
HAL Id: hal-01145799
https://hal.science/hal-01145799

Submitted on 26 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The transitivity problem of Turing machines
Anahí Gajardo, Nicolas Ollinger, Rodrigo Torres-Avilés

To cite this version:
Anahí Gajardo, Nicolas Ollinger, Rodrigo Torres-Avilés. The transitivity problem of Turing machines.
Mathematical Foundations of Computer Science 2015 - 40th International Symposium (MFCS 2015),
Aug 2015, Milan, Italy. pp. 231-242, �10.1007/978-3-662-48057-1_18�. �hal-01145799�

https://hal.science/hal-01145799
https://hal.archives-ouvertes.fr

The transitivity problem of Turing machines

Anahí Gajardo1, Nicolas Ollinger2, and Rodrigo Torres-Avilés1

1 Departamento de Ingeniería Matemática and Centro de Investigación en Ingeniería
Matemática (CI2MA), Universidad de Concepción, Centro de Modelamiento
Matemático (CMM), Universidad de Chile, Casilla 160-C, Concepción, Chile

{anahi,rtorres}@ing-mat.udec.cl
2 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, FR-45067 Orléans, France

nicolas.ollinger@univ-orleans.fr

Abstract. A Turing machine is topologically transitive if every partial
configuration — that is a state, a head position, plus a finite portion
of the tape — can reach any other partial configuration, provided that
it is completed into a proper configuration. We characterize topological
transitivity and study its computational complexity in the dynamical
system models of Turing machines with moving head, moving tape and
for the trace-shift. We further study minimality, the property of every
configuration reaching every partial configuration.

Keywords: reversible computing, discrete dynamical systems, symbolic dynam-
ics, topological dynamics, computability

1 Introduction

Turing machines [15] provide a simple mechanical model of computation: an agent
equipped with a finite internal memory moves over a tape full of symbols which
it can read and modify; its movement as well as its interaction with its memory
and the tape is deterministically governed by a transition rule. Eventually, this
transition rule may carry the machine to a halting configuration. A computation
can be performed by initializing the tape with an input word and decoding the
output on the halting tape. The universality of the model, asserted by the Church-
Turing thesis, the undecidability of the Halting Problem and its generalizations
like Rice’s theorem provide convenient tools to assert that any kind of system,
even “natural” systems like lattice gases dynamics [11], that can perform universal
computation has a particular strong form of unpredictability: even if the complete
information about the state of the system is available, determining its asymptotic
behavior is impossible. On the other hand, qualitative properties of the system
can be, and frequently are, undecidable. Even if all the system parameters are
given, there is no general procedure to determine whether the system satisfy a
given property or not. This is the case, for example, of dynamics over a piece
wise constant vector field in dimension three [1], where the Reachability Problem,
i.e., the problem of determining whether one region is reachable from another, is
undecidable. More properly dynamical properties, as periodicity, sentitivity and

2 Anahí Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés

limit set, have also been proved to be undecidable for some classes of systems,
in particular in the context of cellular automata [7, 8, 10]. The main difficulty
to establish such result is that, contrary to the Turing machine in the Halting
Problem, dynamical properties describe the system behavior over the whole set
of configurations. The property studied in this paper, the transitivity of a Turing
machine, is of the same nature.

The appropriate point of view is to study Turing machines as proper dynam-
icals systems as introduced by Moore [12] and further developed by Kůrka [9]
who formalized two topologies associated to Turing machines and establishes
several of its properties. Following that trend, several dynamical properties of
Turing machines were recently studied: periodicity [2, 3, 8], entropy [6, 13] and
equicontinuity [4]. Here we focus on topological transitivity: the existence of a
point whose orbit passes close to every other point of the space. Moreover, “most”
of the points have this characteristic. This gives to the system some kind of
homogeneity in the sense that some point wise properties become global when
transitivity is present. For example, in a transitive system there is a dichotomy
between almost-equicontinuity and sensitivity: either almost every point is stable
or every point is sensitive. On the other hand, transitivity is included in the most
accepted definitions of “chaos”.

In the context of Turing machines, transitivity imply that every internal state
is reachable from every other internal state. Moreover, every “local configuration”
is reachable from every other; but here the meaning of “local” is ambiguous and
it depends on the topology that we choose for our model. Kůrka [9] proposes
two different topologies for Turing machines, one gives preponderance to the cell
contents around the head (Turing Moving Tape model (TMT)) and the other
focuses on the cells that surround the position “0” of the tape (Turing Moving
Head model (TMH)). In this paper, we consider both models, as well as the
column factor of the TMT model: the trace-shift.

Given a fixed Turing machine, it is, in general, quite difficult to prove its
transitivity. We establish that transitivity is undecidable in all the three models
that we consider. The proof is performed by reduction from the Reachability
Problem, though a technique that consists into embedding a machine inside
another in such a way the first avoids transitivity of the second when reachability
is satisfied. This technique has proved to be very flexible and useful. It was also
used in [3] to prove the undecidability of the existence of periodic points in the
TMT model. It is also used here to prove the undecidability of another important
dynamical property: minimality.

2 Definitions

2.1 Turing machines

A Turing machineM is a triple (Q,Σ, δ) where Q is the finite set of states, Σ is
the finite alphabet and δ : Q×Σ → Q×Σ × {−1, 0, 1} is the partial transition
function ofM. The machine is complete if δ is a total function.

The transitivity problem of Turing machines 3

A configuration of M is a triple (s, c, p) where s ∈ Q is the state of the
machine, c ∈ ΣZ is the content of the bi-infinite tape and p ∈ Z is the position of
the head on the tape. Instead of (s, c, p), we might use the following convenient
notation: (... c−1 .c0 ... cp cp+1 ...

s), where the dot before c0 is there to distinguish
the coordinate 0. A configuration (s, c, p) is halting if (s, c(p)) is a halting pair,
that is if δ(s, c(p)) is undefined.

A transition of the machine transforms a non-halting configuration (s, c, p)
into the configuration (t, c′, p+ d) where δ(s, c(p)) = (t, a, d) and c′ is equal to c
in every position but for c′(p) = a. The transition function is denoted by ` and
its iteration zero or more times by `∗.

A configuration is periodic if the machine returns to that same configuration
after a finite number of transitions. The machine is aperiodic if it has no periodic
configuration.

The machine is surjective if every configuration can be obtained in one
transition from at least one configuration and injective if every configuration can
be obtained in one transition from at most one configuration, its preimage. In a
complete machine, surjectivity is equivalent to injectivity.

Every injective machine is a reversible machine: it can be assigned a re-
verse. Indeed, an injective machine is characterized by a pair (ρ, µ), where
ρ : Q×Σ → Q×Σ is a partial injective function and µ : Q→ {−1, 0, 1}, such
that δ(s, a) = (t, b, µ(t)) where ρ(s, a) = (t, b) for all state s and symbol a.
The reverse machine M−1 is the reversible Turing machine (Q,Σ, δ−1) where
δ−1(t, b) = (s, a,−µ(s)) for all s, a, t, b such that ρ(s, a) = (t, b). For every non-
halting configuration (s, c, p) transformed byM into the configuration (t, c′, p′),
the configuration (t, c′, p′ − µ(t)) is transformed byM−1 into the configuration
(s, c, p− µ(s)). A starting configuration ofM is a halting configuration ofM−1

and a starting pair ofM is a halting pair ofM−1. A reversible Turing machine
has as many starting pairs as halting pairs.

A partial configuration is a configuration (s, c, p) where c is a partial function
defined only on a finite portion of the tape. Transitions extend to partial configu-
rations and are defined only when the head is pointing on a defined symbol. A
configuration complete a partial configuration if they coincide on the intersection
of their domains.
Reachability problem Given a Turing machine and a pair of states, decide
if, starting from a configuration in the first state, the machine can reach a
configuration in the second state after a finite number of transitions.

The reachability problem is known to remain Σ0
1 -complete when the input

is restricted to aperiodic reversible Turing machines [8] from a starting pair to
a halting pair. Moreover, one can fix the alphabet of the input machine to be
binary or ternary.
Transitivity problem Given a Turing machine, decide if, for every pair of
partial configurations, one can complete the first partial configuration in a
configuration that reaches the second partial configuration after a finite number
of transitions.
Theorem 1. The transitivity problem is in Π0

2 and is Π0
1 -hard.

4 Anahí Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés

Before proving this main result of the paper, we relate it to topological
properties of the Turing machine dynamical systems and introduce a last key
ingredient: the SMART machine.

2.2 Topological and symbolic dynamics

A topological dynamical system is a pair (X,T), where the topological space X is
the phase space and the continuous function T : X → X is the global transition
function of the system. The orbit of a point x ∈ X is the infinite sequence
O(x) = (Tn(x))n∈N. A point x is periodic if Tn(x) = x for some n > 0.

A system (Y, T) is a subsystem of (X,T) if Y ⊆ X is a closed and T -invariant
set. The smallest subsystem that contains a given point x is the closure of its
orbit O(x). A system (X,T) is transitive if it admits a transitive point, i.e. a
point x such that O(x) = X. A system where every point is transitive is a
minimal system. A system (Z,F) is a factor of (X,T) if there exists a continuous
and onto function ϕ : X → Z such that F ◦ ϕ = ϕ ◦ T . Factors inherit several
properties including transitivity. A convenient characterization of transitivity is
the following.

Proposition 1. A dynamical system (X,T) is transitive if and only if for every
pair of open sets U , V , there exists a time t such that T t(U) ∩ V 6= ∅.

Let Σ be a finite alphabet. Words, infinite words and bi-infinite words are
respectively finite, right-infinite and bi-infinite sequences of symbols from Σ whose
sets are denoted respectively by Σ∗, the one-sided full shift ΣN and the two-sided
full shift ΣZ. A finite word v is a factor of another (finite or infinite) word z,
denoted by v v z, if there exist two indexes i and j, such that v = zizi+1...zj .
The length of a finite word u is denoted by |u|.

Let T denote either Z or N. An element x of ΣT is an ordered sequence
x = (xi)i∈T. The shift function σ is defined in ΣT by σ(y)i = yi+1, and it is a
bijective function if T = Z. The Cantor metric of the full shift is d(x, y) = 2−i,
where i = min{|n| : xn 6= yn}. With this metric, ΣT is compact and (ΣT, σ) is
a topological dynamical system. The subsystems of (ΣT, σ) are called subshifts.
Frequently, we will prefer to denote ΣN by Σω, the set of right-infinite sequences;
and symmetrically, we will use ωΣ to denote the left-infinite sequences.

The language L(S) of a subshift S is the set of its factors, i.e. L(S) =
{u ∈ Σ∗|∃z ∈ S, u v z}. Reciprocally, every language L defines a subshift SL ={
z ∈ ΣN

∣∣∀u v z, u ∈ L}
. A set S is a subshift if and only if SL(S) = S.

2.3 Turing machines seen as dynamical systems

Let X = Q×ΣZ × Z be the set of configurations of a complete Turing machine.
Endowing X with the product topology defines a topological dynamical system
(X,T). However, X is not a compact set. Following Kůrka [9], we reformulate X
to overcome this problem.

The transitivity problem of Turing machines 5

Turing machine with moving head (TMH) In this model, the head is
added as an element of the tape; then, the phase space is the set Xh ⊂ (Σ ∪Q)Z,
defined by Xh = {x ∈ (Σ ∪ Q)Z | |{i ∈ Z : xi ∈ Q}| ≤ 1}. The transition
function Th consists in one application of the local transition function δ, taking
in consideration that the head position is at the right of the unique cell that
contains a state on the tape. Configurations with no state in the tape are headless
configurations and are treated as fixed points. The coding function ψ : X → Xh

transforms a configuration (s, c, p) into ψ(s, c, p) = x, where x is defined by
xi = ci if i < p, xp = s and xi = ci−1 if i > p.

By construction, Xh is a subshift. With the Cantor metric, ψ is continuous
and one-to-one and Xh = ψ(X). Configurations from Xh \ ψ(X) are exactly the
headless configurations. The transition function Th is continuous and partial
configurations are represented by factors xi...xj .

Turing machine with moving tape (TMT) In this model, the head is fixed
at the origin and it is the tape which moves. The phase space is Xt = ωΣ×Q×Σω

and Tt consists in one application of δ by moving the tape instead of the head:

δ(s, a) = (t, b,+1) =⇒ Tt(u, s, av) = (ub, t, v)
δ(s, a) = (t, b, 0) =⇒ Tt(u, s, av) = (u, t, bv)

δ(s, a) = (t, b,−1) =⇒ Tt(uc, s, av) = (u, t, cbv)

The onto coding function Γ : X → Xt transforms a configuration (s, c, p) into
(· · · cp−2cp−1, s, cpcp+1 · · ·). Endowing Xt with the product topology results in
a compact phase space and both Γ and Tt are continuous. By applying Γ to a
configuration, one loses information about the original head position. Define the
canonical preimage Γ−1(u, s, v) to be the configuration (s, 0, u.v), which is the
only preimage to have the head at the origin. Partial configurations are triples
(u, s, v) ∈ Σ∗ ×Q×Σ∗.

The trace-shift The trace-shift St is the column shift associated to the moving
tape model. It is obtained from the projection π : Xt → Q × Σ defined by
π(u, s, av) = (s, a). The trace-shift is the image of the factor map τ : Xt →
St, defined as τ(x) = (π(Tnt (x)))n∈N. The definition is generalized to partial
configurations. The map τ is not invertible, but given a semi-infinite word w ∈ St,
its pre-image x is uniquely defined over the set of visited cells. For a given word w
either in St or in L(St), we define its canonical pre-image (u, s, v) as the smallest
finite (or infinite) configuration whose image by τ is w.

It is noteworthy to remark that when T is a reversible machine, St can be
defined as a subshift of ΣZ by redefining τ(u, r, u′) = (π(Tnt (x)))n∈Z, and all of
the results that we will establish in this paper remain true.

6 Anahí Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés

3 Transitivity of Turing machines

3.1 Characterizing transitivities

By proposition 1, the property described in the Transitivity Problem is indeed
the topological transitivity in the TMH model.

Proposition 2. Let (Q,Σ, δ) be a complete Turing machine.
The TMH system (Xh, Th) is transitive if and only if for every pair of partial

configurations (u.u′) and (v.v′), there exists a completion x ∈ Xh of (u.u′) and a
time n ∈ N such that Tnh (x) is a completion of (v.v′).

The TMT system (Xt, Tt) is transitive if and only if for every pair of partial
configurations (u, s, u′) and (v, t, v′), there exists a completion (w, s, w′) ∈ Xt of
(u, s, u′) and a time n ∈ N such that Tnt (w, s, w′) is a completion of (v, t, v′).

The trace-shift (St, σ) is transitive if and only if for every u, v ∈ L(St), there
exists a third word w ∈ L(St) such that uwv ∈ L(ST).

A particularity of Turing models is the relation between transitivity and
periodic points of Th. In these points, the head is enclosed in a finite part of the
tape. Any perturbation of the configuration that does not affect this part of the
tape will not perturb the head. Thus, no periodic point can be attained by a
point outside its orbit, and the system cannot be transitive. Moreover, when Th
has a periodic point, transitivity is excluded both from (Xt, Tt) and (St, σ) [5].

Proposition 3. (Xh, Th) transitive ⇒
(1)

(Xt, Tt) transitive ⇒
(2)

(St, σ) transitive.

Proof. (1) Any finite configuration of Xt corresponds to several finite configu-
rations of Xh, thus if a point exists that visits any finite configuration of Xh,
the same point will visit any finite configuration of Xt. (2) (St, σ) is a factor of
(Xt, Tt) thus it inherits its transitivity. �

A transitive system needs to be surjective, thus if the TMT or the TMH
models are transitive, the machine needs to be reversible. Note this is not the
case for trace-shift, as there exist non surjective Turing machines with surjective
trace-shift [14].

3.2 The SMART machine

The SMART machine is the 4-state 3-symbols reversible complete Turing machine
depicted on figure 1. Among other properties, it is aperiodic, its trace-shift is
substitutive and it is minimal in TMT, as proven in [3]. We prove below that it
is also transitive in TMH.

The head of SMART glides over the lagoons of 0s, either to the right or to the
left, depending on its states and the surrounding symbols, as formalized below
and proved by recurrence over n in [3].

The transitivity problem of Turing machines 7

p

b

d

q

0|1I

1|1I
2|2I

0|1J

1|1J
2|2J

2|0J

0|2I
1|0I2|0I

0|2J
1|0J

Fig. 1. The SMART machine.

Lemma 1. For all n ∈ N and all symbols s+ ∈ {1, 2} and s∗ ∈ {0, 1, 2},(
s∗ 0n 0 s+

b

)
`∗

(
s∗ 0n+1 s+
b

)
(B(n))(

s+ 0 0n s∗
d

)
`∗

(
s+ 0n+1 s∗

d

)
(D(n))(0 0n s+

p

)
`∗

(
0n+1 s+

p

)
(P (n))(

s+ 0n 0
q

)
`∗

(
s+ 0n+1

q

)
(Q(n))

A key lemma for the minimality of SMART in [3] is that every partial
configuration can be produced inside a large enough block of 0s guarded by 2s.

Lemma 2. For every word u ∈ {0, 1, 2}∗ of length n, state s and every 1 6 i 6 n,
there exist k, k′ ∈ N such that

(
.2 0k+k′+n−3 0 2

b

)
`∗

(
.2k u1 ... ui ... un2k

′

s

)
.

We now introduce two new technical lemmas.

Lemma 3. The configuration
(w2 .2 2w

p

)
reaches each of the configurations of

the family {
(
w2 0 0k .0k 0 2 0 2w

b

)
}k∈N ∪ {

(
w2 0 0 0k .0k 0 2 0 0 2w

b

)
}k∈N.

Proof. By a simple recurrence over k. From k to k + 1 apply the recurrence
hypothesis then B(2k), one step, P (2k), one step. From there one step gives the
even case. For the odd case apply Q(2k), one step, P (2k + 2) then 2 steps. �

Lemma 4. For every k ≤ n − 1,
(
.2 0n+2 0 2

b

)
reaches both

(
.2 2 0k 0 2 0n−k 2

b

)
and

(
.2 0n−k 2 0k 0 2 2

b

)
.

Proof. Apply B(n+ 2), 2 steps, then D(n+ 1). In the first case continue by 2
steps then repeat n− k − 1 times the sequence B(n− i), one step, P (n− i), 2
steps, from i = 0 to n − k − 1. In the second case continue by one step then
repeat n − k − 1 times the sequence Q(n − i + 1), 2 steps, D(n − i), one step,
and finish by one step. �

Theorem 2. The SMART machine is topologically transitive in TMH.

8 Anahí Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés

Proof. By lemma 2 any possible partial configuration is reachable from a partial
configuration x′ with a certain amount of 0 in a certain position. Lemma 4
establishes that x′ is reachable from a configuration x′′ with the 0s in the center.
Finally, lemma 3 asserts that x′′ is always reachable from

(w2 .2 2w
p

)
. Therefore,

configuration
(w2 .2 2w

p

)
is a transitive point, and SMART is transitive. �

4 The complexity of topological transitivity

4.1 Construction techniques

Our proof combines partial Turing machines to construct bigger ones. One key
technique from [8] is Reversing the time: given a reversible Turing machine
M = (Q,Σ, δ), one creates two new reversible machines M+ = (Q× {+}, Σ, δ+),
and M− = (Q× {−}, Σ, δ−), where (s,+) and (s,−) states represent M in state
s running respectively forwards and backwards in time.

The second key technique is the Embedding that inserts a machine inside
the transitions of another in such a way that the new machine has one or
more properties that depends on some properties of the original machines. We
distinguish a host machine H = (Q,Σ, δ) and a reversible and innocuous invited
machine I that share the same alphabet.

Definition 1. A machine is innocuous if every starting pair (s, a) is associated
to a unique halting pair (t, a) so that the evolution of every starting configuration
(s, c, p+µ(s)) where c(p) = a either is infinite or stops in the halting configuration
(t, c, p).

Remark 1. Innocuous machines can be obtained by gluing together the halting
pairs of M+ to the starting pairs of M−.

The embedding HI of the invited machine I in the host machine H is con-
structed from the disjoint union of H and I. Let (s1, a1), . . . , (sn, an) be the
starting pairs of I and (t1, a1), . . . , (tn, an) be the associated halting pairs with
shifts d1, . . . , dn. Let δ(p, a) = (q, b,∆) be a transition of H. That transition is re-
moved from HI and replaced by the following transitions: δ(p, a) = (s1, a1, µ(s1)),
δ(t1, a1) = (s2, a2, µ(s2)), δ(t2, a2) = (s3, a3, µ(s3)), . . . , δ(tn, an) = (q, b,∆), as
depicted on figure 2. Notice that HI is complete when H is complete.

If we start at a state of H in the resulting machine, we will see the evolution
of H, alternated with some intervals of time in which it is the machine I that
evolves.

4.2 Undecidability of transitivities

Theorem 3. The problem to decide, given a reversible complete Turing machine,
if it is transitive, is Π0

1 -hard in all three models: TMH, TMT and trace-shift.

The transitivity problem of Turing machines 9

p q

s1 s2
. . . sn

I

t1 t2 . . . tn−1 tn

a|a1 µ(s1)

a1|a2 µ(s2) an−1|an µ(sn)

an|b∆

Fig. 2. Embedding technique.

Proof. The proof proceeds by reduction of the Reachability Problem for binary
reversible aperiodic Turing machines. Let M be such a machine with a starting
pair (s, a) and a halting pair (t, b). Let $ be a new symbol not in Σ and consider
M ′ the copy of M with this new symbol: all the pairs (r, $) are both starting
and halting pairs of M ′. Let (p1, a1), . . . , (pm, am) be all the starting pairs of
M ′ except (s, a) and (q1, b1), . . . , (qm, bm) be all the halting pairs of M ′ except
(t, b). Take two copies of M ′ and apply Reversing the time to obtain 4 machines
M ′1−, M ′1+, M ′2− and M ′2+, then connect them according to figure 3 by adding
the following transitions to obtain the invited machine I:

δ(t1+, b) = (t1−, b,−µ(t)), δ(s1−, a) = (s1+, a, µ(s)),
δ(t2+, b) = (t2−, b,−µ(t)), δ(s2−, a) = (s2+, a, µ(s)),

δ(q1+
i , bi) = (q2−

i , bi,−µ(qi)) ∀i ∈ {1, . . . ,m}
δ(p1−

i , ai) = (p2+
i , ai, µ(pi)) ∀i ∈ {1, . . . ,m}

The starting pairs of I are the pairs (p1+
i , ai) and the pairs (q1−

i , bi) for all i. The
machine I is innocuous as only three scenario are possible from a starting pair:
(1) entering M1+ (or M1−) and staying there forever; (2) exit M1+ by (t1+, b)
(or M1− by (s1−, a)), the computation is then reversed inside M1− (or M1+) and
enters M2+ (or M2−) replaying the same scenario to exit M2− (or M2+) leaving
the tape identical to the beginning ; (3) exit M1+ (or M1−) by a halting pair
(q1+
i , bi), the computation is then reversed in M2− (or M2+) leaving the tape

identical to the beginning. Consider the embedding SMARTI .

(Assertion 1) SMARTI may be transitive only if M cannot reach (t, b) from
(s, a). Indeed, if (s, a) can reach (t, b) in M then SMARTI admits a periodic
point and its trace shift cannot be transitive and by proposition 3 none of the
models can be transitive.

(Assertion 2) The TMH system of SMARTI is transitive if M cannot reach
(t, b) from (s, a). Indeed, suppose that M cannot reach (t, b) form (s, a), then I
is aperiodic, and let (su, u, i) and (sv, v, j) be two partial configurations.

Case 1. su and sv are states of SMART. In this case we know that there exists
a finite context (su, u′, i) that extends (su, u, i) so that SMART reaches

10 Anahí Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés

M ′2− M ′2+s, a t, b s, a

(q1, b1)...(qm, bm)(p1, a1)...(pm, am)

M ′1+ M ′1−s, a t, b s, a

(p1, a1)...(pm, am) (q1, b1)...(qm, bm)

Fig. 3. Invited machine for an embedding that is transitive if and only if (s, a) cannot
reach (t, b) in the evolution of M , used in the proof of theorem 3.

(sv, v, j), because SMART is transitive. Let us complete u′ with the symbol
$ and lets analyze the behavior of SMARTI over x = (su, ω$u′$ω, i). First of
all, SMARTI cannot stay an infinite amount of time inside I, because I is
aperiodic, and non periodic behavior needs an infinite amount of space to
be performed. The presence of the extraneous symbol $ in x, avoid this to
happen. Now, since I is innocuous, we will see the machine SMART evolving,
and thus configuration (sv, v, j) will be reached.

Case 2. su or sv is a state of I. In this case, lets add $ symbols around u
and v, and lets evolve the time backward from (sv, v, j) until the em-
bedded machine exits the invited machine I, and lets call (s′v, $v′$, j′) the
obtained finite configuration. In the same way, we evolve the time forward
from (su, u, i) until exiting I, and we call (s′u, $u′$, i′) the so obtained
configuration. If either su or sv are already in SMART, we just add the $
symbols. Now we can apply Case 1 to (s′u, $u′$, i′) and (s′v, $v′$, j′) to prove
the existence of a completion u′′ of $u′$ such that (s′u, u′′, i′) `∗ (s′v, $v′$, j′).
Lets suppose that u′′ = w$u′$w′. Therefore, by construction, we have that
(su, wuw′, i) `∗ (s′u, w$u′$w′, i′) `∗ (s′v, $v′$, j′) `∗ (sv, v, j), which is
the desired conclusion.

From proposition 3 we know that the classes of transitive machines for TMH,
TMT and the trace-shift are nested, Assertions 1 and 2 prove that all three
related problems are Π0

1 -hard. �

The transitivity problem of Turing machines 11

5 The complexity of minimality

A dynamical system (X,T) is minimal if O(x) = X for all x ∈ X. It is equivalent
to not have any no trivial proper subsystem. Every minimal system is also
transitive. In the context of Turing machines, we will found machines which have
a minimal TMT and a minimal trace-shift, the SMART machine is an example of
this [3]. There is no machine with a minimal TMH system, because this system
always contains fixed points: the headless configurations. As for transitivity,
minimality in the TMT model imply minimality in the trace-shift, by the factor
relation.

Theorem 4. The problem to decide, given a reversible complete Turing machine,
if it is minimal, is Σ0

1 -hard for both TMT and trace-shift.

Proof. The proof proceeds by reduction of the Mortality problem for reversible
and aperiodic machines, proved undecidable in [8]. A Turing machine is mortal if
every configuration eventually halts. The mortality problem, that is to decide,
given a Turing machine, if it is mortal, is Σ0

1 -complete for reversible Turing
machines.

LetM be a reversible and aperiodic ternary Turing machine. Apply Reversing
the time to generate two machinesM+ andM− and combine them into an invited
machine as per figure 4: for every halting pair (qi, bi) of M , add a transition
δ(q+

i , bi) = (q−i , bi,−µ(qi)). The machine I is innocuous, and we embed it into
SMART to produce SMARTI .

M+ M−

(p+
1 , a1)

...

(p+
m, am)

(p−1 , a1)
...

(p−m, am)

Fig. 4. Invited machine for an embedding that is minimal if and only if M is mortal,
used in the proof of theorem 4.

(Assertion 1) If the trace-shift of SMARTI is minimal, then M needs to be
mortal. Indeed, if M is not mortal, there is a trace that starts in a state of M+
and never exits this machine. Such a behavior is impossible in a machine with a
minimal trace-shift, where all the trajectories need to be transitive, and so they
must visit all the states of the machine.
(Assertion 2) If M is mortal, the TMT system of SMARTI is minimal. Indeed,
lets suppose that M is mortal, so its reverse is mortal too, and so is I. Let x be
an arbitrary configuration in the TMT system of SMARTI , we will prove that it
reaches every finite configuration (v, r, v′) in the TMT system. First, if r is a state
of SMART and x has also a state of SMART, it is clear that x reaches (v, r, v′)
because SMART is minimal and it is impossible to stay an infinite amount of
time inside I. Second, if x has a state in I, it comes from a configuration x′ that

12 Anahí Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés

do has a state in SMART, because the inverse of I is mortal. The orbit of x is
equal to the orbit of x′ except for a finite number of points, whose state is in
I, thus, by the previous argument, x can attain any finite configuration with a
state in SMART. Now, if r is a state of I, we can evolve SMARTI backward on
(v, r, v′) until to arrive to configuration (u, r′, u′) with a state r′ of SMART, this
is always possible because I is mortal. Through the former arguments, we know
that x visits (u, r′, u′), it thus visits (v, r, v′) too, and we conclude the proof of
assertion 2.

The class of machines with a minimal TMT system is contained in the class
of machines with a minimal trace-shift, thus Assertion 1 and 2 prove that the
two related problems are Σ0

1 -hard. �

References
1. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having

piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)
2. Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations

in Turing machines and in counter machines. Theoret. Comput. Sci. 289, 573–590
(2002)

3. Cassaigne, J., Ollinger, N., Torres-Avilés, R.: A Small Minimal Aperiodic Reversible
Turing Machine (2014), https://hal.archives-ouvertes.fr/hal-00975244v1, (submitted
to a journal)

4. Gajardo, A., Guillon, P.: Zigzags in Turing machines. In: Ablayev, F. anf Mayr, E.
(ed.) Computer Science Symposium in Russia (CSR 2010). LNCS, vol. 6072, pp.
109–119 (2010)

5. Gajardo, A., Mazoyer, J.: One head machines from a symbolic approach. Theor.
Comput. Sci. 370, 34–47 (2007)

6. Jeandel, E.: Computability of the entropy of one-tape Turing machines. In: Mayr,
E., Portier, N. (eds.) Symposium on Theoretical Aspects of Computer Science
(STACS 2014). vol. 25, pp. 421–432 (2014)

7. Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theor. Comput. Sci.
127(2), 229–254 (1994)

8. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In:
Ochmanski, E., Tyszkiewicz, J. (eds.) Mathematical Foundations of Computer
Science (MFCS 2008). LNCS, vol. 5162, pp. 419–430 (2008)

9. Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput. Sci.
174(1-2), 203–216 (1997)

10. Lukkarila, V.: Sensitivity and topological mixing are undecidable for reversible
one-dimensional cellular automata. TUCS 927 (2009)

11. Margolus, N.: Physics and Computation. Ph.D. thesis, M. I. T., Cambridge, Mass.,
U.S.A. (1987)

12. Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical
systems. Nonlinearity 4(2), 199–230 (1991)

13. Oprocha, P.: On entropy and Turing machine with moving tape dynamical model.
Nonlinearity 19, 2475–2487 (2006)

14. Torres, R., Ollinger, N., Gajardo, A.: Undecidability of the surjectivity of the
subshift associated to a Turing machine. LNCS (7581), 44–56 (2013)

15. Turing, A.: On computable numbers, with an application to the entscheidungsprob-
lem. Proc. of the London Math. Soc. 42(2), 230–265 (1936)

APPENDIX i

A Complementary material for the reviewers

We provide here some more details that the space constraint did not allow us to
include in the main text. We also discuss the syntactical choices for the machine
model and their impact on the results. Moreover, as [3] is unpublished (submitted
to a journal, not accepted yet), we copy here every material for this paper to be
independent.

A.1 Influence of the chosen model

Turing machines can be considered in two forms, the quintuple model and the
quadruple model, and it acts on the configurations differently depending on the
model, as follows.

Quintuple model. δ : Q×Σ → Q×Σ×{−1, 0, 1}. The machine transforms a
configuration (s, c, p) into (t, c′, p+d), if δ(s, c(p)) = (t, a, d), and c′ is defined
by c′(p) = a and c′(i) = c(i) for all i 6= p.

Quadruple model. δ :
∣∣∣∣ QW ×Σ → Q×Σ
QM × {/} → Q× {−1, 0, 1} , where Q = QW t QM .

The machine transforms a configuration (s, c, p) into (t, c′, p), if s ∈ QW ,
δ(s, c(p)) = (t, a) and c′ is defined by c′(p) = a and c′(i) = c(i) for all
i 6= p, but if s ∈ QM , then (s, c, p) is transformed into (t, c, p + d), where
δ(s, /) = (t, d). The first type of transformation is called writing instruction,
and the second one movement instruction.

These two models are equivalent from a computational point of view but
are slightly different from a dynamical point of view: reversibility is trivially
characterized in the quadruple model and more subtle for the quintuple model,
some properties are not preserved when transforming a machine from a model to
the other (the head velocity for example is reduced to the half when going to the
quadruple model). Fortunately, as we will prove in the full version of this paper,
transitivity is not affected by these transformations: the results presented in this
paper are valid in both models.

A.2 The reachability problem

Here we justify the following claim about the Reachability problem from the
paper that might at first seem quite strong:
Reachability problem Given a Turing machine and a pair of states, decide
if, starting from a configuration in the first state, the machine can reach a
configuration in the second state after a finite number of transitions.

The reachability problem is known to remain Σ0
1-complete when the input is

restricted to aperiodic reversible Turing machines [8] from a starting pair to a
halting pair. Moreover, one can fix the alphabet of the input machine to be binary
or ternary.

ii APPENDIX

Recall that the construction that support the Reachability problem undecid-
abilty in [8] proceeds as follows: given a reversible counter machine with 2 counters
and initial state s0, one constructs recursively a reversible Turing machine that
simulates the counter machine using Hooper-style recursive encoding and has two
states s1 and s2 such that there is a computation from a configuration in state
s1 to a configuration in state s2 if and only if the counter machine eventually
halts starting from the configuration (s0, 0, 0). The constructed Turing machine
is aperiodic and reversible.

As the Reachability problem deals only with states (as opposed to partial
configurations), one can simply prune the states s1 and s2 so that every pair
(s1, a) is a starting pair and every pair (s2, a) is a halting pair.

Concerning the alphabet, we can prove that in fact, any reversible machine
can be simulated by a reversible machine with a binary alphabet, in such a
way that the new machine preserves dynamical properties such as periodicity,
aperiodicity and mortality, and also computational properties as reachability.

Lemma 5. Given a reversible Turing machine M = (Q,Σ, δ), there exists a
binary and reversible Turing machine M̃ = (Q̃, {0, 1}, δ̃) and an injective function
Ψ : Q×ΣZ×Z→ Q̃×{0, 1}Z×Z such that, if T is the global transition function
of M , T̃ is the global transition function of M̃ , and k = dlog2(|Σ|)e, then
T̃ 3k+1 ◦ Ψ = Ψ ◦ T .

Proof. Let M = (Q,Σ, δ) be a reversible Turing machine and let us code Σ in
a binary alphabet 2 = {0, 1}, by tuples of length k = dlog2(|Σ|)e. Let us call
φ : Σ → 2 the coding function. It needs to be injective, but not necessarily
surjective. Now we adapt the machine to work over these coded symbols. We call
the simulation machine as M̃ = (Q̃,2, δ̃).

The idea behind this simulation is that machine M̃ do the same that machine
M , but just in more steps. In this way, periodicity, reachability, aperiodicity and
mortality are kept. Then, to simulate instruction δ(s, a) = (t, b,∆), we start in a
state s ∈ Q, and M̃ reads in the next k cells a coded symbol a ∈ Σ. While coded
symbol a is read, M̃ conveniently writes word 0k in those cells to help us to keep
reversibility. Now, machine M̃ comes back to the left writing coded symbol b
until it reaches starting position. Finally it moves k spaces in direction ∆, and
then machine M̃ reaches state t ∈ Q. An outline of this steps can be seen in
Figure 5. Hence, instruction (s, a, t, b,∆) is correctly simulated. Any instruction
in δ is simulated in this way.

s R(s,a) Wt t
φ(a)|0k Ik 0k|φ(b)Jk

∆k

Fig. 5. Outline of the steps to simulate a instruction δ(s, a) = (t, b,∆) of machine M .

APPENDIX iii

We just need to prove that machine M̃ is reversible. We can separate the
simulation of a M instruction in three steps: Reading (from state s to state
R(s,a)), Writing (from state R(s,a) to state Wt) and Moving (from state Wt to
state t).

The first part Reading is easily done in a reversible way performing a binary
tree, where its leafs are the states R(s,a′), with a′ ∈ Σ and the root node is s.
The second part Writing can be done reversibly with a inverted binary tree,
where the leafs are the states W(t,T (b′)), with T (b′) ∈ Σ the transposed of b′ ∈ Σ
(T (a0a1...ak−1) = ak−1ak−2...a0) and the root node is Wt. To perform the third
part Moving in a reversible way, it is just needed |k| − 1 intermediate states and
movement instructions from Wt to t.

The connection between first and second part is done with the instruction
δ̃(R(s,a), 0) = (W(t,T (b)), 0, 0). In this part can not be problem with reversibility,
because if M is reversible, just one instruction can write symbol b going to
state t in machine M , therefore state W(t,T (b)) has just one in degree. A graph
representation of simulation of a instruction can be seen in Figure 6.

s

s0

s1

...

...

R(s,a0)

R(s,a1)

R(s,a2)

...

R(s,ak−1)

W(s,a1))

W(s,a2)

W(s,a3)

...

W(s,ak)

...

...

t0

t1

Wt

m1

...

t

0|0I

1|0I

0|0I

1|0I

0|0I

1|0I

0|0

1|0

0|0

1|0

0|0

0|0

0|1

0|0J

0|1J

0|0J

0|1J

0|0J

0|1J

0|0J

0|1J

∗| ∗∆

∗| ∗∆

∗| ∗∆

Fig. 6. Detailed instruction δ(s, a0) = (t, a2|k−1|,∆) simulated in M̃ . The symbols an ∈
Σ represents the ordered symbols of machine M . Notice that φ(a1) = 0k, φ(a1) = 0k−11
and so on.

iv APPENDIX

Now, as the binary trees have a height of k, connected by one instruction and,
finally, k movements instructions, each evolution of T is done in 3k + 1 steps by
T̃ .

�

Finally, one might argue that the constructions in [8] are done in the quadruple
model. Fortunately, every machine constructed in the cited paper alternates
between moving and writing state: they can be recoded into equivalent quintuple
machines with twice less states without loosing the required properties.

A.3 SMART lemmas

Proof (of lemma 1). The proof proceeds by recurrence over n for all s+ and
s∗ and all four properties. The base case can be checked by hand. Let us take
n ≥ 1. We will do the proofs just for B(n) and P (n), because D(n) and Q(n) are
symmetric. Let us suppose that B(n− 1), D(n− 1), P (n− 1) and Q(n− 1) are
true. First we prove B(n).

(
s∗ 0 0 0n−2 0 s+

b

)
Apply B(n− 1)(

s∗ 0 0 0n−2 0 s+
b

)
One step(

s∗ 1 0 0n−2 0 s+
d

)
Apply D(n− 1)(

s∗ 1 0 0n−2 0 s+
d

)
One step(

s∗ 1 0 0n−2 0 s+
q

)
Apply Q(n− 1)(

s∗ 1 0 0n−2 0 s+
q

)
One step(

s∗ 0 0 0n−2 0 s+
b

)

APPENDIX v

Now, for P (n): (
0 0 0n−2 0 s+
p

)
One step(

2 0 0n−2 0 s+
d

)
Apply D(n− 1)(

2 0 0n−2 0 s+
d

)
One step(

2 0 0n−2 0 s+
q

)
Apply Q(n− 1)(

2 0 0n−2 0 s+
q

)
One step(

0 0 0n−2 0 s+
p

)
Apply P (n− 1)(

0 0 0n−2 0 s+
p

)
The cases of D(n) and Q(n) are symmetric. �

It is important to remark that applying B(n) always implies to apply B(n−1)
as the first step, and also B(n− 2) and B(0). Analogously, applying P (n) implies
to apply P (n− 1) and P (0) as the last step. Interestingly, just before applying
P (0) by the last time, i.e., 3 steps before finishing P (n), the head is on the
rightmost 0 with state p. This will be used in the future. Thus, we define the
next two propositions which also hold.

P ′(n): ∀s+ ∈ {1, 2},
(0 0n s+
p

)
`∗

(0n 0 s+
p

)
Q′(n): ∀s+ ∈ {1, 2},

(
s+ 0n 0

q

)
`∗

(
s+ 0 0n

q

)
When starting with one or more 0s around the head, SMART will recursively

augment the number of 0s around the head. This is justified in the next lemma.
Lemma 6. If we define, for every n ≥ 0, the set Cn = {x | x is a completion of
a shift of

(
s+ 0 0n

q

)
or

(0n 0 s+
p

)
}, then for every x ∈ Cn, either x or the orbit

of x will eventually visit Cm for arbitrary large m.
Proof. We just make the proof for initial state q, since p is symmetrical. Let
us start with n maximal such that x ∈ Cn. If there is no maximal n, then x is
already on every Cm. (

s∗ s+ 0 0n s++
q

)
one step(

s∗ s+ 2 0n s++
b

)
one step

vi APPENDIX

If s+ = 1 If s+ = 2(
s∗ 1 2 0n s++

p

) (
s∗ 2 2 0n s++

p

)
one step one step(

s∗ 1 0 0n s++
q

) (
s∗ 2 0 0n s++

q

)
one step one step(

s∗ 0 0 0n s++
b

) (
s∗ 0 0 0n s++

p

)
If s∗ 6= 0 P ′(n)(

s∗ 0 0 0n s++
p

) (
s∗ 0 0n 0 s++

p

)
P ′(n+ 1) we are done(

s∗ 0 0n 0 s++
p

)
we are done

Now we study the case s∗ = 0.(
0 0 0 0n s++
b

)
one step(

1 0 0 0n s++
d

)
D(n+ 1)(

1 0 0 0n s++
d

)
one step(1 0 0n 0 s++

q

)
Q′(n+ 1)(1 0 0n 0 s++

q

)
we are done

�

If we start with an arbitrary configuration, it can be verified by hand that in
a finite number of steps we fall in one of the sets of Lemma 6.

Another important property of SMART is its time symmetry. A restricted
version of time symmetry [3] says that a reversible machine is time-symmetric
if there exists two involutions hΣ : Σ → Σ and hQ : Q → Q such that for all
a, b ∈ Σ and t, s ∈ Q

δ−1(t, b) = (s, a, d)⇔ δ(hQ(t), hΣ(b)) = (hQ(s), hΣ(a), d).

Once this is defined, one can define a global function h : Q × ΣZ × Z →
Q×ΣZ×Z by s→ hQ(s), ci → hΣ(ci) and p→ p+µ(s), where µ is the function
that gives the unique direction from which state s is attained. This function h
results to be an involution and satisfy that T ◦ h ◦ T ◦ h is the identity.

SMART is time-symmetric through the involutions defined by: hΣ(0) = 0,
hΣ(1) = 2, hQ(b) = p and hQ(d) = q.

Proof (of lemma 2). First, we will use the fact that the SMART machine
is time-symmetric, so applying h ◦ T t ◦ h is the same as applying T−t, for

APPENDIX vii

any time t ∈ N. So now we just have to prove that h
(
.2k u1 ... ui ... un2k

′

s

)
=(

.1k hΣ(u1) hΣ(un) 1k
′

hQ(s)

)
will eventually reach h

(
.2 0k+k′+n−3 0 2

b

)
=(

.1 0k+k′+n−3 0 1
p

)
.

Based on the Lemma 6, we know that we can generate an increasing amount
of 0s in the tape. For this reason, we know that

(
1 hΣ(u1) hΣ(un) 1

hQ(s)

)
will eventually reach one of the configurations considered in Lemma 6 with a
block of 0s that will grow until arriving to one of the next configurations:

(
.1 0j 0 v1 ...vl 1

p

)
or

(
.1 0 0j v1 ...vl 1
q

)
or

(
.1 v1... vl 0 0j 1

q

)
or

(
.1 v1...vl 0j 0 1

p

)
.

Thus, applying either Q(0) or P (0) we arrive to one of the next situations:

(i)(
.1 0j 0 v1 ...vl 1

p

) or
(ii)(

.1 0 0j v1 ...vl 1
q

) or
(iii)(

.1 v1... vl 0 0j 1
q

) or
(iv)(

.1 v1...vl 0j 0 1
p

)
,

(1)

for some v ∈ {0, 1, 2}n−j−1, and v1 6= 0 in situations (i) and (ii), or vl 6= 0 in
the other two.

In order to reach
(

1 0k+k′+n−3 0 1
p

)
, we will need a certain amount of 1s at

the left or right of the initial configuration; this amount depends on v. Let k(v)
be the function that gives the amount of non-0 symbols in v. As before, we will
do the proof only for configurations of the form (i) and (ii).

viii APPENDIX

Case (i).1 v2 6= 0 or v1 = 2.

(
1k(v) 1 0 0 0j v1 v2 ... vl 1

p

)
Regardless of the value of v1 6= 0
in 1 or 2 steps we reach the next, with i = 0 or 1(

1k(v) 1 0j−i 0 0 0i v2 ... vl 1
q

)
Apply Q(j − i)(

1k(v) 1 0j 0 0 0 v2 ... vl 1
q

)
Two steps(

1k(v) 0 0j 0 0 0 v2 ... vl 1
p

)
P (j + 2)(

1k(v) 0 0j 0 0 0 v2 .. vl 1
p

)
applying the previous steps
iteratively k(v)− 1 times(

1 0 0k(v)+j+l 1
p

)
Apply P (k(v) + j + l)(

1 0 0k(v)+n−1 1
p

)
we are done with k = k(v) and k′ = 1

(2)

Case (i).2 v2 = 0 and v1 = 1. Let g ∈ {3, .., l} be the smallest index such that
vg 6= 0.

APPENDIX ix

(
1k(v) 1 0 0j 1 0 0g−3 vg ... vl 1

p

)
Two steps(

1k(v) 1 0 0j 0 1 0g−2 vg ... vl 1
b

)
B(j + l)(

1k(v) 1 0 0j 0 1 0g−2 vg ... vl 1
b

)
One step(

1k(v) 1 0 0j 0 1 0g−2 vg ... vl 1
p

)
P (j + l)(

1k(v) 1 0 0j 0 1 0g−2 vg ... vl 1
p

)
Repeat last four steps g − 2 times(

1k(v) 1 0 0j 0 0g−2 1 vg ... vl 1
p

)
Which reduces to case (i).1

Case (ii) (
1k(v) 1 0 0j v1 v2 ... vl 1

q

)
Two steps(

1k(v) 0 0 0j v1 v2 ... vl 1
p

)
P (j + 1)(

1k(v) 0 0 0j v1 v2 ... vl 1
p

)
Which reduces to case (i)

(3)

In this way, we have proved that, for (i) and (ii), we will always reach(
1 0n−1+k(v) 0 1

p

)
. For cases (iii) and (iv), we can assure, by symmetry, that the

machine will reach
(

1 0n−1+k(v) 0 1
q

)
, then:

(
1 1 0n−1+k(v) 0 1
q

)
Two steps(

1 0 0n−1+k(v) 0 1
p

)
Apply P (n− 1 + k(v) + 1)(

1 0 0n−1+k(v) 0 1
p

)
(4)

x APPENDIX

Concluding that, for the last two cases, we need just one additional 1 symbol to
reach the desired configuration. �

Proof (of lemma 3). We will prove this by induction over k. For k = 0, it is
enough to simulate the machine during 7 steps. Now, let us suppose that the
assertion is true for k, and let us prove that it is also true for k + 1.

(
w2 2 2 2k−1 .2 2k−1 2 2 2 2 2w

p

)
Induction hypothesis(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w
b

)
Apply B(2k)(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w
b

)
One step(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w
p

)
Apply P (2k)(

w2 2 0 0k−1 .0k−1 0 2 0 2 2 2w
p

)
One step(

w2 2 0 0k−1 .0k−1 0 0 0 2 2 2w
q

)

(5)

From this we obtain the “odd” case in one step:
(
w2 2 0 0k−1 .0k−2 0 2 0 0 2 2 2w

b

)
.

Continuing from the last step of the former development we obtain the “even”
case.

Apply Q(2k)(
w2 2 0 0k−1 .0k−1 0 0 0 2 2 2w

q

)
One step(

w2 0 0 0k−1 .0k−1 0 0 0 2 2 2w
p

)
Apply P (2k + 2)(

w2 0 0 0k−1 .0k−1 0 0 0 2 2 2w
p

)
Two steps(

w2 0 0 0k−1 .0k−1 0 0 2 0 2 2w
b

)

(6)

Proof (of lemma 4).

APPENDIX xi

(
.2 0 0 0k 0 0n−k−2 0 0 2

b

)
Apply B(n+ 2)(

.2 0 0 0k 0 0n−k−2 0 0 2
b

)
Two steps(

.2 2 0 0k 0 0n−k−2 0 0 2
d

)
Apply D(n+ 1)(

.2 2 0 0k 0 0n−k−2 0 0 2
d

)
Two steps(

.2 2 0 0k 0 0n−k−2 0 2 2
b

)
Apply B(n+ 2)(

.2 2 0 0k 0 0n−k−2 0 2 2
b

)
One step(

.2 2 0 0k 0 0n−k−2 0 2 2
p

)
Apply P (n+ 1)(

.2 2 0 0k 0 0n−k−2 0 2 2
p

)
Two steps(

.2 2 0 0k 0n−k−2 0 2 0 2
b

)
Repeat four last steps n− k − 1 times(

.2 2 0k 0 2 0 0n−k−2 0 2
b

)

(7)

xii APPENDIX

Now we prove the second part.(
.2 0 0 0 0n−k−1 0k−1 0 0 2

b

)
Apply B(n+ 2)(

.2 0 0 0 0n−k−1 0k−1 0 0 2
b

)
Two steps(

.2 2 0 0 0n−k−1 0k−1 0 0 2
d

)
Apply D(n+ 1)(

.2 2 0 0 0n−k−1 0k−1 0 0 2
d

)
One step(

.2 2 0 0 0n−k−1 0k−1 0 0 2
q

)
Apply Q(n+ 1)(

.2 2 0 0 0n−k−1 0k−1 0 0 2
q

)
Two steps(

.2 0 2 0 0n−k−1 0k−1 0 0 2
d

)
Apply D(n)(

.2 0 2 0 0n−k−1 0k−1 0 0 2
d

)
Repeat last two steps n− k − 1 times(

.2 0 0n−k−1 2 0 0k−1 0 0 2
d

)
Two steps(

.2 0 0n−k−1 2 0 0k−1 0 2 2
b

)

(8)

�

