermore

our extended setting is quite appealing for some classical issues in formal semantics like

determiners and quantification, or plurals, as we show in this section.



4.1 Determiners and quantifiers

The examples presented so far only involved proper names because we chose to extend the

treatment of definite descriptions with the ι operator of some authors [68, 22, 75, 76], to

indefinite articles and quantifiers. This slightly differs from the usual Montagovian setting,

the one we used for “some” in subsection 1.2. This standard treatment of quantification can

be adapted to many-sorted logic provided the two predicates, the common noun and the

verb phrase, apply to the same type, or that the conjunction and implication respectively

involved in existential and universal quantification allow some coercions, in the style of the

polymorphic &Π.

We adopt the view of quantified, definite, and indefinite noun phrases as individual

terms by using generic elements (or choice functions) [66, 65, 67] as initiated by Russell

[68] and formalised by Hilbert [26], Ackerman [2], before Hilbert and Bernays provided a

thorough presentation and discussion in [27]. This view of quantification has been adapted

to linguistics by researchers like von Heusinger see e.g. [22, 75, 76], and is not that far from

Steedman treatment of existential quantifiers by choice functions [71] although there are

some differences that we shall not discuss here.

How do we tune our model, in particular the types, if instead of the proper name

“Liverpool”, the examples contain “the town”, “a town”, “all towns”, or “most towns”?

Indefinite determiners, quantifiers, generalised quantifiers,. . . are usually viewed as functions

from two predicates to propositions, one expressing the restriction and the other the main

predicate see e.g. [59]

As we said, and this is especially true in a categorial setting such as the one Moot

implemented [49], the syntactic structure usually closely corresponds to the semantic structure.

But the usual treatment of quantification that we saw in subsection 1.2 infringes this

correspondence, since the semantic term “(λx. Keith played x)” in the semantic representation

(12c) of example (12a) has no corresponding constituent in its syntactical structure (12b):

(12) a. sentence: Keith played some Beatles song.

b. syntactical structure: (Keith (played (some (Beatles song))))

c. semantical structure: (some (Beatles song)) (λx. Keith played x)

Another criticism that applies to the usual treatment of quantifiers is the symmetry that

it wrongly introduces between the main predicate and the class over which one quantifies.

For instance, the two sentences below (13a,13b) usually have the same logical form (13c):

(13) a. Some politicians are crooks.

b. ? Some crooks are politicians.

c. ∃x. politician(x) & crook(x)

Hence, in accordance with syntax, we prefer to consider that a quantified noun phrase is

by itself some individual – a generic one which does not refer to a precise individual nor to a

collection of individuals. As [75] we use η for indefinite determiners (whose interpretation

picks up a new element) and ι for definite noun phrases9 (whose interpretation picks up the

most salient element). Regarding the deductive rules for handling these operators ι and η,

both correspond to Hilbert’s ǫ: only their interpretations in the discursive context differ.

Given a first order language L, epsilon terms and formulae are defined by mutual recursion:

9 Actually [75] writes ǫ instead of ι. We do not follow his notation because we also use Hilbert’s ǫ with
its traditional meaning.



Any constant or variable from L is a term.

f(t1 , . . . , tp) is a term provided that each ti is a term and f is a function symbol of arity

p.

ǫxA and τxA are terms if A is a formula, x is a variable — any free occurrence of x in A

is bound by ǫx or τxA.

s = t is a formula whenever s and t are terms.

R(t1 , . . . , tn) is a formula provided each ti is a term and R is a relation symbol of arity n.

A&B, A ∨ B, A ⇒ B are formulae if A and B are formulae.

¬A is formula if A is a formula.

As the example below shows, a formula of first order logic can be recursively translated

into a formula of the epsilon calculus, without surprise:

(14) ∀x∃yP (x, y) = ∃yP (τxP (x, y), y) = P (τxP (x, ǫyP (τxP (x, y), y)), ǫyP (τxP (x, y), y))

Admittedly the epsilon translations of usual formulae may look quite complicated – at least

we are not used to them.

The deduction rules for τ and ǫ are the usual rules for quantification:

From A(x) with x generic in the proof (no free occurrence of x in any hypothesis), infer

A(τx . A(x)).

From B(c) infer B(ǫxB(x)).

The other rules can be found by duality:

From A(x) with x generic in the proof (no free occurrence of x in any hypothesis), infer

A(ǫx¬A(x)).

From B(c) infer B(τx¬B(x)).

Hence we have F (τxF (x)) ≡ ∀x.F (x) and F (ǫxF (x)) ≡ ∃x. F (x) and because of negation,

one only of these operators is needed, usually the ǫ operator is used, and the resulting logic

is known as the epsilon calculus: ǫxA(x) = τx¬A(x)

Hilbert in [27] turned these symbols into a mathematically satisfying deductive system

that properly describes quantification. The first and second epsilon theorem basically say

that this is an alternative formulation of first order logic.

First epsilon theorem When inferring a quantifier free formula C without ǫ from quantifier

free formulae Γ without ǫ, the derivation can be done within quantifier free predicate

calculus.

Second epsilon theorem When inferring a formula C without ǫ symbol from formulae Γ not

involving the ǫ symbol the derivation can be done within usual predicate calculus.

The epsilon calculus, restricted to the translations of usual formulae with the help of the

two epsilon theorems, provided the first correct proof of Herbrand theorem (much before

mistakes where found and solved by Goldfarb) and a way to prove, during the same period

as Gentzen worked on the same question of the consistence of Peano arithmetic with the

epsilon substitution method [27]. Later, Asser [7] and Leisenring [36] worked on the epsilon

calculus more specifically in order to have models and completeness. Nevertheless, as one can

read on Zentralblatt (see e.g. [14, 44]) these results are misleading as well as the posterior

corrections. Only the proof theoretical aspects of the epsilon calculus seem to have been

further investigated with some success by Mints10 [45] or by Moser and Zach [54].

10 We are sorry to learn that the great logician Grigori Mints just passed away on May 29, 2014.



In a typed model, a predicate that applies to α-objects is of type α → t. Consequently

the semantic constant ι corresponding to “the” introducing definite descriptions, should

be of type: (α → t) → α, and, in order to have a single constant ι, its type should be

Πα. (α → t) → α.11 Therefore, if we have a predicate dog that applies to entities of type

animate the term ι(dog) (written ιx. dog(x) in untyped models), i.e. the semantics of “the

dog” is of type animate. . . . but we would like this term to enjoy the property dog! How

could we say so, since the predicate dog does not appear in ι, but only its type. Indeed,

only “animate” entities appear in ι as an instantiation of α. We solve this by adding a

presupposition12 P (ι(P )) for any P of type α → t , as soon as some entity enjoying P is

uttered.13

As advocated by von Heusinger and others, indefinite descriptions that are in fact

existentially quantified noun phrases are processed similarly using Hilbert’s ǫ instead of ι:

both ι and ǫ are constants of type Πα. (α → t) → α. Determiners are modelled in our

framework by such typed constants, see [66, 65, 67]. This solution avoids the problems

evoked in examples (12a) and (13b). For instance, regarding the unwanted asymmetry in the

semantics of (13b) the formulae P (ǫxQ(x)) and Q(ǫxP (x)) are not equivalent – and neither

of them is equivalent to a first order formula, but Q(ǫxP (x)), with P (ǫxP (x)) which is added

as a presupposition, entails P&Q(ǫxP&Q(x)) ≡ ∃x. P (x)&Q(x).

It should be observed that generics introduced by Hilbert’s operators fit better into our

typed and many-sorted semantic representations. Indeed, intuitively it is easier to think of a

generic “politician” or “song” than it is to think of a generic “entity” or “individual”.

One can even introduce constants that model generalised quantification. They are typed

just the same way, and this construct can be applied to compute the logical form of statement

including the “most” quantifier, as exposed in [64]. It does not mean that we have the

sound and complete proof rules nor a model theoretical interpretation: we simply are able

to automatically compute logical forms from sentences involving generalised and vague

quantifiers such as “most”, “many”, “few”.

4.2 Individuals, plurals and sets in a type-theoretical framework

The organisation of the types also allows us to handle simple facts about plurals, as shown

in [52, 41] – which resembles some of Partee’s ideas [58]. Here are some classical examples

involving plurals, exemplifying some typical readings for plurals:

(15) a. *Keith met.

b. Keith and John met. (unambiguous).

(16) a. *The student met.

b. The students met. (unambiguous, one meeting)

(17) a. The committee met. (unambiguous, one meeting)

b. The committees met. (ambiguous: one big meeting, one meeting per committee,

several meetings invoking several committees)

11 An alternative type working with any predicate α̂ that corresponds to a type α, would be Πα. α.
12 A presupposition is a proposition which is not explicitly stated but which is assumed by the uttered

proposition and by its negation as well: “Keith stopped smoking.” and “Keith did not stop smoking”
both presuppose “Keith used to smoke.”. Observe that a typing judgement t : a is not easy to refute, as
a presupposition: indeed after “The dog is sleeping on the sofa.” one can hardly answer “It is not an
animal.” or “It is not a dog.” although one can say “It is not sleeping”.

13 If the predicate P corresponds to a type τ i.e. P = τ̂ , this presupposition is better written as ι(τ̂) : τ .



q Λα. λxα. λyα. x = y

∗ ΛαλP α→t. λQα→t. ∀xα. Q(x) ⇒ P (x)

# ΛαλR(α→t)→t. λSα→t→t. ∀P α→tS(P ) ⇒ R(P )

c Λα. λR(α→t)→t. λP α→t. ∀xα. P (x) ⇒ ∃Qα→tQ(x) ∧ (∀yαQ(y) ⇒ P (y)) ∧ R(Q)

Figure 5 Some operators for plurals.

(18) a. The students wrote a paper. (unambiguous)

b. The students wrote three papers. (covering)

Such readings are derivable in our model because one can define in F operators for

handling plurals. Firstly, one can add, as a constant, a cardinality operator for predicates

||_|| : Πα. (α → t) → N where N are the internal integers of system F, namely N =

ΠX. (X → X) → (X → X), or a predefined integer type as in Gödel system T – this might

be problematic if infinitely many objects satisfied the predicate, but syntax and restriction of

selection can make sure it is only applied when it makes sense. Secondly, as shown in Figure

5, we can have operators for handling plurals: q (turning an individual into a property/set, a

curried version of equality), ∗ (distributivity), # (restricted distributivity from sets of sets to

its constituent subsets), c (for coverings), etc. The important fact is that the computation

of such readings uses exactly the same mechanisms as lexical coercion. Some combinations

are blocked by their types, but optional terms coming either from the predicate or from the

plural noun may allow an a priori prohibited reading. To be precise we also provide specific

tools for handling groups that are singular nouns, each of which denoting a set. All these

functions are easily implemented in a typed functional programming language like Haskell,

in the style of [73].

5 Comparison with related work and conclusion

5.1 Variants and implementation

Some variation is possible in the above definition of the Montagovian generative lexicon

without changing its general organisation. For instance, as suggested in the beginning of

section 2 the set of base types can be discussed. We proposed to use classifiers as base types

of a language with classifiers, because classifiers are linguistically and cognitively motivated

classes of words and entities. But it is fairly possible that other sets of base types are better

suited in particular for specific applications [43].

In relation to this issue, the inclusion between base types, which in our model are

morphisms, can be introduced with words or as general axioms. We prefer the first solution

that allows idiosyncratic behaviours, dependent on words as explained in subsection 2.4 with

“classe” and “promotion”. Nevertheless when dealing with ontological inclusions, or other

very general coercions, we think a subtyping approach is possible and reduces the size of the

lexicon, this is why we are presently exploring coercive subtyping.

The type we gave for predicates can also vary: it could be systematically e → t, but as

explained in paragraph 4, types u → t are possible as well – but transition from one form to

another is not complicated.

An important variant is to define the very same ideas within a compositional model like

λ-DRT [56] the compositional view of Discourse Representation Theory [29] which can, as

its name suggests, handle discursive phenomena. Thus one can integrate the semantical

and lexical issues presented here into a broader perspective. This can be done, and in fact



several applications of the model presented here are already included in the Grail parser

by Richard Moot, in particular for French [49]. The grammar was automatically extracted

from annotated corpora, but unfortunately the refined semantic terms we need can only be

typed by hand. Consequently we only tested the semantic analyses described herein on a

small specific lexicon. For instance, our treatment of fictive motion (cf. subsection 3.2) has

been tested with a detailed lexicon for spatial semantics, but with λ-DRT [50] rather than

plain lambda calculus [51]. The Grail parser is written with Prolog and as far as semantics is

concerned, a functional programming language like CaML or Haskell would be better suited,

as van Eijck and Unger show in [73].

5.2 Comparison with related work

There are many similarities with the contemporary work by Asher and Luo [4, 39, 16].

A first difference is the type system. Our type system, F, is quite powerful but simple:

four-term building operations, and two reduction rules. Luo makes use of a version of Modern

Type Theories (MTT), closed to the Unifying Theory of dependent Types (UTT), whose

expressive power and computational complexity is difficult to compare: it is predicative but

it includes dependent types. Hence it is not clear whether MTT better characterises the logic

needed for meaning assembly. Quantification over type variables is quite comparable and

admits ∀α : CN (CN are common nouns) which is quite convenient although it can certainly

be encoded within system F using the fact that finite sums can be defined in system F, hence

x : α, α : CN can be rephrased if there are finitely many CN . This is both a positive and

negative feature of system F: it can encode many things, but encodings are often dull. A

possible solution, similar to [69], is to introduce predefined types F with specific reduction

schemes – e.g. adding integers as in Gödel’s system T.

Regarding coercions, Luo [38] makes an extensive use of coercive subtyping, which he

introduced with Soloviev [70]: as said in their paper this kind of subtyping may also work

well with system F. So we can say that the system of Luo is very similar. Dependent types

and predicative quantification may be closer to what we wish to model, but the formal

diversity of the numerous employed rules may result in an obscure formalisation. The typed

system at work in Asher’s view [3] is a simple type theory extended with type constructors

and operations imported from category theory. The theory extends cartesian closed category

with a few of the many operations that one finds in topos theory, like being a subobject.

This approach is difficult to compare with the two above, since it does not belong to the

same family: morphisms do not represent (quotiented) proofs of some logic, they are closer

to a set theoretic interpretation.

Another ingredient of our models are base types. Asher leaves the set of base types open,

but rather small (say a dozen) : e, t, physical objects, etc., with a linguistically motivated

subtyping relation ⊏ defined over these types. Luo, especially in his later article [39], wants

to equate base types with common nouns (also with coercions between them), and this is a

possible compromise between any formula and the minimal base type system which makes it

difficult to express some selectional restrictions with types. However it seems that there are

too many of them, since not every common noun appears as a restriction of selection for

another word in a dictionary. Dealing with classifiers as base types is a recent proposal of ours

which seems cognitively and linguistically motivated. It is worth exploring this hypothesis

empirically in tests over corpora.

The subtyping relation between base types are language independent in these two models,

i.e. they are not triggered by words, but simply by types. We opted for a compromise

in which only ontological inclusions are type-driven, using coercive subtyping, while other

coercions are word-driven.



Regarding the general organisation of the lexicon and its composition modes, the same

difference applies. While according to Asher and Luo, types determine the coercions, in our

approach the coercions are provided by the terms in the lexicon, i.e. by the words themselves

and not by their types, with an exception for ontological inclusions. The recent claim by

Luo that base type should be common nouns (that are words) partly blurs the differences

between on the one hand the type-driven approaches of himself and Asher and, on the other

hand, ours which is more idiosyncratic being based on words and terms that are known to

be arbitrary.

Finally one may wonder whether we finally derive similar logical forms. They actually are

quite similar: we derive higher order many-sorted logical formulae, Asher derives formulae in

a category that can be seen as an intuitionnistic set theory, which works with sorts, and Luo

derives formulae of type theory. All these are more or less the same: higher order is possible,

although not extensively used in examples, and there are sorts or types.

A possible difference may lie in the distance between syntax and semantics. Indeed, the

effective computability of the semantic representations requires a specific treatment of the

common structures in compositional semantics like determiners, quantifiers, plurals,. . . and to

be integrated in a general analysis that also includes phenomena like time or aspect. For the

time being we did more on such issues than the others, but I am pretty sure that a similar

treatment is possible within the approach developed by Asher and Luo.

5.3 Perspectives

Apart from fixing up the optimal variant among the possible variants of our model, to study

and develop the convergence with related work, or to pursue the implementation, there

are some questions both on type theory and on linguistic modelling, both theoretical and

practical, that deserve to be further studied.

The acquisition of the semantic lexicon has both theoretical and practical aspects. In

particular, how could one acquire the optional lambda terms that represent coercions?

Syntactic information on words can be automatically extracted: indeed, Moot’s parser that

we used to experiment our type theoretical semantic analyses was automatically acquired

[48, 47]. By now there are some techniques [78] to extract the usual lambda terms of Montague

semantics of subsection 1.2 that represent the argument structure of words. Machine learning

(see e.g. [23]) and serious games (that are games with an outcome besides entertainment,

and in particular collaborative games with a purpose [74] that have been shown to be quite

efficient for constructing linguistic ressources) are also able to learn relations between words

see e.g. [18, 31]. However, up to now there are no learning algorithms for acquiring a set of

base type, nor for determining given a set of base type, the optional lambda terms, and our

experiments with Moot parser were performed using a hand typed semantic lexicon.

On the logical side there are many intriguing questions.

One is the relation in a type system with sorts between the (higher order) predicate

calculus and the type system, exemplified by the relation between type judgements x : T

that, as linguistic presuppositions, cannot be denied and predicates T̂ (x) that can be

denied.

The Hilbert operator ǫ, which looks more natural in this typed system, deserves to be

further studied. Since most of the results are false but Hilbert’s original results, the study

of both the deductive system and the interpretation of those operators is appealing. In

particular, we are puzzled by formulae with Hilbert operators that have no corresponding

formula in usual logic.



The coercive subtyping we introduced in this paper should also be further explored, e.g.

by proving that there is at most one coercion between any two types.

It is quite clear that we do not need the full power of system F: we chose this system of

variable types and quantified types for its simplicity and elegance. Nevertheless one may

wonder whether there is a simple restriction that would be sufficient. Linear versions of

system F both have a lower complexity [30] and allow a finer grained treatment of the

constraints on sense compatibility [42].

Regarding computational linguistics, and applications to natural language processing,

the way the discourse context is handled is important. In particular, the permanence and

the propagation of constraints (e.g. on sense compatibilities) through linguistic structure

deserves to be further studied. Observe that:

(19) a. This salmon was living nearby Scottish coast. It was delicious.

b. ? This salmon that was living nearby Scottish coast was delicious.

c. * This salmon was living nearby Scottish coast and was delicious.

We believe that the type theoretical and many-sorted view presented in this paper may

shed new light on classical challenges of natural language semantics. A known difficult

example is the semantics of mass nouns, like wine, which can be quantified:

(20) a. He drank some wine.

b. He drank all the wine.
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