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VOLUME INTEGRAL EQUATIONS FOR ELECTROMAGNETIC

SCATTERING IN TWO DIMENSIONS

MARTIN COSTABEL, ERIC DARRIGRAND AND HAMDI SAKLY

Abstract. We study the strongly singular volume integral equation that describes
the scattering of time-harmonic electromagnetic waves by a penetrable obstacle.
We consider the case of a cylindrical obstacle and fields invariant along the axis of
the cylinder, which allows the reduction to two-dimensional problems. With this
simplification, we can refine the analysis of the essential spectrum of the volume
integral operator started in a previous paper (M. Costabel, E. Darrigrand,
and H. Sakly, The essential spectrum of the volume integral operator in electro-

magnetic scattering by a homogeneous body, Comptes Rendus Mathematique, 350
(2012), pp. 193–197) and obtain results for non-smooth domains that were previ-
ously available only for smooth domains. It turns out that in the TE case, the
magnetic contrast has no influence on the Fredholm properties of the problem. As
a byproduct of the choice that exists between a vectorial and a scalar volume inte-
gral equation, we discover new results about the symmetry of the spectrum of the
double layer boundary integral operator on Lipschitz domains.

1. Introduction

The scattering of electromagnetic waves by a penetrable object for a fixed frequency
is described by the time-harmonic Maxwell equations, valid in the whole space, even
if the scatterer is confined to a bounded region. For purposes of numerical modeling,
one prefers a problem posed on a bounded domain, and various methods are known
to achieve this. One way is the method of volume integral equations (VIEs) that will
be described in Section 3. This method has been used for a long time in computa-
tional physics [14, 21], but its mathematical analysis is still incomplete. The case
of coefficients, permittivity ǫ and permeability µ, that are smooth functions on the
whole space has been studied more completely, because the VIE can then be reduced
to standard Fredholm integral equations of the second kind, see [3, 4, 18] and the
chapter on Lippmann-Schwinger equations in the classical monograph [5].

We are rather interested in the case where the coefficients are discontinuous on the
boundary of the scatterer, as is the case at the interface between different materials.
The well-posedness of the strongly singular VIEs is then a non-trivial problem. There
exist negative or complex-valued coefficients ǫ and µ that can nowadays be realized
with meta-materials, for which the scattering problem and its associated VIE are
not well posed in the Fredholm sense. For the scattering problem, there has been
recent progress in finding necessary and sufficient conditions for Fredholmness using
variational techniques, see [2] for the two-dimensional situation. For the VIEs, the
question amounts to determining the essential spectrum of the volume integral op-
erators. The knowledge of the essential spectrum is also of basic importance for the
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analysis of numerical algorithms, for example for the construction of efficient iterative
solution procedures, see [20].

In [9], we analyzed the VIE using a technique of extension to a coupled boundary-
domain integral equation system, which eventually allows the reduction of the prob-
lem to the better known analysis of boundary integral operators. In the three-
dimensional case studied in [9], the analysis of the “magnetic” volume integral opera-
tor poses particular difficulties, which is the reason why we could describe its essential
spectrum only under smoothness assumptions on the boundary and why the analysis
given in [15, 16] is incomplete for this case.

In this paper we study the two-dimensional case, where it turns out that this
“magnetic” operator Bν

k has a very simple structure, see subsection 4.1.2 below,
in particular Proposition 4.5. This structure implies that the operator, while still
strongly singular and therefore contributing to the principal part of the VIE, does
not contribute in a non-trivial way to the essential spectrum. It also suggests a new
idea for the analysis of this operator in the three-dimensional case that works also
when the boundary is only Lipschitz, see [19, Section 2.4] and our forthcoming paper
on the subject. Thus, while the 2D case has its own interest, for example for the
study of waveguides or photonic fibres, our main motivation for studying it here is
that it allows a refined spectral analysis of the volume integral operators.

Another interesting feature of the two-dimensional electromagnetic problem is that
one can choose to describe it either as a vector-valued or as a scalar problem. This
leads to two different VIEs. In both cases, we prove necessary and sufficient condi-
tions on the coefficients ǫ and µ for the volume integral operators to be Fredholm.
These conditions involve the essential spectrum of certain well-studied scalar bound-
ary integral operators, and at first it looks like the two formulations lead to different
conditions. They are equivalent, however, because of a symmetry property of the
essential spectrum of the double layer boundary integral operator that is specific to
dimension two. We prove this symmetry in Section 5 by relating the boundary in-
tegral equation to a scalar transmission problem involving the coefficient ǫ and for
which one finds a symmetry with respect to replacing ǫ by 1

ǫ
.

2. The two dimensional Maxwell equations

We consider an electromagnetic scattering problem described by the time-harmonic
Maxwell equations in R3

(2.1) curlE − iωµH = 0 ; curlH + iωεE = J .

The current density J (which may be identically zero) is related to an incident field
(E0, H0) by the requirement that the latter satisfies the free-space Maxwell equations

(2.2) curlE0 − iωµ0H
0 = 0 ; curlH0 + iωε0E

0 = J

with constant permittivity ε0 and permeability µ0. In the Maxwell equations (2.1),
the fields are supposed to be locally square integrable, and the equations are satisfied
in the distributional sense. This means that on a surface of discontinuity of the
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coefficients µ and ε, the fields satisfy transmission conditions

(2.3) [n× E] = 0; [n×H ] = 0; [n · µH ] = 0; [n · εE] = 0 .

The scattering problem is completed by the requirement that E − E0 and H − H0

satisfy a radiation condition at infinity. Note that the incident field may contain a
part generated by the current density J and satisfying the radiation condition, as well
as a part satisfying the homogeneous Maxwell system but not the radiation condition.

We assume now that the penetrable obstacle is of cylindrical form Ω×R, where Ω
is a bounded Lipschitz domain in R2. In addition, we assume that the fields E and
H as well as the incident fields do not depend on the variable x3. We introduce the
relative permittivity and permeability such that ε = εrε0, µ = µrµ0. For simplicity
we further assume that J has compact support disjoint from the scatterer Ω.

Introducing the wave number k such that k2 = ω2ε0µ0 and suitably renormalizing
the fields, the resulting system of partial differential equations in R2 can be written
as

(2.4)

∂2E3 − i kH1 = m1 ;

−∂1E3 − i kH2 = m2 ;

∂1E2 − ∂2E1 − i kH3 = m3 ;

∂2H3 + i kE1 = j1 ;

−∂1H3 + i kE2 = j2 ;

∂1H2 − ∂2H1 + i kE3 = j3 .

where

(2.5) (m1, m2, m3)
⊤ = ik(µr − 1)χΩH , (j1, j2, j3)

⊤ = ik(1− εr)χΩE + J

and χΩ denotes the characteristic function of Ω.
It is well known (and easy to see from (2.4)) that this system can be written as

two uncoupled systems corresponding to the transverse electric (TE) and transverse
magnetic (TM) polarizations.

In the TE case, only the transverse components E1, E2 of the electric field and the
longitudinal component H3 of the magnetic field appear:

(2.6)

∂1E2 − ∂2E1 − i kH3 = m3 ;

∂2H3 + i kE1 = j1 ;

−∂1H3 + i kE2 = j2 .

Note that we understand (2.6) in the distributional sense, which implies that the
correct transmission conditions for H3 and the 2D tangential component of E are
satisfied on Γ = ∂Ω.

The TM case is described by the remaining 3 equations of the system (2.4):

(2.7)

∂2E3 − i kH1 = m1 ;

−∂1E3 − i kH2 = m2 ;

∂1H2 − ∂2H1 + i kE3 = j3 .

We observe the symmetry between (2.6) and (2.7), which reflects the symmetry
between E and H in the original Maxwell system. It is therefore sufficient to discuss
one of the two cases in detail, and we choose the TE system (2.6).
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3. Integral equation formulations for the (TE) case

There are two ways of reducing the first-order system (2.6) to second order by
eliminating one of the two fields, and these two second-order formulations are no
longer identical, one of them leading to a second order system that can be called 2D
Maxwell system, and the other one to a scalar Helmholtz equation. Correspondingly,
we can construct two different volume integral equations, both of them equivalent to
the TE system (2.6), but bringing forward different aspects of the volume integral
operators.

In the “electric” formulation we have a 2 × 2 system of second order partial dif-
ferential equations, and correspondingly we find a vector-valued VIE. The matrix of
strongly singular integral operators is the sum of an “electric” operator Aη

k depending
on the permittivity ǫr and a “magnetic” operator Bν

k depending on the permeability
µr. In the three-dimensional case studied in [9], the electric volume integral operator
was easier to analyse, using a method of extension to a coupled boundary-domain in-
tegral equations already described in [8]. A much earlier analysis (where this operator
is called “magnetic”) can be found in [12]. The magnetic volume integral operator
Bν

k is more difficult to analyze in three dimensions, but it turns out that here in two
dimensions, the operator Bν

k is a compact perturbation of a projection operator, see
Proposition 4.5. This simple structure implies that the magnetic contrast does not
influence the essential spectrum, see Corollary 4.8.

In the “magnetic” formulation, the volume integral operator is a scalar strongly
singular integral operator, similar to what one gets when acoustic scattering problems
are treated with the VIE method [7]. The operator again splits into an electric part
and a magnetic part, but this time the magnetic operator is weakly singular and
therefore disappears altogether from the analysis of the essential spectrum.

For the derivation of the volume integral equation (VIE), we assume in this section
that the wave number k is a positive real number. Later on, seeing that the operators
depend analytically on the parameter k, we may consider arbitrary complex values
for k.

The TE problem consists of the system of three first order partial differential
equations (2.6) with compactly supported right hand side, completed by the Silver-
Müller radiation condition, which is equivalent to the Sommerfeld radiation condition

(3.1) lim
R→∞

∫

|x|=R

|∂ru− iku|2ds = 0

for each of the three components u = E1−E
0
1 , E2−E

0
2 , H3−H

0
3 of the scattered field.

Note that the incident field itself may satisfy the radiation condition if it is generated
by a current density J that does not vanish identically, but our formulation can also
handle the case where J is zero and E0 does not satisfy the radiation condition, as
is the case e.g. for an incident plane wave.

In our scattering problem, the right hand side contains the imposed current density
and also the induced polarization, which is given by the unknown fields multiplied
by the inhomogeneity in the coefficients, see equations (2.5).
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3.1. The electric formulation: E1, E2 as unknowns. In the following, we use the
two standard instantiations of the curl operator in two dimensions:

curlE = ∂1E2 − ∂2E1, curlu = (∂2u,−∂1u)
⊤

and write (2.6) as

(3.2) curlE− ikH3 = m3 ; curlH3 + ikE = j .

Eliminating H3 from this system gives a second order system for the unknown E =
(E1, E2)

⊤

(3.3) curl curlE− k2E = curlm3 + ikj .

The construction of volume integral equations is based on the following well known
result.

Lemma 3.1. Let gk(x) =
i
4
H

(1)
0 (k|x|) be the fundamental solution of the Helmholtz

equation in R2 satisfying the outgoing Sommerfeld radiation condition.
(i) The distribution u satisfies in R2 the Helmholtz equation

−(∆ + k2)u = f

and the radiation condition (3.1), where f is a distribution with compact support, if
and only if

u = gk ∗ f .

If f is an integrable function, then this convolution can be written as an integral:

u(x) =

∫

gk(x− y) f(y) dy .

(ii) The vector-valued distribution E satisfies in R2 the system

curl curlE− k2E = f

and the radiation condition, where f has compact support, if and only if

E = k−2(∇ div +k2)gk ∗ f .

Note that the vector part (ii) of this lemma follows from the scalar part (i) and
the relation

(∇ div +k2)(curl curl−k2) = −k2(∆ + k2)

if one uses the fact that for a function u satisfying the radiation condition also the
derivatives of u satisfy the radiation condition and that derivations commute with
convolutions.

Applying Lemma 3.1 to the system (3.3) and using the system (2.2) satisfied by
the incoming field, we obtain

E− E0 = curl gk ∗m3 −
1

ik

(

∇ div +k2
)

gk ∗ j

where the right hand side is given by (2.5), but with J = 0. Eliminating H3 from the
right hand side using the equation

curlE− ikµrH3 = 0 ,
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we finally obtain

E−E0 = curl gk ∗
(µr − 1

µr
χΩ curlE

)

− (∇ div +k2)gk ∗ ((1− ǫr)χΩE) .

Thus our VIE takes the form

(3.4) E− Aη
kE− Bν

kE = E0

where we used the abbreviations

(3.5) η = 1− ǫr , ν = 1− 1
µr

Aη
kE = −(∇ div +k2)gk ∗ (ηχΩE)(3.6)

Bν
kE = curl gk ∗ (νχΩ curlE) .(3.7)

Strictly speaking, we would not need to write the characteristic function χΩ here,
because the coefficient functions η and ν describing the electric and magnetic contrast
vanish outside of Ω, but this notation allows us to treat η and ν simply as numbers
in the piecewise constant case.

The VIE (3.4) is valid on all of R2. However, as soon as E is known on Ω, the
values of Aη

kE and Bν
kE are known, and then (3.4) defines E on the entire space R2.

Thus we will consider the VIE (3.4) as an integral equation on Ω for the unknown E

on Ω, and then use the formula (3.4) to extend E to all of R2.
Both integral operators Aη

k and Bν
k are integro-differential operators that can be

considered as integral operators with strongly singular kernels, since the second
derivatives of gk(x− y) behave like |x− y|−2 as x− y → 0.

We use the standard notation for Sobolev spaces Hm and for

H(curl,Ω) = {E ∈ L2(Ω)2 | curlE ∈ L2(Ω)}

H(div,Ω) = {E ∈ L2(Ω)2 | divE ∈ L2(Ω)} .

Lemma 3.2. Let η, ν ∈ L∞(Ω). Then the operators Aη
k and Bν

k are bounded linear
operators in H(curl,Ω).

Proof. The convolution with gk is a pseudodifferential operator of order −2 and there-
fore maps any L2 function with compact support to a function in the Sobolev space
H2

loc(R
2). For a bounded Lipschitz domain Ω, the restriction of this convolution to Ω

therefore defines a bounded operator from L2(Ω) to H2(Ω).
This implies that Aη

k is bounded from L2(Ω)2 to L2(Ω)2 and curlAη
k even maps

L2(Ω)2 boundedly into H1(Ω). Hence Aη
k is bounded from L2(Ω)2 to H(curl,Ω).

For Bν
k , we see that it maps H(curl,Ω) boundedly to H1(Ω)2, hence to H(curl,Ω).

�

The main question to be answered here is under what conditions on the coefficients
η, ν the volume integral operator I − Aη

k − Bν
k is Fredholm in the space H(curl,Ω).

Equivalently, when is the number 1 not a member of the essential spectrum (see (4.1))
of the operator Aη

k + Bν
k . More generally, the aim is to determine σess(A

η
k + Bν

k) in
dependence of the coefficients η and ν. This is the subject of Section 4 below.
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3.2. The magnetic formulation: H3 as unknown. We start once more from the
system (3.2) and reduce it to a second order equation, this time by eliminating the
electric field:

(3.8) −(∆ + k2)H3 = curl j− ikm3 .

The application of Lemma 3.1 leads to

H3 −H0
3 = gk ∗ curl j− ikgk ∗m3 = ik curl gk ∗ (ηχΩE) + k2gk ∗

(

(µr − 1)χΩH3

)

.

The remaining E on the right hand side is eliminated using

curlH3 + ikǫrE = J ,

finally leading to

H3 −H0
3 = curl gk ∗ (αχΩ curlH3) + k2gk ∗ (βχΩH3)

with

(3.9) α = 1− 1
ǫr
, β = µr − 1 .

Here we used the simplifying assumption that the current density is supported in the
complement of Ω, so that χΩJ = 0. Otherwise there would appear another term on
the right hand side.

We can write this VIE in the form

(3.10) H3 − Cα
kH3 −Dβ

kH3 = H0
3

with the integral operators

Cα
k u = curl gk ∗ (αχΩ curl u)(3.11)

Dβ
kH3 = k2gk ∗ (βχΩu) .(3.12)

The natural function space is now simply H1(Ω), and the mapping properties of these
two integral operators are easy to observe.

Lemma 3.3. Let α, β ∈ L∞(Ω). Then Cα
k is a bounded operator in H1(Ω). The

operator Dβ
k maps L2(Ω) boundedly to H2(Ω), thus it is compact in H1(Ω).

The question to be answered in the next section is to determine σess(C
α
k +Dβ

k ).

4. Analysis of the VIE in the TE case

In order to determine the Fredholm properties of the VIEs (3.4) and (3.10), we

study the essential spectrum of the operators Aη
k + Bν

k and Cα
k +Dβ

k using methods
developed in [8, 9, 7] and some properties specific to the two-dimensional case.

As definition of the essential spectrum σess(A) of a bounded operator in a Banach
space we choose

(4.1) σess(A) = {λ ∈ C | λI− A is not Fredholm} .

Among the many possible different definitions of the essential spectrum, this one is
sometimes called the Wolf essential spectrum. It is invariant under compact pertur-
bations. Many of the operators studied in the following, in particular in the case of
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piecewise constant coefficients, can be reduced to compact perturbations of selfad-
joint operators in some Hilbert spaces, which implies that if they are Fredholm, they
are of index zero.

In this section, we first assume that the coefficients are piecewise constant. This
means that α, β, η, ν are complex numbers and the volume integral operators depend
linearly on these numbers:

Aη
k = ηA1

k ; Bν
k = νB1

k ; Cα
k = αC1

k ; Dβ
k = βD1

k .

The essential spectrum being invariant with respect to compact perturbations of
the operators, we can further simplify the VIEs by replacing the fundamental solution
of the Helmholtz equation by the one of the Laplace equation.

Lemma 4.1. Let g0(x) = − 1
2π

log |x|. Then for any k ∈ C the convolution by gk − g0
is a pseudodifferential operator of order −4 on R2.

Proof. This can be found in the book [17], but it is seen most easily by comparing
the symbols, i.e. the Fourier transforms:

1

|ξ|2 − k2
−

1

|ξ|2
=

k2

(|ξ|2 − k2)|ξ|2

�

In particular, the convolution by this difference gk − g0 maps L2(Ω) boundedly to
H4(Ω) for any bounded Lipschitz domain Ω.

We now let the operators A0, B0, C0, D0 be defined like A1
k, B

1
k, C

1
k , D

1
k, but for

k = 0. More precisely

A0E = −(∇ div)g0 ∗ (χΩE)(4.2)

B0E = curl g0 ∗ (χΩ curlE)(4.3)

C0u = curl g0 ∗ (χΩ curlu)(4.4)

D0u = 0 .(4.5)

Corollary 4.2. The operators

A1
k −A0, B

1
k − B0 : H(curl,Ω) → H(curl,Ω) and

C1
k − C0, D

1
k −D0 : H

1(Ω) → H1(Ω)

are compact.

Our task is now reduced to finding the essential spectrum of the operators ηA0+νB0

and αC0 + βD0.

4.1. Analysis of the electric formulation. We want to determine the essential
spectrum of the operator ηA0 + νB0 in H(curl,Ω) for any η, ν ∈ C. In order to
reduce this problem to a better-known one, we use the technique described in [8, 9] of
extension by integration by parts. This transforms the strongly singular VIE into an
equivalent system coupling a weakly singular VIE with a boundary integral equation.

We use the definitions (4.2)–(4.3), where the derivatives and the convolution com-
mute as operations on functions or distributions on R2. The multiplication by the
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characteristic function χΩ is understood as the operator of extension of a function
defined on Ω by zero outside of Ω. Derivatives do not commute with χΩ, but we have
the formulas of integration by parts or weak form of Green’s formulas

div χΩE = χΩ divE− γ′n · E for E ∈ H(div,Ω)(4.6)

curlχΩE = χΩ curlE− γ′n×E for E ∈ H(curl,Ω) .(4.7)

Here the embedding γ′ : H− 1

2 (Γ) → H−1
comp(R

2) is the adjoint of the trace operator,
and

E 7→ n · E : H(div,Ω) → H− 1

2 (Γ) and

E 7→ n× E : H(curl,Ω) → H− 1

2 (Γ)

are the normal, respectively tangential, boundary trace mappings.

4.1.1. The electric operator. For E ∈ H(div,Ω) we can now write

(4.8) A0E = −∇N divE+∇Sn · E .

Here N is the Newton potential

N u(x) =

∫

Ω

g0(x− y) u(y) dy

and S is the harmonic single layer potential

S v(x) =

∫

Γ

g0(x− y) v(y) ds(y) .

Using the fact that the Newton potential is a right inverse of −∆ and that single
layer potentials are harmonic on the complement of Γ, we see that (4.8) implies for
any E ∈ H(div,Ω)

(4.9) divA0E = divE.

We now split L2(Ω)2 into an orthogonal sum

(4.10) L2(Ω)2 = ∇H1
0 (Ω)⊕H(div 0,Ω)

where the second summand is defined by this orthogonality. Later on in Section 5 we
will also need the orthogonal decomposition

(4.11) L2(Ω)2 = ∇H1(Ω)⊕H0(curl 0,Ω) .

We observe that in (4.10) both summands are invariant subspaces of A0: On ϕ ∈
H1

0 (Ω), ∇ commutes with χΩ, so that

A0∇ϕ = −∇ div g0 ∗ (χΩ ∇ϕ)

= −∇ div∇ g0 ∗ (χΩϕ) = ∇ϕ .

That is, A0 acts as the identity on the first summand in (4.10). According to (4.9),
A0 maps the second summand into itself.
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Therefore we only need to study the spectral properties of A0 on H(div 0,Ω).
Taking the normal trace of (4.8) and using the jump relations of the single layer
potential gives

(4.12) n · A0E = n ·∇S n · E = 1
2
n · E+K ′ n · E

with the integral operator of the normal derivative of the single layer potential on Γ

(4.13) K ′u(x) =

∫

Γ

∂n(x)g0(x− y)u(y) ds(y) (x ∈ Γ) .

The extension method then consists in considering n ·E as an independent unknown
and writing the equation for the resolvent of A0

λE− A0E = F

as the system that we obtained for E ∈ H(div 0,Ω) and v = n · E ∈ H− 1

2 (Γ), where
w = n · F:

(

λE−∇S v
λv − (1

2
I+K ′)v

)

=

(

F

w

)

Due to its triangular nature, this latter system is easy to analyze: The terms on the
diagonal are λI and λI− (1

2
I+K ′) and their invertibility or Fredholmness determines

the corresponding property of A0.
As a tool, we need the essential spectrum of the operator ∂nS = 1

2
I + K ′ in the

space H− 1

2 (Γ). We write

(4.14) Σ = σess(
1
2
I+K ′) .

The following result is known [10, 11, 6]

Lemma 4.3. Let Γ be the boundary of a bounded Lipschitz domain Ω ⊂ R2. Then

1

2
I+K ′ : H− 1

2 (Γ) → H− 1

2 (Γ)

is a selfadjoint contraction with respect to a certain scalar product in H− 1

2 (Γ). Its
essential spectrum Σ is a compact subset of the open interval (0, 1).
If Γ is smooth (of class C1+α, α > 0), then K ′ is compact, hence Σ = {1

2
}.

If Γ is piecewise smooth with corner angles ωj ⊂ (0, 2π), then Σ is an interval con-
taining 1

2
, namely the convex hull of the numbers

ωj

2π
and 1−

ωj

2π
.

As a result of the extension method, we obtain the essential spectrum of A0.

Theorem 4.4. Let Ω ⊂ R2 be a bounded Lipschitz domain. The essential spectrum
of the operator A0 in L2(Ω)2 is given by

σess(A0) = {0} ∪ Σ ∪ {1}

where Σ is defined in (4.14). The operator A0 acts as a bounded operator in each one
of the spaces H(div,Ω) and H(curl,Ω). In both spaces, the essential spectrum is the
same as in L2(Ω)2.
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Proof. A quick way to prove that the extension method described above does indeed
lead to a characterization of the essential spectrum of A0 is to use the well-known
“recombination lemma”, namely that for two linear operators

S : Y → X and T : X → Y

the two products ST and TS are spectrally equivalent outside zero. This means that
for λ 6= 0, the two operators λIX −ST and λIY −TS are simultaneously Fredholm or
not and have the same kernel and cokernel dimensions. For a proof, see [9, Lemma
4.1] or [13, p. 38].

In our case, we factorize A0 in H(div 0,Ω) as A0 = ST with

S : H− 1

2 (Γ) → H(div 0,Ω) ; Sv = ∇S v ,

T : H(div 0,Ω) → H− 1

2 (Γ) ; TE = n · E .

Thus A0 is spectrally equivalent outside zero to

TS = n ·∇S =
1

2
I+K ′ on H− 1

2 (Γ) .

That λ = 0 is in the essential spectrum follows from (4.8) directly: A0 = 0 on the
space

H0(div 0,Ω) = {E ∈ H(div,Ω) | divE = 0,n · E = 0} .

Thus on H(div 0,Ω), the essential spectrum is {0} ∪ Σ, and together with the de-
composition (4.10) and A0|∇H1

0
(Ω) = I, we obtain σess(A0) = {0} ∪ Σ ∪ {1}. The

essential spectrum is the same in H(div,Ω) and in H(curl,Ω), because both spaces

are invariant under A0, and the operator S defined above maps H− 1

2 (Γ) in fact into
H(curl,Ω) ∩H(div 0,Ω).

�

4.1.2. The magnetic operator. We can proceed along the same lines for the operator
B0 defined in (4.3). Using the integration by parts formula (4.7), we get for E ∈
H(curl,Ω)

B0E = curl curl g0 ∗ (χΩE) + curlS n× E

= E−A0E+ curlS n× E

If E ∈ H(curl,Ω) ∩H(div,Ω), we can further reduce this using (4.8) to

(4.15) B0E = E+∇N divE−∇S n · E+ curlSn× E .

If we want to use the extension technique like we did for A0, we can reduce B0 to
an equivalent boundary integral equation, but we now need both the normal and
tangential traces on the boundary. For this we use the orthogonal sum

(4.16) H(curl,Ω) = ∇H1
0 (Ω)⊕X with X = H(curl,Ω) ∩H(div 0,Ω) .

Note that this decomposition is orthogonal both with respect to the L2 scalar product
and the H(curl) scalar product.
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On ∇H1
0 (Ω) we have B0 = 0 by definition. On X, we use (4.15) and the recombi-

nation lemma and factorize I−B0 = ST , where S and T are now defined as

S : H− 1

2 (Γ)2 → X ; S

(

v

w

)

= ∇S v − curlSw ,

T : X → H− 1

2 (Γ)2 ; TE =

(

n · E

n× E

)

.

The recombined operator TS is a 2×2 matrix of boundary integral operators involving
the normal and tangential derivatives of the single layer potential:

1
2
I+K ′ = n ·∇S = −n× curlS

and
∂tS = n×∇S = n · curlS

Thus I − B0 on X will be spectrally equivalent outside zero to the matrix operator
on H− 1

2 (Γ)2

(4.17) TS =

(

1
2
I+K ′ −∂tS
∂tS

1
2
I+K ′

)

Even for a smooth boundary Γ, the essential spectrum of this matrix of operators is
not obvious, because whereas K ′ is then compact, the strongly singular integral oper-
ator ∂tS is not compact. But for smooth Γ we can use symbols of pseudodifferential
operators to find the essential spectrum of the operator matrix, and for piecewise
smooth Γ we can use Mellin transformation to the same end, but we have not seen
an obvious way to find the essential spectrum of TS for a general bounded Lipschitz
boundary Γ.

We will instead turn around the equivalence between I − B0 and TS by finding a
different way to analyze B0 and thence deduce, as a corollary, the spectrum of TS in
(4.17).

We go back to the definition (4.3) of B0 and use curl curl = −∆ to obtain
curlB0E = χΩ curlE. On the space H(curl,Ω), we have therefore

(4.18) curlB0E = curlE .

This implies

B0E = curl g0 ∗ (χΩ curlE) = curl g0 ∗ (χΩ curlB0E) = B2
0E .

Proposition 4.5. The operator B0 on H(curl,Ω) is a projection operator.

Both the kernel of B0, which is H(curl 0,Ω), and the image of B0, which is the
orthogonal complement of H(curl 0,Ω), hence contains curlH1

0 (Ω) ∩H(curl,Ω), are
of infinite dimension. Therefore the essential spectrum is equal to the spectrum:

σess(B0) = {0, 1} .

As a corollary, we get the same essential spectrum for the matrix operator TS in
(4.17), now valid for any bounded Lipschitz Γ. But by a careful inspection of the
recombination argument we can do more: We have B0S = 0 and therefore

(TS)2 = T (ST )S = T (I−B0)S = TS .
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Corollary 4.6. For any bounded Lipschitz domain Ω ⊂ R
2 with boundary Γ, the

matrix TS of boundary integral operators in (4.17) is a projection in H− 1

2 (Γ)2.

This result is equivalent to the following two interesting relations for the tangential
derivative of the single layer potential (Hilbert transform) on a Lipschitz boundary:

(4.19) (∂tS )2 = 1
4
I− (K ′)2 and ∂tS K ′ +K ′ ∂tS = 0 .

4.1.3. The electromagnetic operator. We combine now the analysis for the operators
A0 and B0 and find the essential spectrum of ηA0 + νB0. As before, we use the
orthogonal splitting (4.16) into electrostatic fields and electrodynamic waves. On the
first summand ∇H1

0 (Ω), we have ηA0+νB0 = ηI. Hence η ∈ σess(ηA0+νB0), and we
only need to consider the operator in the second summand X. We use the extension
method, and after seeing how this worked for the operator B0, we do not use the
extension by the normal and tangential traces on the boundary, but by curlE in Ω
and n · E on Γ. Thus we write for E ∈ X

(4.20) ηA0 + νB0 = η∇Sn ·E+ ν curl g0 ∗ (χΩ curlE)

We see that we can factorize ηA0 + νB0 = ST , where S and T are now defined as

S : H− 1

2 (Γ)× L2(Ω) → X ; S

(

v

F

)

= η∇S v + ν curlN F ,

T : X → H− 1

2 (Γ)× L2(Ω) ; TE =

(

n · E

curlE

)

.

The recombined operator TS now acts on H− 1

2 (Γ)× L2(Ω) and is given by

TS

(

v

F

)

=

(

ηn ·∇S v + νn · curlN F

ν curl curlN F

)

=

(

η(1
2
I+K ′)v + νn · curlN F

νF

)

The essential spectrum of the triangular matrix

TS =

(

η(1
2
I+K ′) νn · curlN
0 νI

)

is obvious: σess(TS) = ηΣ ∪ {ν}. To this we might have to add the point {0}.
Let us show that 0 is not in the essential spectrum if η 6= 0 and ν 6= 0. We know

that 0 is then not in the essential spectrum of TS because 0 6∈ Σ. Thus TS is a
Fredholm operator. One can see that T is also a Fredholm operator, because the
boundary value problem

divE = 0 and curlE = F in Ω

n · E = v on Γ

has, for any F ∈ L2(Ω), v ∈ H− 1

2 (Γ), a solution E ∈ X, as soon as
∫

Γj
v ds = 0 for

all connected components Γj of Γ. The solution is unique up to a finite-dimensional
kernel. For a detailed proof of the corresponding result in R3, see [1, Prop. 3.14].
Now if TS and T are Fredholm, then S is Fredholm, too. Hence ST is a Fredholm
operator, and 0 6∈ σess(ST ).

We have proved the main result of this section
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Theorem 4.7. Let Ω ⊂ R
2 be a bounded Lipschitz domain. For any η, ν ∈ C, the

essential spectrum of the operator ηA0 + νB0 in the space H(curl,Ω) is given by

σess(ηA0 + νB0) = {η} ∪ ηΣ ∪ {ν} .

Corollary 4.8. Let Ω ⊂ R2 be a bounded Lipschitz domain. Let the coefficients
ǫr and µr be complex constants. Then the integral operator of the VIE (3.4) is a
Fredholm operator in H(curl,Ω) if and only if

ǫr 6= 0 , µr 6= 0 and ǫr 6= 1−
1

σ
for all σ ∈ Σ .

If the boundary Γ is smooth, then the condition is

ǫr 6∈ {0,−1} and µr 6= 0 .

Proof. The operator I − Aη
k − Bν

k is Fredholm if and only if 1 6∈ σess(A
η
k − Bν

k) =
σess(ηA0 + νB0). According to the theorem, this is equivalent to the conditions

1 6= η, 1 6= ν, 1 6= ησ for all σ ∈ Σ .

With the definitions (3.5), this is easily seen to be equivalent to the stated conditions
on ǫr and µr. For smooth Γ, we use the fact that Σ = {1

2
}. �

4.2. Analysis of the magnetic formulation. In this paragraph, we study Fred-
holm properties of the VIE (3.10) for the magnetic field H3 in H1(Ω). Since the
magnetic formulation describes the same TE transmission problem (2.6) as the elec-
tric formulation studied in the previous paragraph, we expect equivalent results to
those given in Theorem 4.7 and Corollary 4.8.

Whereas previously we had a two-dimensional Maxwell system that in some re-
spects closely resembles the full three-dimensional Maxwell system, we have now,
however, a scalar Helmholtz problem that is specific to the two-dimensional situa-
tion. For the analysis of the scalar VIE we use similar techniques as before, namely
the partial integration and extension method, but we can take advantage of the sim-
pler structure and allow more general coefficients. In the following, we assume

(4.21) α ∈ C1(Ω) ; β ∈ L∞(Ω) .

Note that according to the definition (3.9) of α, this already includes the condition
ǫr 6= 0 on Ω. Recall that in the absence of further specification, we assume that
Ω ⊂ R2 is a bounded Lipschitz domain.

According to Lemma 3.3, the operator Dβ
k is compact. This implies that it, and

with it the coefficient β, hence the magnetic permeability µ, will disappear from the
further discussion. It has no influence on the Fredholm properties of the TE problem.
Note that also in the previous paragraph the only condition on µ we encountered was
µr 6= 0. This was simply a necessary prerequisite for the definition of the coefficient
ν in the electric VIE (3.4). The condition ν 6= 1 that is required according to
Theorem 4.7 is always satisfied if ν is defined from µr as in (3.5).

Theorem 4.9. Let Ω ⊂ R2 be a bounded Lipschitz domain. Let the coefficients α
and β be defined by

α = 1− 1
ǫr
, β = µr − 1
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and satisfy the conditions (4.21). Then the operator I − Cα
k −Dβ

k of the VIE (3.10)
is Fredholm in H1(Ω) if and only if the boundary integral operator

(1− α
2
)I− αK : H1/2(Γ) → H1/2(Γ)

is Fredholm, where K is the boundary integral operator of the double layer potential,
see (4.23) below.
A sufficient condition for this is that for all x ∈ Γ and σ ∈ Σ (defined in (4.14))

ǫr(x) 6=
σ

σ − 1
.

If ǫr is constant, then this condition is also necessary.
If Γ is smooth, the necessary and sufficient condition is ǫr(x) 6= −1 for all x ∈ Γ.

Proof. Our task is reduced to the determination of the Fredholm properties of the
operator I− Cα

k defined in (3.11):

Cα
k u = curl gk ∗ (αχΩ curlu) .

We use the partial integration formula (dual to (4.7))

(4.22) curlχΩu = χΩ curl u+ γ′tγu for u ∈ H1(Ω) ,

where t is the unit tangent vector and γu is the trace of u on Γ. With the product rule
α curlu = curl(αu)− u curlα and the identity curl gk ∗ curl = −∆gk∗ = I+ k2gk∗,
we can write

Cα
k u = curl gk ∗ (α curlχΩu)− curl gk ∗ (γ

′tγαu)

= curl gk ∗ (curl(αχΩu))− curl gk ∗ (χΩu curlα))− curl gk ∗ (γ
′tγαu)

= αu+ C1u+ Dk(γαu) .

Here C1 is the weakly singular integral operator given by

C1u(x) = k2
∫

Ω

gk(x− y)α(y)u(y) dy− curl

∫

Ω

gk(x− y)u(y) curlα(y) dy .

It maps L2(Ω) boundedly to H1(Ω) and is therefore a compact operator in H1(Ω).
The operator Dk is the Helmholtz double layer potential

− curl gk ∗ (γ
′tγαu)(x) = Dk(γαu)(x) =

∫

Γ

∂n(y)gk(x− y)α(y)u(y) dy (x ∈ Ω) .

Thus

(I− Cα
k )u = (1− α)u− C1u− Dk(γαu) .

Modulo compact operators, we are left with the operator

u 7→ (1− α)u− D0(γαu) =
1
ǫr

(

u− ǫrD0(γαu)
)

,

where D0 is the harmonic double layer potential. Since by assumption ǫr 6= 0 on Ω, we
only need to consider the operator I− ǫrD0(γα·). By the recombination lemma, the
Fredholm properties of this operator on H1(Ω) are the same as those of the operator

I− γ(αǫrD0) on H
1

2 (Γ) .
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Here we used the factorization ǫrD0(γα·) = ST with

S : H
1

2 (Γ) → H1(Ω) ; Sv = ǫrD0v ,

T : H1(Ω) → H
1

2 (Γ) ; Tu = γ(αu) .

We then use the jump relation γD0 = −1
2
I+K for the double layer potential with

(4.23) Kv(x) =

∫

Γ

∂n(y)g0(x− y)v(y) ds(y) (x ∈ Γ) .

Thus
I− γ(αǫrD0) = I+ αǫr

2
I− αǫrK = ǫr

(

( 1
ǫr
+ α

2
)I− αK

)

Now 1
ǫr
+ α

2
= 1− α

2
, and we see that we have to determine the Fredholm properties

of the boundary integral operator

G := (1− α
2
)I− αK = I− α(1

2
I+K)

as claimed. Since K is the adjoint operator of K ′, we have

σess(
1
2
I+K) = σess(

1
2
I+K ′) = Σ .

If α is constant on Γ, we see that G is Fredholm if and only if ασ 6= 1 for all σ ∈ Σ.
This is equivalent to the stated condition ǫr 6=

σ
σ−1

. If α is not constant on Γ, we can
use a standard localization procedure based on the fact that the commutator between
the singular integral operator K and the operator of multiplication with a smooth
function is compact in H

1

2 (Γ). If the condition ǫr(x) 6=
σ

σ−1
for all σ ∈ Σ is satisfied,

one can construct a local regularizer using an inverse modulo compact operators for
the operator with ǫr frozen in the point x. These local regularizers are then patched
together using a partition of unity, giving a global regularizer that shows that G is
Fredholm. We omit the technical details here, see [19, Section 3]. Finally, if Γ is
smooth, then K ′ is compact, therefore G is Fredholm if and only if (1− α

2
)I is. This

is the case if and only if α(x) 6= 2 for all x ∈ Γ, which is equivalent to ǫr(x) 6= −1. �

5. Symmetry of the spectrum

The condition on ǫr in Theorem 4.9: ǫr 6=
σ

σ−1
is not the same as the one given in

Corollary 4.8: ǫr 6= 1− 1
σ
. They coincide only if

σ ∈ Σ ⇐⇒ 1− σ ∈ Σ.

This symmetry of the essential spectrum of the operator 1
2
I + K ′ with respect to

the point 1
2
is a non-trivial result that may be new. It can in fact be seen as a

consequence of the fact that both VIEs considered in Corollary 4.8 via the electric
field formulation and in Theorem 4.9 via the magnetic field formulation are equivalent
to the same Maxwell transmission problem. Since this amounts to a very indirect
way of proving the result, we shall give an independent proof below that does not use
volume integral equations. Note that the result is known for smooth domains where
Σ = {1

2
} and for piecewise smooth domains where Mellin analysis shows that Σ is an

interval with midpoint 1
2
, but we show it for arbitrary bounded Lipschitz domains in

R2. It is probably not true in higher dimensions.
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Theorem 5.1. Let Ω ⊂ R
2 be a bounded domain with a Lipschitz boundary Γ. Let

K be the boundary integral operator of the harmonic double layer potential acting on
H

1

2 (Γ). Then

(5.1) σess(K) = σess(−K) .

This symmetry implies that the operators 1
2
I + K and 1

2
I −K in H

1

2 (Γ) and the

operators 1
2
I + K ′ and 1

2
I − K ′ in H− 1

2 (Γ) all have the same essential spectrum Σ,
and the same holds for the Helmholtz double layer potential.

The proof uses the equivalence between the boundary integral equation and a scalar
transmission problem together with the following known symmetry result for scalar
elliptic boundary value problems.

Lemma 5.2. Let Ω ⊂ R2 be a bounded Lipschitz domain and let the complex-valued
coefficient function ǫ ∈ L∞(Ω) satisfy 1

ǫ
∈ L∞(Ω). Then

(5.2) div ǫ∇ : H1
0 (Ω) → H−1(Ω)

is Fredholm if and only if

(5.3) div 1
ǫ
∇ : H1(Ω) →

(

H1(Ω)
)′

is Fredholm.

This lemma is due to [2, Theorem 4.6], where it was proved under the hypotheses
that Ω is simply connected and that ǫ is real-valued. We give an independent proof
that does not need these additional assumptions. Note that, as ∆ : H1

0 (Ω) → H−1(Ω)
is an isomorphism, the operator in (5.2) is Fredholm if and only if the mapping u 7→ w
defined by

(5.4)

∫

Ω

ǫ∇u ·∇ v dx =

∫

Ω

∇w ·∇ v dx for all v ∈ H1
0 (Ω)

is Fredholm in H1
0 (Ω). Similarly, the operator in (5.3) is Fredholm if and only if the

mapping u 7→ w defined by

(5.5)

∫

Ω

1
ǫ
∇u ·∇ v dx =

∫

Ω

∇w ·∇ v dx for all v ∈ H1(Ω)

is Fredholm in H1(Ω).

Proof. We use a simple linear algebra lemma whose elementary proof we leave to the
reader.

Lemma 5.3. Let X, Y , Z be vector spaces and S : Y → Z, T : X → Y be linear
operators such that S is surjective and T is injective. Then T induces an isomor-
phism between ker(ST ) and ker S ∩ imT , and S induces an isomorphism between the
quotient spaces Y/(kerS + imT ) and Z/ im(ST ). In particular, ST : X → Z is an
isomorphism if and only if Y = kerS ⊕ imT , and ST is a Fredholm operator if and
only if

dim(kerS ∩ imT ) <∞ and codim(ker S + imT ) <∞ .
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We apply this lemma to the situation

div : L2(Ω)2 → H−1(Ω) , ǫ∇ : H1
0 (Ω) → L2(Ω)2

and obtain that div ǫ∇ : H1
0 (Ω) → H−1(Ω) is Fredholm if and only if

dim(H(div 0,Ω) ∩ ǫ∇H1
0 (Ω)) <∞

and codim(H(div 0,Ω) + ǫ∇H1
0 (Ω)) <∞ in L2(Ω)2 .

Using the well known fact that there is a finite dimensional space H0 such that
H(div 0,Ω) = curlH1(Ω) + H0, we see that this condition is equivalent to the fact
that
(5.6)

dim(curlH1(Ω) ∩ ǫ∇H1
0 (Ω)) <∞ and codim(curlH1(Ω) + ǫ∇H1

0 (Ω)) <∞ .

Dividing by ǫ, we see that the latter condition is equivalent to

dim(1
ǫ
curlH1(Ω) ∩∇H1

0 (Ω)) <∞ and codim(1
ǫ
curlH1(Ω) +∇H1

0 (Ω)) <∞ .

Using the definition (4.11), it is also well known that there exists a finite dimensional
space H1 such that H0(curl 0,Ω) = ∇H1

0 (Ω) + H1, and therefore we obtain the
equivalent condition

dim(1
ǫ
curlH1(Ω)∩H0(curl 0,Ω)) <∞ and codim(1

ǫ
curlH1(Ω)+H0(curl 0,Ω)) <∞ .

According to Lemma 5.3, applied to the situation

curl : L2(Ω)2 →
(

H1(Ω)
)′
, 1

ǫ
curl : H1(Ω) → L2(Ω)2

the latter condition is equivalent to the Fredholmness of the operator

curl 1
ǫ
curl : H1(Ω) →

(

H1(Ω)
)′
.

We finally note that in two dimensions,

curl 1
ǫ
curl = − div 1

ǫ
∇ .

Therefore the last condition expresses the fact that the operator in (5.3) is Fredholm.
�

In order to apply this result to our boundary integral operator, we consider the
following situation: Ω = Ω− ∪ Γ ∪Ω+, where the interior interface Γ is Lipschitz and
satisfies Γ = ∂Ω− = ∂Ω+ \ ∂Ω. The coefficient function ǫ is piecewise constant, ǫ = 1
in Ω+, ǫ = ǫr ∈ C in Ω−. Define K ′ as the boundary integral operator of the normal
derivative of the single layer potential, adjoint of the double layer potential, acting
in the space H− 1

2 (Γ), see (4.13). In this situation, we have the following result.

Lemma 5.4. The operator div ǫ∇, acting either from H1
0 (Ω) to H−1(Ω) or from

H1(Ω) to
(

H1(Ω)
)′
, is Fredholm if and only if the integral operator

ǫr + 1

2
I+ (ǫr − 1)K ′

is a Fredholm operator in H− 1

2 (Γ).
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Proof. We consider the first case (Dirichlet condition) of div ǫ∇ defined on H1
0 (Ω).

The second case (Neumann condition) is treated very similarly, the space H1
0 (Ω) being

replaced by H1
∗(Ω), the space of H1(Ω) functions of mean value zero. We use the

variational formulation (5.4) for the operator div ǫ∇ on H1
0 (Ω). We split the space

H1
0 (Ω) according to

H1
0 (Ω) = H1

0,Γ(Ω)⊕ H
1
0,Γ(Ω) ,

where
H1

0,Γ(Ω) = {u ∈ H1
0 (Ω) | u|Γ = 0} = H1

0 (Ω
−)⊕H1

0(Ω
+)

and the second term H 1
0,Γ(Ω) is defined as the orthogonal complement of H1

0,Γ(Ω) in

H1
0 (Ω). Orthogonality is understood in the sense of the H1

0 scalar product appearing
in (5.4).

The subspace H1
0,Γ(Ω) is invariant under multiplication by ǫ, and it is also invariant

under the operator ∆−1 div ǫ∇ defined by the variational formulation (5.4). This
operator is invertible on this subspace as soon as ǫr 6= 0. Indeed, if we decompose
orthogonally

u = u− + u+ + u0 , w = w− + w+ + w0

with u±, w± ∈ H1
0 (Ω

±) and u0, w0 ∈ H 1
0,Γ(Ω), then we can partially solve (5.4):

u+ = w+ , u− = 1
ǫ
w− .

This shows that our operator div ǫ∇ is Fredholm if and only if in the restriction of
the variational formulation (5.4) to H 1

0,Γ(Ω)

(5.7)

∫

Ω

ǫ∇u0 ·∇ v dx =

∫

Ω

∇w0 ·∇ v dx for all v ∈ H
1
0,Γ(Ω)

the mapping u0 7→ w0 is a Fredholm operator in H 1
0,Γ(Ω). From the definition of

H 1
0,Γ(Ω) as orthogonal complement we find the characterization of this space

H
1
0,Γ(Ω) = {u0 ∈ H1

0,Γ(Ω) | ∆u0 = 0 in Ω− ∪ Ω+} .

The standard representation formula shows that the functions in this space are rep-
resented as single layer potentials

u0(x) = SDφ(x) =

∫

Γ

GD(x, y)φ(y) ds(y) .

Here GD is the Green function of the domain Ω, that is the fundamental solution
of −∆ satisfying homogeneous Dirichlet boundary conditions on the outer boundary
∂Ω. It is a classical result that GD(x, y) = g0(x − y) + hD(x, y) with a C∞(Ω × Ω)
function hD. The jump relations for the single layer potential SD are then the same
as for the single layer potential S , in particular for the one-sided traces of the normal
derivatives ∂+n and ∂−n on Γ

∂±n SDφ = ∓1
2
φ+K ′

Dφ

where K ′
D − K ′ is a compact operator on H− 1

2 (Γ), due to the smoothness of hD.
The representation of u0 by a single layer potential defines an isomorphism between
H− 1

2 (Γ) and H 1
0,Γ(Ω), with inverse given by the jump φ = ∂−n u0 − ∂+n u0.
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We can now use Green’s formula in Ω+ and Ω− for (5.7) and see that this variational
formulation is equivalent to the transmission condition

ǫr∂
−
n u0 − ∂+n u0 = ∂−n w0 − ∂+n w0 .

Representing u0 = SDφ and w0 = SDψ and using the jump relations, we find the
equivalent boundary integral equation

(ǫr + 1)1
2
φ+ (ǫr − 1)K ′

Dφ = ψ .

We have thus shown that the operator (ǫr +1)1
2
I+ (ǫr − 1)K ′

D is Fredholm in H
1

2 (Γ)
if and only if div ǫ∇ is Fredholm from H1

0 (Ω) to its dual space.
This proves the “Dirichlet” version of the lemma. In order to show the “Neumann”

version, one can repeat the same steps, replacing H1
0 (Ω) by H1

∗ (Ω) and the Green
function GD by the Neumann function GN , that is the fundamental solution satisfying
homogeneous Neumann boundary conditions on ∂Ω. One obtains a boundary integral
equation involving a “Neumann” version K ′

N ofK ′, which will also differ by a compact
operator from K ′ and thus have the same essential spectrum as either K ′

D or K ′. �

Combining Lemmas 5.2 and 5.4, it is now easy to finish the proof of Theorem 5.1.
We find that for any ǫr ∈ C \ {0}, the operator

(ǫr + 1)1
2
I+ (ǫr − 1)K ′

is Fredholm in H− 1

2 (Γ) if and only if the operator

( 1
ǫr
+ 1)1

2
I+ ( 1

ǫr
− 1)K ′

is Fredholm. Setting ǫr = 2λ+1
2λ−1

, we have proved that for any λ 6= ±1
2
, λI + K ′

is Fredholm if and only if λI − K ′ is Fredholm, which concludes the proof of the
theorem.
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