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A Remark on the Stability of Peakons for the Degasperis-Procesi Equation

 

Introduction

In this paper, we consider the Degasperis-Procesi equation (DP)

u t -u txx + 4uu x = 3u x u xx + uu xxx , (t, x) ∈ R + × R, (1.1) 
with u(0) = u 0 ∈ L 2 (R) and (1 -∂ 2 x )u 0 ∈ M + (R). The DP equation is completely integrable (see [START_REF] Degasperis | A new integrable equation with peakon solutions[END_REF]) and has been proved to be physically relevant for water waves (see [START_REF] Constantin | The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[END_REF]). It possesses, among others, the following conservation laws

E(u) = R yv = R 4v 2 + 5v 2 x + v 2 xx , F (u) = R u 3 = R -v 3 xx + 12vv 2 xx -48v 2 v xx + 64v 3 , (1.2) 
where y = (1 -∂ 2 x )u and v = (4 -∂ 2 x ) -1 u. One can notice that the conservation law E(•) is equivalent to

• 2 L 2 (R)
. Indeed, using integration by parts (we assume that u(±∞) = v(±∞) = v x (±∞) = 0), it holds

u 2 L 2 (R) = R u 2 = R (4v -v xx ) 2 = R 16v 2 + 8v 2 x + v 2 xx ∼ E(u). (1.3) 
In the sequel we will denote u H = E(u).

(1.4)

Applying (1 -∂ 2 x ) -1 (•) to (1.1), we obtain

u t + 1 2 ∂ x u 2 + 3 2 (1 -∂ 2 x ) -1 ∂ x u 2 = 0, (t, x) ∈ R + × R. (1.5)
In this form, the DP equation admits explicit solitary waves called peakons (see [START_REF] Degasperis | A new integrable equation with peakon solutions[END_REF]) that are defined by

u(t, x) = ϕ c (x -ct) = cϕ(x -ct) = ce -|x-ct| , c ∈ R * , (t, x) ∈ R + × R. (1.6) 1 
Our goal is to simplify the proof given in [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] of the stability of a single peakon for the DP equation. Recall that the proof of the stability for the Camassa-Holm equation (CH) in [START_REF] Constantin | Stability of peakons[END_REF] follows from two integral relations between two conservation laws of CH, max R u and functions related to u. In [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] the proof is more complicated, since all the local maxima and minima of v = (4 -∂ 2

x ) -1 u are involved in the relations. In this paper we present a simplification of this proof, where only the maximum of v is involved in the relations. Our proof is thus closer to the proof for CH in [START_REF] Constantin | Stability of peakons[END_REF]. The main idea is the following: since u is L 2 -close to the peakon ϕ c (• -ξ), for some ξ ∈ R, and (1 -∂ 2

x )u ∈ M + (R), it is easy to check that u is actually C 0 -close to the peakon, and thus v is C 2 -close to the smooth-peakon:

ρ c (x -ξ) = (4 -∂ 2 x ) -1 ϕ c (x -ξ) = c 3 e -|x-ξ| - c 6 e -2|x-ξ| , x ∈ R. (1.7)
First, since ρ c , ρ ′ c and ρ ′′ c are very small with respect to the amplitude c outside of the interval Θ 0 = [-6.7, 6.7], we can restrict ourself to study v on Θ ξ = [ξ -6. 

Preliminaries

In this section, we briefly recall the global well-posedness results for the Cauchy problem of the DP equation (see [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF] and [START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF]), and its consequences. For I a finite or infinite time interval of R + , we denote by X (I) the function space 1

X (I) = u ∈ C I; H 1 (R) ∩ L ∞ I; W 1,1 (R) , u x ∈ L ∞ (I; BV (R)) . (2.1) 
Theorem 2.1 (Global Weak Solution; See [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF] and [START_REF] Liu | Global existence and blow-up phenomena for the Degasperis-Procesi equation[END_REF]). Assume that u 0 ∈ L 2 (R) with y 0 = (1 -∂ 2 x )u 0 ∈ M + (R). Then the DP equation has a unique global weak solution u ∈ X (R + ) such that 

y(t, •) = (1 -∂ 2 x )u(t, •) ∈ M + (R), ∀t ∈ R + (2.2) and |u x (t, x)| ≤ u(t, x), ∀(t, x) ∈ R + × R. ( 2 
(R) into L ∞ (R) lead to u L ∞ (R) ≤ 1 √ 2 u H 1 (R) ≤ u L 2 (R) .
(2.4)

Stability of peakons

In this section, we present our simplification of the proof of stability of peakons for the DP equation. 

y 0 = (1 -∂ 2 x )u 0 ∈ M + (R) (3.1)
and

u 0 -ϕ c H ≤ ε 2 , with 0 < ε < ε 0 , (3.2) then u(t, •) -ϕ c (• -ξ(t)) H ≤ C √ ε, ∀t ∈ [0, T [, (3.3) 
where ξ(t) ∈ R is the only point where the function v(t,

•) = (4 -∂ 2 x ) -1 u(t, •) attains its maximum.
We first recall that E(u) ∼ E(ϕ c ) and

F (u) ∼ F (ϕ c ) in R, if u ∼ ϕ c in L 2 (R)
, with y ∈ M + (R) (see for instance [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] or [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF]).

Lemma 3.1 (Control of Distances Between Energies; See [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF]).

Let u ∈ L 2 (R) with y = (1 -∂ 2 x )u ∈ M + (R). If u -ϕ c H ≤ ε 2 , then |E(u) -E(ϕ c )| ≤ O(ε 2 ) (3.4) and |F (u) -F (ϕ c )| ≤ O(ε 2 ), (3.5) 
where O(•) only depends on the speed c.

To prove Theorem 3.1, by the conservation of E(•), F (•) and the continuity of the map

t → u(t) from [0, T [ to H (since H ≃ L 2 ), it suffices to prove that for any function u ∈ L 2 (R) satisfying y = (1 -∂ 2 x )u ∈ M + (R), (3.4) and (3.5), if inf z∈R u -ϕ c (• -z) H ≤ ε 1/4 , (3.6) 
then u -ϕ c (• -ξ) H ≤ C √ ε, (3.7) 
where ξ ∈ R is the only point of maximum of v.

Let us present some important properties of smooth-peakons, defined in (1.7), which will play a crucial role in the proof of Theorem 3.1. The smooth-peakon ρ c belongs to H 3 (R) ֒→ C 2 (R) (by the Sobolev embedding) since ϕ c belongs to H 1 (R) (defined in (1.6)). It is a positive even function, which admits a single maximum c/6 at point 0, and decays at infinity to 0 (see Fig. 1a). Its derivative ρ ′ c belongs to H 2 (R) ֒→ C 1 (R), it is an odd function, which vanishes only at the origin and has negative values on [0, +∞[. It admits a a single minimum -c/12 at point ln2 and tends at infinity to 0 (see Fig. 1b). Its second derivative ρ ′′ c belongs to H 1 (R) ֒→ C 0 (R), it is an even function, which vanishes at ±ln2, takes positive values on ] -∞, -ln2[∪]ln2, +∞[ and negative values on [-ln2, ln2]. It admits a single minimum -c/3 at point 0 and two maxima c/24 at points ±ln4, and decays at infinity to 0 (see Fig. 1c).

Next, we will need the following estimates. 

Lemma 3.2 (C 0 , C 1 and C 2 Approximations). Let u ∈ L 2 (R) with y = (1 -∂ 2 x )u ∈ M + (R). If u -ϕ c H ≤ ε 1/4 , then u -ϕ c C 0 (R) + v -ρ c C 2 (R) ≤ O(ε 1/8 ) (3.8) and v -ρ c C 1 (R) ≤ O(ε 1/4
is equivalent to v H 2 (R) , since v H 2 (R) ≤ u H ≤ 5 v H 2 (R) . Then, assumption u is H-close to ϕ c implies that v is H 2 -close to ρ c . Now, using the Sobolev embedding of H 2 (R) into C 1 (R), we deduce (3.9).
For the first estimate, note that the assumption y = (1 (2.3)). Then, applying triangular inequality, and using that |ϕ ′ c | = ϕ c on R and (2.4), we have

-∂ 2 x )u ≥ 0 implies that u = (1 -∂ 2 x ) -1 y ≥ 0 and satisfies |u x | ≤ u on R (see
u -ϕ c H 1 (R) ≤ u H 1 (R) + ϕ c H 1 (R) ≤ 2 u L 2 (R) + 2 ϕ c L 2 (R) ≤ 2 u -ϕ c L 2 (R) + 4 ϕ c L 2 (R) ≤ O(ε 1/4 ) + O(1),
where ϕ c L 2 (R) = c. Therefore, applying the Gagliardo-Nirenberg inequality and using that u-ϕ c H ≤ ε 1/4 (with H ≃ L 2 ), we obtain

u -ϕ c C 0 (R) ≤ u -ϕ c 1/2 L 2 (R) u -ϕ c 1/2 H 1 (R) ≤ O(ε 1/8 ) O(ε 1/8 ) + O(1) ≤ O(ε 1/8 ) .
Finally to estimate the second term of the left-hand side of (3.8), we first notice that the continuity of (4

-∂ 2 x ) -1 (•) from H s (R) to H s+2 (R) and the above estimates ensure that v -ρ c H 3 = O(1) and v -ρ c H 2 = O(ε 1/4
) . These last estimates combined with the Gagliardo-Nirenberg inequality yield the result as above.

The following lemma specifies the distance to minimize for stability. Lemma 3.3 (Quadratic Identity; See [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF]). For any u ∈ L 2 (R) and ξ ∈ R, it holds

E(u) -E(ϕ c ) = u -ϕ c (• -ξ) 2 H + 4c v(ξ) - c 6 , (3.10) 
where v = (4 -∂ 2 x ) -1 u and ρ c (0) = c/6. Proof. We follow the idea of Constantin and Strauss with the CH equation (see [START_REF] Constantin | Stability of peakons[END_REF], Lemma 1). We compute

E(u -ϕ c (• -ξ)) = E(u) + E(ϕ c ) -2 (1 -∂ 2 x )ϕ c (• -ξ), (4 -∂ 2 x ) -1 u H -1 ,H 1 = E(u) + E(ϕ c ) -2 (1 -∂ 2 x )ϕ c (• -ξ), v H -1 ,H 1 , (3.11) 
where •, • H -1 ,H 1 denotes the duality bracket H -1 (R), H 1 (R). Now, using the definition of ϕ ′ c (• -ξ) and integration by parts, we have

(1 -∂ 2 x )ϕ c (• -ξ), v H -1 ,H 1 = R vϕ c (• -ξ) + R v x ϕ ′ c (• -ξ) = R vϕ c (• -ξ) + ξ -∞ v x ϕ c (• -ξ) - +∞ ξ v x ϕ c (• -ξ) = 2cv(ξ). (3.12)
Recalling that the energy of peakons is given by

E(ϕ c ) = (1 -∂ 2 x )ϕ c , (4 -∂ 2 x ) -1 ϕ c H -1 ,H 1 = R ρ c ϕ c + R ρ ′ c ϕ ′ c = R ρ c ϕ c + 0 -∞ ρ ′ c ϕ c - +∞ 0 ρ ′ c ϕ c = 2cρ c (0) = c 2 3 , (3.13) 
we obtain the lemma.

Now we will study carefully the local extrema of

v = (4 -∂ 2 x ) -1 u. Let u ∈ L 2 (R) with y = (1 -∂ 2 x )u ∈ M + (R)
, and assume that (3.6) holds for some z ∈ R. We consider the interval in which the mass of smooth-peakons is concentrated, and the interval in which the mass of second derivative of smoothpeakons is strictly negative. In the sequel of this paper, the notation α ≃ β means that 0.9 × β ≤ α ≤ 1.1 × β. We set, for any z ∈ R, One can clearly see that V 0 is a subset of Θ 0 (since 20/(20 -√ 399) > √ 2). We chose the values ±6.7 such that ρ c (±6.7) ≃ c/2400 ≃ 4.1 × 10 -4 c as in [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF]. Also, we have ρ ′ c (-6.7) = -ρ ′ c (6.7) ≃ 4.1 × 10 -4 c and ρ ′′ c (±6.7) ≃ 4.1 × 10 -4 c. Then ρ c , ρ ′ c and ρ ′′ c very small with respect to the amplitude c on R \ Θ 0 . We claim the following result.

Θ z = [z -6.

Lemma 3.4 (Uniqueness of the Local Maximum

). Let u ∈ L 2 (R) with y = (1 -∂ 2 x )u ∈ M + (R)
, that satisfies (3.6) for some z ∈ R. There exists ε 0 > 0 only depending on the speed c, such that if 0 < ε < ε 0 , then the function v = (4 -∂ 2

x ) -1 u admits a unique local extremum on Θ z . This extremum is a maximum, and it holds

v(x) ≤ c 300 , ∀x ∈ R \ Θ z , (3.16) u(x) ≤ c 300 , ∀x ∈ R \ Θ z . (3.17)
Proof.

The key is to study the impact of the assumption y ∈ M + (R) on v. First, let us show that |v x | ≤ 2v on R. We recall that from the assumption y ≥ 0, we have u ≥ 0 and v ≥ 0 on R. According to the definition of v, we have for all x ∈ R,

v(x) = e -2x 4 x -∞ e 2x ′ u(x ′ )dx ′ + e 2x 4 +∞ x e -2x ′ u(x ′ )dx ′ and v x (x) = - e -2x 2 x -∞ e 2x ′ u(x ′ )dx ′ + e 2x 2 +∞ x e -2x ′ u(x ′ )dx ′ , which yields |v x (x)| ≤ 2v(x), ∀x ∈ R. (3.18) 
Second, let us show that u ≤ 6v on R. Using the Fourier transform, one can check that

(1 -∂ 2 x ) -1 (4 -∂ 2 x ) -1 (•) = F -1 1 3(1 + ω 2 ) - 1 3(4 + ω 2 ) (•) = 1 3 (1 -∂ 2 x ) -1 (•) - 1 3 (4 -∂ 2 x ) -1 (•), (3.19) 
and one can rewrite v as

v = (4 -∂ 2 x ) -1 (1 -∂ 2 x ) -1 y = 1 3 (1 -∂ 2 x ) -1 y - 1 3 (4 -∂ 2 x ) -1 y. (3.20) 
Then for all x ∈ R,

u(x) -6v(x) = -(1 -∂ 2 x ) -1 y(x) + 2(4 -∂ 2 x ) -1 y(x) = - 1 2 R e -|x-x ′ | y(x ′ )dx ′ + 1 2 R e -2|x-x ′ | y(x ′ )dx ′ ≤ 0, (3.21) since e -2|•| ≤ e -|•| on R.
We are now ready to prove the uniqueness of local maxima in Θ z . Let first study the sign of v xx on V z . One can easy check that for all x ∈ V 0 ,

ρ ′′ c (x) ≤ √ 2 -2 6 c. (3.22) 
Then, combining (3.8) and (3.22), taking 0 < ε < ε 0 with ε 0 ≪ 1, we have for all x ∈ V z ,

v xx (x) ≤ √ 2 -2 6 c + O(ε 1/4 ) ≤ √ 2 -2 600 c < 0,
which implies that v x is strictly decreasing on V z . Let us study the sign of v x on Θ z \ V z . One can easily check that

ρ ′ c -ln √ 2 = √ 2 -1 6 c and ρ ′ c ln √ 2 = - √ 2 -1 6 c, (3.23) 
and that ρ ′ c (x) ≥ 10 -4 c for all x ∈ [-6.7, -ln √ 2]. Then using (3.9) and taking 0 < ε < ε 0 with ε 0 ≪ 1, we have v x (x) ≥ 4 × 10 -5 c > 0 for all x ∈ [z -6.7, z -ln √ 2]. Proceeding in the same way, we obtain v x (x) ≤ -4 × 10 -5 c < 0 for all x ∈ [z + ln √ 2, z + 6.7]. Since v x is strictly decreasing on V z and changes sign, v x vanishes once on V z and thus on Θ z . Hence, v admits a single local extremum on Θ z , which is a maximum since v xx < 0 on V z . Now, using that ρ c is increasing on R -, (3.9) and taking 0 < ε < ε 0 with ε 0 ≪ 1, it holds for all x ∈] -∞, z 6.7[,

v(x) = ρ c (x -z) + O(ε 1/4 ) ≤ c 2400 + O(ε 1/4 ) ≤ c 300 .
Proceeding in the same way for x ∈]z + 6.7, +∞[, we obtain (3.16). Combining (3.8), (3.21) and proceeding as for the estimate (3.16), we get (3.17). Note that ϕ c (±6.7) ≃ 1.2 × 10 -3 c. This completes the proof of the lemma.

Under the assumptions of Lemma 3.4, v has got a unique point of global maximum on R. In the sequel of this section, we will denote by ξ this point of global maximum and we set M = v(ξ) = max x∈R v(x). The next two lemmas can be directly deduced from the similar lemmas established in [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] (see also [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF]). Lemma 3.5 (Connection Between E(•) and M 2 ; See [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF]). Let u ∈ L 2 (R) and v = (4 -∂ 2

x ) -1 u ∈ H 2 (R). Define the function g by

g(x) = 2v + v xx -3v x , x < ξ, 2v + v xx + 3v x , x > ξ. (3.24) Then it holds R g 2 (x)dx = E(u) -12M 2 . (3.25) Lemma 3.6 (Connection Between F (•) and M 3 ; See [7]). Let u ∈ L 2 (R) and v = (4 -∂ 2 x ) -1 u ∈ H 2 (R). Define the function h by h(x) = -v xx -6v x + 16v, x < ξ, -v xx + 6v x + 16v, x > ξ. (3.26) Then it holds R h(x)g 2 (x)dx = F (u) -144M 3 . (3.27)
Sketch of proof. The proof of Lemmas 3.5-3.6 follows by direct computation, using integration by parts, with v x (ξ) = 0 and v(±∞) = v x (±∞) = v xx (±∞) = 0. See [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF] (also [START_REF] Kabakouala | Stability in the energy space of the sum of N peakons for the Degasperis-Procesi equation[END_REF]) to undersand the technique.

We can now connect the conservation laws.

Lemma 3.7 (Connection Between E(•) and F (•)). Let u ∈ L 2 (R), with y = (1 -∂ 2 x )u ∈ M + (R), that satisfies (3.6) for some z ∈ R. There exists ε 0 > 0 only depending on the speed c, such that if 0 < ε < ε 0 , then it holds M 3 - 1 4 E(u)M + 1 72 F (u) ≤ 0. (3.28)
Proof. The key is to show that h ≤ 18M on R. Note that by (3.9) we know that 18M ≥ c/4 and that Lemma 3.4 ensures that ξ ∈ Θ z for ε 0 small enough. Let us set λ = z -6.7, µ = z + 6.7, and rewrite the function h as

h(x) =          -v xx -6v x + 16v, x < λ, u -6v x + 12v, λ < x < ξ, u + 6v x + 12v, ξ < x < µ, -v xx + 6v x + 16v, x > µ .
If x ∈ R \ Θ z , using that v xx = 4v -u, (3.16) and (3.17), it holds

h ≤ |v xx | + 6|v x | + 16v ≤ u + 32v ≤ c 9 ≤ 18M.
If λ < x < ξ, then v x ≥ 0, and using that u ≤ 6v on R, we have h = u -6v x + 12v ≤ 18v.

If ξ < x < µ, then v x ≤ 0, and similarly using that u ≤ 6v on R, we get

h = u + 6v x + 12v ≤ 18v.
Therefore, it holds 

F (u) -144M 3 = R h(x)g 2 (x)dx ≤ h L ∞ (R) R g 2 (x)dx ≤ 18M (E(u) -12M 2 ),
and we obtain the lemma.

Proof of Theorem 3.1. We argue as El Dika and Molinet in [START_REF] El | Stability of multipeakons[END_REF]. As noticed after the statement of the theorem, it suffices to prove (3.7) assuming that u ∈ L 2 (R) satisfies Using that E(ϕ c ) = c 2 /3 and F (ϕ c ) = 2c 3 /3, our inequality becomes

M - c 6 2 M + c 3 ≤ O(ε 2 ).
Next, substituting M by c/6 -δ and using that [M + c/3] -1 < 3/c, we obtain where C > 0 only depends on the speed c. This completes the proof of the stability of peakons.

δ 2 ≤ O(ε 2 ) ⇒ δ ≤ O(ε). ( 3 
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 31 Stability of Peakons). Let u ∈ X ([0, T [), with 0 < T ≤ +∞, be a solution of the DP equation and ϕ c be the peakon defined in (1.6), traveling to the right at the speed c > 0. There exist C > 0 and ε 0 > 0 only depending on the speed c, such that if

Figure 1 :

 1 Figure 1: Variation of the smooth-peakon with the amplitude 1/6 at initial time.

  h(x) ≤ 18 max x∈R v(x) = 18M, ∀x ∈ R. (3.29) Now, combining (3.25), (3.27) and (3.29), we get

  (3.1), (3.2) and(3.6). We recall that M = v(ξ) = max x∈R v(x) and we set δ = c/6 -M . We first remark that if δ ≤ 0, combining (3.4) and (3.10), it holdsu -ϕ c (• -ξ) H ≤ |E(u 0 ) -E(ϕ c )| 1/2 ≤ O(ε),that yields the desired result. Now suppose that δ > 0, that is the maximum of the function v is less than the maximum of ρ c . Combining (3.4), (3.5) and (3.28), we getM 3 -1 4 E(ϕ c )M + 1 72 F (ϕ c ) ≤ O(ε 2 ).

  .30) Finally, combining (3.4), (3.10) and (3.30), we infer thatu -ϕ c (• -ξ) H ≤ C √ ε,

  [START_REF] Lin | Stability of peakons for the Degasperis-Procesi equation[END_REF], ξ + 6.7]. Now we observe that ρ ′′ This forces v x to change sign only one time on Θ ξ , and thus v has only one local extremum (which is a maximum) on Θ ξ . This fact will considerably simplify the proof of the stability.

	c has 2] and √ c strictly positive on [-6.7, -ln 2], with ρ ′ √ 2, ln √ strictly negative values in the interval V 0 = [-ln ρ ′ c strictly negative on [ln √ 2, 6.7].

W 1,1 (R) is the space of L 1 (R) functions with derivatives in L 1 (R) and BV (R) is the space of function with bounded variation.
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