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A real p-homogeneous seminorm with square property is submultiplicative
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We give a functional representation theorem for a class of real p-Banach algebras. This theorem is used to show that every p-homogeneous seminorm with square property on a real associative algebra is submultiplicative.

1. Introduction J. Arhippainen [START_REF] Arhippainen | On locally pseudoconvex square algebras[END_REF] has obtained the following result: Theorem 1 of [START_REF] Arhippainen | On locally pseudoconvex square algebras[END_REF]. Let q be a p-homogeneous seminorm with square property on a complex associative algebra A. Then 1. Ker(q) is an ideal of A ; 2. the quotient algebra A/Ker(q) is commutative ; 3. q is submultiplicative ; 4. q 1 p is a submultiplicative seminorm on A. This result is a positive answer to a problem posed in [START_REF] Bhatt | Uniqueness of the uniform norm with an application to topological algebras[END_REF] and considered in [START_REF] Bhatt | A seminorm with square property on a Banach algebra is submultiplicative[END_REF], [START_REF] Dedania | A seminorm with square property is automatically submultiplicative[END_REF] and [START_REF] Sebestyen | A seminorm with square property on a complex associative algebra is submultiplicative[END_REF]. The proofs of (3) and (4) depend on (2) which is obtained by using a locally bounded version of the Hirschfeld-Zelazko Theorem [1, Lemma 1]. This method can not be used in a real algebra; if q is the usual norm defined on the real algebra H of quaternions, Ker (q) = {0} and H/Ker (q) ∼ = H is noncommutative, then the assertion [START_REF] Bhatt | Uniqueness of the uniform norm with an application to topological algebras[END_REF] does not hold in the real case. The purpose of this paper is to provide a real algebra analogue of the above Arhippainen Theorem, this improves the result in [START_REF] Azhari | A real seminorm with square property is submultiplicative[END_REF]. Our method is based on a functional representation theorem which we will establish; it is an extension of the Abel-Jarosz Theorem [7, Theorem 1] to real p-Banach algebras. We also give a functional representation theorem for a class of complex p-Banach algebras. As a consequence, we obtain the main result in [START_REF] Kinani | On uniform hermitian p-normed algebras[END_REF].

Preliminaries

Let A be an associative algebra over the field K=R or C. Let p ∈]0, 1], a map . : A → [0, ∞[ is a p-homogeneous seminorm if for a, b in A and α in K, a + b ≤ a + b and αa = |α| p a . Moreover, if a = 0 imply that a = 0, . is called a p-homogeneous norm. A 1-homogeneous seminorm (resp.norm) is called a seminorm (resp.norm). . is submultiplicative if ab ≤ a b for all a, b in A. . has the square property if a 2 = a 2 for all a ∈ A. If . is a submultiplicative p-homogeneous norm on A, then (A, . ) is called a p-normed algebra, we denote by M (A) the set of all nonzero continuous multiplicative linear functionals on A. A complete p-normed algebra is called a p-Banach algebra. A uniform p-normed algebra is a p-normed algebra (A, . ) such that a 2 = a 2 for all a ∈ A. Let A be a complex algebra with unit e, the spectrum of an element a ∈ A is defined by Sp(a) = {α ∈ C, αe -a / ∈ A -1 } where A -1 is the set of all invertible elements of A. Let A be a real algebra with unit e, the spectrum of a ∈ A is defined by Sp(a) = {s + it ∈ C, (a -se) 2 + t 2 e / ∈ A -1 }. Let A be an algebra, the spectral radius of an element a ∈ A is defined by r(a) = sup{|α|, α ∈ Sp(a)}. Let (A, . ) be a p-normed algebra, the limit lim n→∞ a n 1 pn exists for each a ∈ A, and if A is complete, we have r(a) = lim n→∞ a n 1 pn for all a ∈ A. A * -algebra is a complex algebra with a mapping * : A → A, a → a * , such that, for a, b in A and α ∈ C, (a * ) * = a, (a + b) * = a * + b * , (αa) * = ᾱa * , (ab) * = b * a * . The map * is called an involution on A. An element a ∈ A is said to be hermitian if a * = a . The set of all hermitian elements of A is denoted by H (A).

A functional representation theorem for a class of real p-Banach algebras

We will need the following result due to B. Aupetit and J. Zemanek ([9] or [START_REF] Zemanek | Properties of the spectral radius in Banach algebras[END_REF]), their algebraic approach works for real p-Banach algebras.

Theorem 3.1. Let A be a real p-Banach algebra with unit. If there is a positive constant α such that r(ab) ≤ αr(a)r(b) for all a, b in A , then for every irreducible representation π of A on a real linear space E, the algebra π(A) is isomorphic (algebraically) to its commutant in the algebra L(E) of all linear transformations on E .

Let A be a real p-Banach algebra with unit such that a 1 p ≤ mr(a) for some positive constant m and all a ∈ A. Let X(A) be the set of all nonzero multiplicative linear functionals from A into the noncommutative algebra H of quaternions. For a ∈ A, we consider the map J(a) : X(A) → H, J(a)x = x(a) for all x ∈ X(A). We endow X (A) with the weakest topology such that all the functions J(a), a ∈ A, are continuous. The map J : A → C(X(A), H), a → J(a), is a homomorphism from A into the real algebra of all continuous functions from

X(A) into H. Theorem 3.2. If π is an irreducible representation of A, then π(A) is isomor- phic to R, C or H. Proof. Let a, b ∈ A and n ≥ 1, we have (ab) n ≤ a n b n , then (ab) n 1 pn ≤ a 1 p b 1 p .
Letting n → ∞, we obtain r(ab) ≤ m 2 r(a)r(b). Let π be an irreducible representation of A on a real linear space E. By Theorem 3.1, π(A) is isomorphic to its commutant Q in the algebra L(E) of all linear transformations on E. Let y 0 be a fixed nonzero element in E. For y ∈ E, we consider y E = inf{ a , a ∈ A and π(a)y 0 = y} . By the same proof as in [START_REF] Sinclair | Automatic continuity of linear operators[END_REF]Lemma 6.5],

. E is a p-norm on E and Q is a real division p-normed algebra of continuous linear operators on E. By [START_REF] Ph | Sur une classe d'algèbres topologiques[END_REF], Q is isomorphic to R, C or H. Proposition 3.3. A is semisimple and X(A) is a nonempty set which separates the elements of A.

Proof. By the condition a 1 p ≤ mr(a) for all a ∈ A, we deduce that A is semisimple. Let a be a nonzero element in A, since A is semisimple, there is an irreducible representation π of A such that π(a) = 0. By Theorem 3.2, there is ϕ : π(A) → H an isomorphism (into). We consider the map T = ϕoπ, T : A → H is a multiplicative linear functional. Moreover, T (a) = ϕ(π(a)) = 0 since π(a) = 0 and ϕ is injective. (2): The direct implication is obvious. Conversely, let π be an irreducible representation of A. By Theorem 3.2, there is ϕ :

π(A) → H an isomorphism (into). Since ϕoπ ∈ X(A) and J(a) is invertible, 0 = J(a)(ϕoπ) = ϕ(π(a)), then π(a) = 0. Consequently, a is invertible. (3): s + it ∈ Sp(a) iff (a -se) 2 + t 2 e / ∈ A -1 Iff J((a -se) 2 + t 2 e) / ∈ C(X(A), H) -1 by (2) Iff (J(a) -sJ(e)) 2 + t 2 J(e) / ∈ C(X(A), H) -1 Iff s + it ∈ Sp(J(a)). Proposition 3.5. X(A) is a Hausdorff compact space. Proof. Let x 1 , x 2 in X(A), x 1 = x 2 ,
there is an element a ∈ A such that x 1 (a) = x 2 (a) , i.e. J(a)x 1 = J(a)x 2 , so X(A) is Hausdorff. Let a ∈ A and p } , K a is compact in H. Let K be the topological product of K a for all a ∈ A, K is compact by the Tychonoff Theorem. By Proposition 3.4(1), X(A) is a subset of K. It is easy to see that the topology of X(A) is the relative topology from K and that X(A) is closed in K. Then X(A) is compact.

Theorem 3.6. The map J : A → C(X(A), H), a → J(a), is an isomorphism (into) such that m -1 a As an application, we obtain an extension of the Kulkarni Theorem [13, Theorem 1] to real p-Banach algebras Theorem 3.7. Let a be an element in A such that Sp(a) ⊂ R, then a belongs to the center of A.

Proof. By Theorem 3.6, J : 

A → C(X(A), H) is an isomorphism (into). Let a ∈ A with Sp(a) ⊂ R. Let x ∈ X(A) and x(a) = s + t where s ∈ R and t = t 1 i+t 2 j+t 3 k. Suppose that t = 0. We have (x(a)-s) 2 = t 2 = -(t 2 1 +t 2 2 +t 2 3 ) = -|t| 2 ,

A functional representation theorem for a class of complex p-Banach algebras

Let . be a submultiplicative p-homogeneous seminorm on a complex algebra A. For a ∈ A, |a| is defined as follows: |a| = inf n i=1 a i 1 p , where the infimum is taken over all decompositions of a satisfying the condition a = n i=1 a i , a 1 , . . . , a n ∈ A. By [14, Theorem 1], |.| is a submultiplicative seminorm on A, it is called the support seminorm of . . Also, it is shown [START_REF] Dao-Xing | On locally bounded topological algebras[END_REF] the following result: Theorem 2 of [START_REF] Dao-Xing | On locally bounded topological algebras[END_REF]. Let A be a complex algebra, . a submultiplicative phomogeneous seminorm on A, and |.| the support seminorm of . . Then lim n→∞ a n 1 pn = lim n→∞ |a n |

1 n for all a ∈ A.

In the proof of this theorem, Xia Dao-Xing uses the following inequality:

If a = a 1 +• • •+a m and n ≥ 1, then a n ≤ α1+•••+αm=n ( n! α1!•••αm! ) p a 1 α1 • • • a m αm .
If the algebra is commutative,

a n = (a 1 +• • •+a m ) n = α1+•••+αm=n n! α1!•••αm! a α1 1 • • • a αm m , then a n ≤ α1+•••+αm=n ( n! α1!•••αm! ) p a 1 α1 • • • a m αm .
This inequality is not justified in the noncommutative case; if the algebra is noncommutative, we only have

a n ≤ α1+•••+αm=n n! α1!•••αm! a 1 α1 • • • a m αm .
For the sequel, we will use Theorem 2 of [START_REF] Dao-Xing | On locally bounded topological algebras[END_REF] in the commutative case. Theorem 4.3. Let (A, . ) be a complex p-Banach algebra with unit such that a 2 ≤ m a 2 for some positive constant m and all a ∈ A. Then the Gelfand map 

G : A → C(M (A)) is an isomorphism (into) such that m -2 p a 1 p ≤ m -1 p |a| ≤ G(a) s ≤ |a| ≤ a
p lim n→∞ |a n | 1 n = m 1 p sup{|f (a)|, f ∈ M (A)} = m 1 p G(a) s ≤ m 1 p |a|. Let a ∈ A, from the above inequalities, m -2 p a 1 p ≤ m -1 p |a| ≤ G(a) s ≤ |a| ≤ a 1 p .
Corollary 4.4. Let (A, . ) be a complex uniform p-Banach algebra with unit.

Then the Gelfand map G :

A → C(M (A)) is an isomorphism (into) such that |a| = a 1 p = G(a) s for all a ∈ A.
Theorem 4.5. Let (A, . ) be a complex p-normed * -algebra with unit such that 1. a 2 ≤ m a 2 for some positive constant m and all a ∈ A; As a consequence, we obtain the main result in [START_REF] Kinani | On uniform hermitian p-normed algebras[END_REF].

G is surjective. Let h ∈ H(A), Sp B (h) = {f (h), f ∈ M (B)} ⊂ R by (2). Let a ∈ A, we have a = h 1 +ih 2 with h 1 , h 2 ∈ H(A). Let f ∈ M (B), f (a * ) = f (h 1 -ih 2 ) = f (h 1 ) -if (h 2 ) = (f (h 1 ) + if (h 2 )) * = f (h 1 + ih 2 ) * = f (a) * since f (h 1 )
Corollary 4.6. Let A be a complex uniform p-normed * -algebra with unit such that every element in H(A) has a real spectrum in the completion B of A. then B is a commutative C * -algebra.

The main result

Theorem 5.1. Let A be a real associative algebra. Every p-homogeneous seminorm q with square property on A is submultiplicative and q 1 p is a submultiplicative seminorm on A.

Proof. By [START_REF] Arhippainen | On locally pseudoconvex square algebras[END_REF], there exists a positive constant m such that q(ab) ≤ mq(a)q(b) for all a, b ∈ A. Ker(q) is an ideal of A, the norm |.| on the quotient algebra A/Ker(q) defined by |a + Ker(q)| = q(a) is a p-norm with square property. Define a+Ker(q) = m|a+Ker(q)| for all a ∈ A. Let a, b ∈ A, ab+Ker(q) = m|ab + Ker(q)| ≤ m 2 |a + Ker(q)||b + Ker(q)| = a + Ker(q) b + Ker(q) , then (A/Ker(q), . ) is a real p-normed algebra. Let a ∈ A, a 2 + Ker(q) = m|a 2 + Ker(q)| = m|a + Ker(q)| 2 = m -1 (m|a + Ker(q)|) 2 = m -1 a + Ker(q) 2 i.e. a + Ker(q) 2 = m a 2 + Ker(q) . The completion B of (A/Ker(q), . p is a submultiplicative norm. Consequently, q is submultiplicative and q 1 p is a submultiplicative seminorm.

Proposition 3. 4 . 1 . 1 p 1 p

 4111 |x(a)| ≤ a for all a ∈ A and x ∈ X(A); 2. An element a is invertible in A if and only if J(a) is invertible in C(X(A), H); 3. Sp(a) = Sp(J(a)) for all a ∈ A. Proof. (1): Since H is a real uniform Banach algebra under the usual norm |.|, |x(a)| = r H (x(a)) ≤ r A (a) ≤ a for all a ∈ A and x ∈ X(A).

1 p 1 p 1 p 1 p

 1111 ≤ J(a) s ≤ a for all a ∈ A, where . s is the supnorm on C(X(A), H). If m = 1 , we have a = J(a) s for all a ∈ A. Proof. By Proposition 3.3, J is an injective homomorphism. Let a ∈ A, by Proposition 3.4(3), r(a) = r(J(a)) = J(a) s since C(X(A), H) is a real uniform Banach algebra under the supnorm . s . Moreover, J(a) s ≤ a 1 p by Proposition 3.4(1). Then m -1 a ≤ r(a) = J(a) s ≤ a 1 p .

  then (x(a) -s) 2 + |t| 2 = 0. Consequently s + i|t| ∈ Sp(x(a)) ⊂ Sp(a) with |t| = 0, a contradiction. Then J(a) ∈ C(X(A), R) and J(a)J(b) = J(b)J(a) for all b in A, i.e. J(ab -ba) = 0 for all b in A. Since J is injective, ab -ba = 0 for all b in A.

Theorem 4 . 1 . 1 p ≤ m 1 p |a| and |a| 2 ≤ m 2 p |a 2 | 1 p ≤ m 1 pm 1 p 1 n ≤ m 1 p 1 p ≤ m 2 pa 1 p

 41112211111121 Let (A, . ) be a complex p-normed algebra such that a 2 ≤ m a 2 for some positive constant m and all a ∈ A. Then |a| ≤ a for all a ∈ A, where |.| is the support seminorm of . .Proof. The completion B of (A, . ) is a p-Banach algebra such that b 2 ≤ m b 2 for all b ∈ B, it is commutative by [1, Lemma 1], so A is commutative. By induction, a ≤ m 1-2 -n a 2 n 2 -n for all a ∈ A and n ≥ 1, then a ≤ m lim n→∞ a n 1 n for all a ∈ A. By the commutative version of [14, Theorem 2], we have |a| ≤ a lim n→∞ a n 1 pn = lim n→∞ |a n | |a| for all a ∈ A. From the above inequalities, |a| 2 ≤ a 2 p ≤ (m a 2 ) |a 2 |. Corollary 4.2. Let (A, . ) be a complex uniform p-normed algebra. Then |a| = for all a ∈ A.

1 p 1 p ≤ m 1 p

 111 for all a ∈ A, where . s is the supnorm on C(M (A)). Proof. A is commutative by [1, Lemma 1]. By Theorem 4.1, |a| ≤ a |a| for all a ∈ A, then (A, |.|) is a complex commutative Banach algebra with unit. Clearly M (A) = M (A, . ) = M (A, |.|) is a nonempty compact space. As in the proof of Theorem 4.1, we have |a| ≤ m 1

2 .p b 1 p 1 p

 211 Every element in H(A) has a real spectrum in the completion B of A. Then the involution * is continuous on A and the Gelfand map G : B → C(M (B)) is a * -isomorphism such that m -2 ≤ G(b) s ≤ b for all b in B. Proof. By Theorem 4.3, it remains to show that the involution * is continuous on A, G(b * ) = G(b) * for all b ∈ B, and

1 p

 1 and f (h 2 ) are real. Then G(a * ) = G(a) * for all a ∈ A. By Theorem 4.3, m -2 p a * 1 p ≤ G(a * ) s = G(a) * s = G(a) s ≤ a for all a ∈ A, then a * ≤ m 2 a for all a ∈ A. Consequently, the involution * is continuous on A and can be extended to a continuous involution on B which we will also denote by * . Let b ∈ B, there exists a sequence (a n ) n in A such that a n → b. Since the involution on B and the Gelfand map G : B → C(M (B)) are continuous, we have G(a * n ) → G(b * ) and G(a n ) * → G(b) * , then G(b * ) = G(b) * . By the Stone-Weierstrass Theorem, we deduce that G is surjective.

1 p 1 p

 11 ) satisfies also the property b 2 = m b 2 for all b ∈ B, and by induction b = m 1-2 -n b 2 n 2 -n for all b ∈ B and n ≥ 1, then b = mr(b) p for all b ∈ B. We consider two cases: B is unital: By section 3, X(B) is a nonempty compact space and the map J : B → C(X(B), H) is an isomorphism (into). By Proposition 3.4(3), r(b) = r(J(b)) for all b ∈ B. Let b ∈ B, b = mr(b) p = mr(J(b)) p = m J(b) p s since C(X(B), H) is a real uniform Banach algebra under the supnorm . s . Then |b| = m -1 b = J(b) p s for all b ∈ A/Ker(q), so |.| is submultiplicative and |.| is a submultiplicative norm. Consequently, q is submultiplicative and q 1 p is a submultiplicative seminorm. B is not unital: Let B 1 be the algebra obtained from B by adjoining the unit. By the same proof of [15, Lemma 2] which works for real p-Banach algebras, there exists a p-norm N on B 1 such that 1. (B 1 , N ) is a real p-Banach algebra with unit; 2. N (b) ≤ m 3 r B1 (b) for all b ∈ B 1 ; 3. N and . are equivalent on B. By section 3, X(B 1 ) is a nonempty compact space and the map J : B 1 → C(X(B 1 ), H) is an isomorphism (into). Let b ∈ B, b = mr B (b) p = mr B1 (b) p by (3) = mr(J(b)) p by Proposition 3.4(3) = m J(b) p s by the square property of the supnorm. Then |b| = m -1 b = J(b) p s for all b ∈ A/Ker(q), so |.| is submultiplicative and |.|
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