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Abstract. We give a functional representation theorem for a class of real
p-Banach algebras. This theorem is used to show that every p-homogeneous
seminorm with square property on a real associative algebra is submultiplicative.
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1. Introduction

J. Arhippainen [1] has obtained the following result:

Theorem 1 of [1]. Let q be a p-homogeneous seminorm with square property on
a complex associative algebra A. Then

1. Ker(q) is an ideal of A ;

2. the quotient algebra A/Ker(q) is commutative ;

3. q is submultiplicative ;

4. q
1
p is a submultiplicative seminorm on A.

This result is a positive answer to a problem posed in [2] and considered in
[3], [4] and [5]. The proofs of (3) and (4) depend on (2) which is obtained by
using a locally bounded version of the Hirschfeld-Zelazko Theorem [1, Lemma
1]. This method can not be used in a real algebra; if q is the usual norm defined
on the real algebra H of quaternions, Ker (q) = {0} and H/Ker (q) ∼= H is
noncommutative, then the assertion (2) does not hold in the real case.
The purpose of this paper is to provide a real algebra analogue of the above
Arhippainen Theorem, this improves the result in [6]. Our method is based on
a functional representation theorem which we will establish; it is an extension of
the Abel-Jarosz Theorem [7, Theorem 1] to real p-Banach algebras. We also give
a functional representation theorem for a class of complex p-Banach algebras.
As a consequence, we obtain the main result in [8].
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2. Preliminaries

Let A be an associative algebra over the field K=R or C. Let p ∈]0, 1], a map
‖.‖ : A → [0,∞[ is a p-homogeneous seminorm if for a, b in A and α in K,
‖a+b‖ ≤ ‖a‖+‖b‖ and ‖αa‖ = |α|p‖a‖. Moreover, if ‖a‖ = 0 imply that a = 0,
‖.‖ is called a p-homogeneous norm. A 1-homogeneous seminorm (resp.norm)
is called a seminorm (resp.norm). ‖.‖ is submultiplicative if ‖ab‖ ≤ ‖a‖‖b‖ for
all a, b in A. ‖.‖ has the square property if ‖a2‖ = ‖a‖2 for all a ∈ A. If ‖.‖ is a
submultiplicative p-homogeneous norm on A, then (A, ‖.‖) is called a p-normed
algebra, we denote by M (A) the set of all nonzero continuous multiplicative
linear functionals on A. A complete p-normed algebra is called a p-Banach
algebra. A uniform p-normed algebra is a p-normed algebra (A, ‖.‖) such that
‖a2‖ = ‖a‖2 for all a ∈ A. Let A be a complex algebra with unit e, the spectrum
of an element a ∈ A is defined by Sp(a) = {α ∈ C,αe− a /∈ A−1} where A−1 is
the set of all invertible elements of A. Let A be a real algebra with unit e, the
spectrum of a ∈ A is defined by Sp(a) = {s + it ∈ C, (a − se)2 + t2e /∈ A−1}.
Let A be an algebra, the spectral radius of an element a ∈ A is defined by
r(a) = sup{|α|, α ∈ Sp(a)}. Let (A, ‖.‖) be a p-normed algebra, the limit

limn→∞ ‖an‖
1
pn exists for each a ∈ A, and if A is complete, we have r(a) =

limn→∞ ‖an‖
1
pn for all a ∈ A. A ∗-algebra is a complex algebra with a mapping

∗ : A → A, a → a∗ , such that, for a, b in A and α ∈ C, (a∗)∗ = a, (a + b)∗ =
a∗ + b∗, (αa)∗ = ᾱa∗, (ab)∗ = b∗a∗. The map ∗ is called an involution on A.
An element a ∈ A is said to be hermitian if a∗ = a . The set of all hermitian
elements of A is denoted by H (A).

3. A functional representation theorem for a class of real p-Banach
algebras

We will need the following result due to B. Aupetit and J. Zemanek ([9] or
[10]), their algebraic approach works for real p-Banach algebras.

Theorem 3.1. Let A be a real p-Banach algebra with unit. If there is a
positive constant α such that r(ab) ≤ αr(a)r(b) for all a, b in A , then for every
irreducible representation π of A on a real linear space E, the algebra π(A) is
isomorphic (algebraically) to its commutant in the algebra L(E) of all linear
transformations on E .

Let A be a real p-Banach algebra with unit such that ‖a‖
1
p ≤ mr(a) for some

positive constant m and all a ∈ A. Let X(A) be the set of all nonzero multiplica-
tive linear functionals from A into the noncommutative algebra H of quater-
nions. For a ∈ A, we consider the map J(a) : X(A) → H,J(a)x = x(a) for all
x ∈ X(A). We endow X (A) with the weakest topology such that all the func-
tions J(a), a ∈ A, are continuous. The map J : A→ C(X(A), H), a→ J(a), is
a homomorphism from A into the real algebra of all continuous functions from
X(A) into H.
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Theorem 3.2. If π is an irreducible representation of A, then π(A) is isomor-
phic to R, C or H.

Proof. Let a, b ∈ A and n ≥ 1, we have ‖(ab)n‖ ≤ ‖a‖n‖b‖n, then ‖(ab)n‖
1
pn ≤

‖a‖
1
p ‖b‖

1
p . Letting n → ∞, we obtain r(ab) ≤ m2r(a)r(b). Let π be an

irreducible representation of A on a real linear space E. By Theorem 3.1, π(A) is
isomorphic to its commutant Q in the algebra L(E) of all linear transformations
on E. Let y0 be a fixed nonzero element in E. For y ∈ E, we consider ‖y‖E =
inf{‖a‖, a ∈ A and π(a)y0 = y} . By the same proof as in [11, Lemma 6.5],
‖.‖E is a p-norm on E and Q is a real division p-normed algebra of continuous
linear operators on E. By [12], Q is isomorphic to R, C or H.

Proposition 3.3. A is semisimple and X(A) is a nonempty set which separates
the elements of A.

Proof. By the condition ‖a‖
1
p ≤ mr(a) for all a ∈ A, we deduce that A is

semisimple. Let a be a nonzero element in A, since A is semisimple, there is an
irreducible representation π of A such that π(a) 6= 0. By Theorem 3.2, there is
ϕ : π(A)→ H an isomorphism (into). We consider the map T = ϕoπ, T : A→
H is a multiplicative linear functional. Moreover, T (a) = ϕ(π(a)) 6= 0 since
π(a) 6= 0 and ϕ is injective.

Proposition 3.4.

1. |x(a)| ≤ ‖a‖
1
p for all a ∈ A and x ∈ X(A);

2. An element a is invertible in A if and only if J(a) is invertible in C(X(A), H);

3. Sp(a) = Sp(J(a)) for all a ∈ A.

Proof. (1): Since H is a real uniform Banach algebra under the usual norm

|.|, |x(a)| = rH(x(a)) ≤ rA(a) ≤ ‖a‖
1
p for all a ∈ A and x ∈ X(A).

(2): The direct implication is obvious. Conversely, let π be an irreducible
representation of A. By Theorem 3.2, there is ϕ : π(A) → H an isomorphism
(into). Since ϕoπ ∈ X(A) and J(a) is invertible, 0 6= J(a)(ϕoπ) = ϕ(π(a)),
then π(a) 6= 0. Consequently, a is invertible.
(3): s+ it ∈ Sp(a) iff (a− se)2 + t2e /∈ A−1
Iff J((a− se)2 + t2e) /∈ C(X(A), H)−1 by (2)
Iff (J(a)− sJ(e))2 + t2J(e) /∈ C(X(A), H)−1

Iff s+ it ∈ Sp(J(a)).

Proposition 3.5. X(A) is a Hausdorff compact space.

Proof. Let x1, x2 in X(A), x1 6= x2 , there is an element a ∈ A such that
x1(a) 6= x2(a) , i.e. J(a)x1 6= J(a)x2 , so X(A) is Hausdorff. Let a ∈ A and

3



Ka = {q ∈ H, |q| ≤ ‖a‖
1
p } , Ka is compact in H. Let K be the topological

product of Ka for all a ∈ A,K is compact by the Tychonoff Theorem. By
Proposition 3.4(1), X(A) is a subset of K. It is easy to see that the topology
of X(A) is the relative topology from K and that X(A) is closed in K. Then
X(A) is compact.

Theorem 3.6. The map J : A → C(X(A), H), a → J(a), is an isomorphism

(into) such that m−1‖a‖
1
p ≤ ‖J(a)‖s ≤ ‖a‖

1
p for all a ∈ A, where ‖.‖s is the

supnorm on C(X(A), H). If m = 1 , we have ‖a‖
1
p = ‖J(a)‖s for all a ∈ A.

Proof. By Proposition 3.3, J is an injective homomorphism. Let a ∈ A, by
Proposition 3.4(3), r(a) = r(J(a)) = ‖J(a)‖s since C(X(A), H) is a real uni-

form Banach algebra under the supnorm ‖.‖s . Moreover, ‖J(a)‖s ≤ ‖a‖
1
p by

Proposition 3.4(1). Then m−1‖a‖
1
p ≤ r(a) = ‖J(a)‖s ≤ ‖a‖

1
p .

As an application, we obtain an extension of the Kulkarni Theorem [13, Theorem
1] to real p-Banach algebras

Theorem 3.7. Let a be an element in A such that Sp(a) ⊂ R, then a belongs
to the center of A.

Proof. By Theorem 3.6, J : A → C(X(A), H) is an isomorphism (into). Let
a ∈ A with Sp(a) ⊂ R. Let x ∈ X(A) and x(a) = s + t where s ∈ R and
t = t1i+t2j+t3k. Suppose that t 6= 0.We have (x(a)−s)2 = t2 = −(t21+t22+t23) =
−|t|2, then (x(a)−s)2 + |t|2 = 0. Consequently s+ i|t| ∈ Sp(x(a)) ⊂ Sp(a) with
|t| 6= 0, a contradiction. Then J(a) ∈ C(X(A), R) and
J(a)J(b) = J(b)J(a) for all b in A, i.e. J(ab− ba) = 0 for all b in A. Since J is
injective, ab− ba = 0 for all b in A.

4. A functional representation theorem for a class of complex p-
Banach algebras

Let ‖.‖ be a submultiplicative p-homogeneous seminorm on a complex algebra

A. For a ∈ A, |a| is defined as follows: |a| = inf
∑n
i=1 ‖ai‖

1
p , where the infimum

is taken over all decompositions of a satisfying the condition a =
∑n
i=1 ai,

a1, . . . , an ∈ A. By [14, Theorem 1], |.| is a submultiplicative seminorm on A, it
is called the support seminorm of ‖.‖. Also, it is shown [14] the following result:

Theorem 2 of [14]. Let A be a complex algebra, ‖.‖ a submultiplicative p-
homogeneous seminorm on A, and |.| the support seminorm of ‖.‖ . Then

limn→∞ ‖an‖
1
pn = limn→∞ |an|

1
n for all a ∈ A.

In the proof of this theorem, Xia Dao-Xing uses the following inequality: If a =
a1+· · ·+am and n ≥ 1, then ‖an‖ ≤

∑
α1+···+αm=n( n!

α1!···αm! )
p‖a1‖α1 · · · ‖am‖αm .
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If the algebra is commutative, an = (a1+· · ·+am)n =
∑
α1+···+αm=n

n!
α1!···αm!a

α1
1 · · · aαm

m

, then ‖an‖ ≤
∑
α1+···+αm=n( n!

α1!···αm! )
p‖a1‖α1 · · · ‖am‖αm . This inequality is

not justified in the noncommutative case; if the algebra is noncommutative, we
only have ‖an‖ ≤

∑
α1+···+αm=n

n!
α1!···αm!‖a1‖

α1 · · · ‖am‖αm . For the sequel, we
will use Theorem 2 of [14] in the commutative case.

Theorem 4.1. Let (A, ‖.‖) be a complex p-normed algebra such that ‖a‖2 ≤
m‖a2‖ for some positive constant m and all a ∈ A. Then |a| ≤ ‖a‖

1
p ≤ m

1
p |a|

and |a|2 ≤ m
2
p |a2| for all a ∈ A, where |.| is the support seminorm of ‖.‖ .

Proof. The completion B of (A, ‖.‖) is a p-Banach algebra such that ‖b‖2 ≤
m‖b2‖ for all b ∈ B, it is commutative by [1, Lemma 1], so A is commutative.

By induction, ‖a‖ ≤ m1−2−n‖a2n‖2−n

for all a ∈ A and n ≥ 1, then ‖a‖ ≤
m limn→∞ ‖an‖

1
n for all a ∈ A. By the commutative version of [14, Theorem 2],

we have |a| ≤ ‖a‖
1
p ≤ m

1
p limn→∞ ‖an‖

1
pn = m

1
p limn→∞ |an|

1
n ≤ m

1
p |a| for all

a ∈ A. From the above inequalities, |a|2 ≤ ‖a‖
2
p ≤ (m‖a2‖)

1
p ≤ m

2
p |a2|.

Corollary 4.2. Let (A, ‖.‖) be a complex uniform p-normed algebra. Then

|a| = ‖a‖
1
p for all a ∈ A.

Theorem 4.3. Let (A, ‖.‖) be a complex p-Banach algebra with unit such
that ‖a‖2 ≤ m‖a2‖ for some positive constant m and all a ∈ A. Then the

Gelfand map G : A→ C(M(A)) is an isomorphism (into) such that m−
2
p ‖a‖

1
p ≤

m−
1
p |a| ≤ ‖G(a)‖s ≤ |a| ≤ ‖a‖

1
p for all a ∈ A, where ‖.‖s is the supnorm on

C(M(A)).

Proof. A is commutative by [1, Lemma 1]. By Theorem 4.1, |a| ≤ ‖a‖
1
p ≤ m

1
p |a|

for all a ∈ A, then (A, |.|) is a complex commutative Banach algebra with unit.
Clearly M(A) = M(A, ‖.‖) = M(A, |.|) is a nonempty compact space. As in the

proof of Theorem 4.1, we have |a| ≤ m
1
p limn→∞ |an|

1
n = m

1
p sup{|f(a)|, f ∈

M(A)} = m
1
p ‖G(a)‖s ≤ m

1
p |a|. Let a ∈ A, from

the above inequalities, m−
2
p ‖a‖

1
p ≤ m−

1
p |a| ≤ ‖G(a)‖s ≤ |a| ≤ ‖a‖

1
p .

Corollary 4.4. Let (A, ‖.‖) be a complex uniform p-Banach algebra with unit.
Then the Gelfand map G : A → C(M(A)) is an isomorphism (into) such that

|a| = ‖a‖
1
p = ‖G(a)‖s for all a ∈ A.

Theorem 4.5. Let (A, ‖.‖) be a complex p-normed ∗-algebra with unit such
that

1. ‖a‖2 ≤ m‖a2‖ for some positive constant m and all a ∈ A;

2. Every element in H(A) has a real spectrum in the completion B of A.
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Then the involution ∗ is continuous on A and the Gelfand map G : B →
C(M(B)) is a ∗-isomorphism such that m−

2
p ‖b‖

1
p ≤ ‖G(b)‖s ≤ ‖b‖

1
p for all b in

B.

Proof. By Theorem 4.3, it remains to show that the involution ∗ is contin-
uous on A, G(b∗) = G(b)∗ for all b ∈ B, and G is surjective. Let h ∈
H(A), SpB(h) = {f(h), f ∈M(B)} ⊂ R by (2). Let a ∈ A, we have a = h1+ih2
with h1, h2 ∈ H(A). Let f ∈ M(B), f(a∗) = f(h1 − ih2) = f(h1) − if(h2) =
(f(h1) + if(h2))∗ = f(h1 + ih2)∗ = f(a)∗ since f(h1) and f(h2) are real. Then

G(a∗) = G(a)∗ for all a ∈ A. By Theorem 4.3, m−
2
p ‖a∗‖

1
p ≤ ‖G(a∗)‖s =

‖G(a)∗‖s = ‖G(a)‖s ≤ ‖a‖
1
p for all a ∈ A, then ‖a∗‖ ≤ m2‖a‖ for all a ∈ A.

Consequently, the involution ∗ is continuous on A and can be extended to a
continuous involution on B which we will also denote by ∗. Let b ∈ B, there
exists a sequence (an)n in A such that an → b. Since the involution on B and
the Gelfand map G : B → C(M(B)) are continuous, we have G(a∗n) → G(b∗)
and G(an)∗ → G(b)∗, then G(b∗) = G(b)∗. By the Stone-Weierstrass Theorem,
we deduce that G is surjective.

As a consequence, we obtain the main result in [8].

Corollary 4.6. Let A be a complex uniform p-normed ∗-algebra with unit such
that every element in H(A) has a real spectrum in the completion B of A. then
B is a commutative C∗-algebra.

5. The main result

Theorem 5.1. Let A be a real associative algebra. Every p-homogeneous

seminorm q with square property on A is submultiplicative and q
1
p is a submul-

tiplicative seminorm on A.

Proof. By [1], there exists a positive constant m such that q(ab) ≤ mq(a)q(b)
for all a, b ∈ A. Ker(q) is an ideal of A, the norm |.| on the quotient algebra
A/Ker(q) defined by |a + Ker(q)| = q(a) is a p-norm with square property.
Define ‖a+Ker(q)‖ = m|a+Ker(q)| for all a ∈ A. Let a, b ∈ A, ‖ab+Ker(q)‖ =
m|ab + Ker(q)| ≤ m2|a + Ker(q)||b + Ker(q)| = ‖a + Ker(q)‖‖b + Ker(q)‖,
then (A/Ker(q), ‖.‖) is a real p-normed algebra. Let a ∈ A, ‖a2 + Ker(q)‖ =
m|a2 +Ker(q)| = m|a+Ker(q)|2 = m−1(m|a+Ker(q)|)2 = m−1‖a+Ker(q)‖2
i.e. ‖a + Ker(q)‖2 = m‖a2 + Ker(q)‖. The completion B of (A/Ker(q), ‖.‖)
satisfies also the property ‖b‖2 = m‖b2‖ for all b ∈ B, and by induction ‖b‖ =

m1−2−n‖b2n‖2−n

for all b ∈ B and n ≥ 1, then ‖b‖ = mr(b)p for all b ∈ B. We
consider two cases:
B is unital: By section 3, X(B) is a nonempty compact space and the map
J : B → C(X(B), H) is an isomorphism (into). By Proposition 3.4(3), r(b) =
r(J(b)) for all b ∈ B. Let b ∈ B, ‖b‖ = mr(b)p = mr(J(b))p = m‖J(b)‖ps since
C(X(B), H) is a real uniform Banach algebra under the supnorm ‖.‖s. Then
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|b| = m−1‖b‖ = ‖J(b)‖ps for all b ∈ A/Ker(q), so |.| is submultiplicative and

|.|
1
p is a submultiplicative norm. Consequently, q is submultiplicative and q

1
p is

a submultiplicative seminorm.
B is not unital: Let B1 be the algebra obtained from B by adjoining the unit.
By the same proof of [15, Lemma 2] which works for real p-Banach algebras,
there exists a p-norm N on B1 such that

1. (B1, N) is a real p-Banach algebra with unit;

2. N(b)
1
p ≤ m3rB1

(b) for all b ∈ B1;

3. N and ‖.‖ are equivalent on B.

By section 3, X(B1) is a nonempty compact space and the map J : B1 →
C(X(B1), H) is an isomorphism (into). Let b ∈ B,
‖b‖ = mrB(b)p = mrB1

(b)p by (3)
= mr(J(b))p by Proposition 3.4(3)
= m‖J(b)‖ps by the square property of the supnorm.
Then |b| = m−1‖b‖ = ‖J(b)‖ps for all b ∈ A/Ker(q), so |.| is submultiplicative

and |.|
1
p is a submultiplicative norm. Consequently, q is submultiplicative and

q
1
p is a submultiplicative seminorm.
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