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On the Stability of Peakons and the Sum of Peakons
for the Degasperis-Procesi Equation with Strong
Dispersion

André Kabakouala
L.M.P.T., U.F.R Sciences et Techniques, Université de Tours, Parc Grandmont,
37200 Tours, France.

Abstract

In this paper, we present a new argument (see Lemma 3.4) that allows us to simplify the proof of
stability of peakons established in [9] (Theorem 1.1), [6] (Theorem 1.1) and [8] (Theorem 1.3). Also,
we extend the result of stability of ordered trains of peakons obtained in [8] (Theorem 1.1), to the
Degasperis-Procesi equation with strong dispersion.

1 Introduction
In this paper, we consider the Degasperis-Procesi equation with strong dispersion (DPsd)
Up — U + AUy + O(Uy — Uzze) = BUplpy + Wlges, (t,2) € RY X R, (1.1)
where « is a real constant. The case oo = 0 is called the Degasperis-Procesi equation (DP)
U — Upzy + Uy = BUplpy + Ullgae, (t,2) € RT X R. (1.2)

The DP and DPsd equations possess two identical conservation laws (note that the DP equation is
completely integrable, see [2])

E(u) :/yv:/ (40® + 502 +v2,), F(u) :/u3 :/ (—v3, + 12007, — 48070, + 640%), (1.3)
R R R R

where y = (1 — 0%)u and v = (4 — 82)"'u. One can remark that the conservation law E(-) is equivalent
to || - H%Z(R)' Indeed, using integration by parts (we assume that u(+o00) = v(£o0) = v,(£o0) = 0), it
holds

||u||%2(R) = / u? = /(4v — V) = / (167}2 +8v2 + vgz) ~ E(u). (1.4)
R R R
In the sequel we will denote
lullye = VE(w). (1.5)
The DPsd equation admits non-smooth solitary waves of the form (see [7], [12])

u(t, ) = Qe.o(x —ct) = (c — a)p(z — ct) = (c — a)e”*~ with ¢ +# a, (1.6)

and called peakons (see Figure 1). In the case a = 0, we recover the peakons for the DP equation. One
can notice that, thanks to the parameter o we can change the amplitude of peakons without changing



their speeds. As for the Camassa-Holm equation (CH) (see for instance [1], [4] and [3]), the peakons
are not strong solutions of (1.1), but solutions in the distribution sense of the DPsd equation in the
conservative form

1 3
up + adpu + §8Iu2 +501- o) 'o,u* =0, (t,z) e RY xR. (1.7)

Our first goal is to simplify the proof given in [9] of the stability of a single peakon for the DP equation.
Recall that the proof of the stability for the CH equation in [1] follows from two integral relations between
two conservation laws of CH, maxg « and fonctions related to u. In [9] the proof is more complicated,
since all the local maxima and minima of v = (4 — 82)~!u are involved in the relations. In this paper we
present a simplication of this proof, where only the maximum of v is involved in the relations. Our proof
is thus closer to the proof for CH in [1]. The main idea is the following: since u is L2-close to the peakon
ool —E&), for some € € R, and (u — ug,) € MT(R), it is easy to check that u is actually C%-close to the
peakon, and thus v is C%-close to the smooth-peakon (see Figure 1)

peala =€) = (4= 0 peale - §) = ool - R, (18)
First, since peo(- —§), pro(- — &) and p (- — &) are very small with respect to the amplitude (¢ — a)
outside of the interval © = [£ — 6.7,£ + 6.7], we can restrict ourself to study v on ©. Now we observe
that pf (- — £) has strictly negative values in the interval V = [ —In2/2,{ + In2/2], with v, strictly
positive on [§ — 6.7,& — In2/2] and v, strictly negative on [§ —1n2/2,¢ + 6.7]. This forces v,, to change
sign only one time on O, and thus v has only one local extremum (which is a maximum) on ©. This fact
will considerably simplify the proof of the stability.

Our second goal is to prove that ordered trains of peakons are stable under small perturbations in the
energy space H (equivalent to L?). Since the proof of the stability result is principally based on energy
arguments (see for instance [3], [4], [6], [8], [9], [11]), from the fact that the DP and DPsd equations
have the same conservation laws, the term a(u, — uzz,) Will play a significant role only in the estimate
of the speed of peakons (respectively smooth-peakons) as time is increasing (see Subsection 4.1), and in
the monotonicity of the local energy (see Subsection 4.2). The rest of the arguments which lead to the
stability result will be mainly deduced from the work done in [8] with the DP equation.

Let us introduce the function space where will live our class of solutions to the equation. For I a
finite or infinite time interval of R, , we denote by X'(I) the function space !

X(I)={ueC(I;H'(R)) N L™ (I;W"'(R)), u, € L™ (I;BV(R))}. (1.9)
We have the following stability theorem.

Theorem 1.1 (Stability of the trains of peakons). Let be given o € R and N velocities c1,...,cn such
that max(0,a) < ¢1 < ...<cn. Letu € X([0,T]), with0 < T < +00, be a solution of the DPsd equation.
There exist C > 0, Ly > 0 and g9 > 0 only depending on the speeds (c;)™., and the parameter o, such
that if

yo = (1 — 02)up € MH(R) (1.10)
and
N
UO_ZWCi,a('_Z?) <& with 0< e < ep, (1.11)
i=1 H
for some 29, ..., 2%, satisfying
<< and 2 -2 | > L, with L>Ly>0, i=2,...,N, (1.12)

LWL1(R) is the space of L1(R) functions with derivatives in L!(R) and BV (R) is the space of function with bounded
variation.



then there exist £(t) = (€1(),...,én (1)) € RN such that

N
u(t) =Y e al-—&G1)| < CKWe+L7YE), vte0,T] (1.13)
=1 H
and
Gl) —&a(t) > g Ve [0,T], i=2,...,N, (1.14)

see Lemmas 4.1-4.3 for the definition and the properties of &(t).
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Figure 1: Sum of three red peakons Zf’:l(% — 1)g[z — 10(2i — 1)] and three blue smooth-peakons
2?21(21' — Dp[z — 10(2¢ — 1)] (at time ¢ = 10 with respective speeds 1, 3, 5, and a = 0) profiles.

2 Preliminaries

In this section, we briefly recall the global well-posedness results for the Cauchy problem of the DPsd
equation (see [5] and [10]), and its consequences.

Theorem 2.1 (Global weak solution; see [5] and [10]). Assume that ug € L*(R) with yo = (1 — 82)ug €
MT(R). Then the DPsd equation has a unique global weak solution u € X (Ry) such that

y(t,) = (1 —0Hu(t,-) € MT(R), VtecR, (2.1)

and
lug (t, )| <wult,z), V(t,z)eRy xR (2.2)

Moreover E(-) and F(-) are conserved by the flow.

Remark 2.1 (Control of L> norm by L? norm). Using the Sobolev embedding of H'(R) into L>°(R)
and (2.2), we infer that there exists a constant Cg > 0 such that

lull Loy < Csllullpr ) < 2Cs||ullL2(w)- (2.3)



3 Stability of a single peakon

In this section, we present our simplification of the proof of stability of peakons.

Theorem 3.1 (Stability of peakons). Let u € X([0,T]), with 0 < T < 400, be a solution of the DPsd
equation and ¢ o be the peakon defined in (1.6), traveling to the right at the speed ¢ > max (0, «). There
exist C' > 0 and g9 > 0 only depending on the speed ¢ and the parameter o, such that if

yo = (1 = 87)up € M*(R) (3.1)

and
w0 — Pe.allr < €%, with 0<e < e, (3.2)

then
lu(t, ) = ¢eal- = &()n < Cve, VEe[0,T], (3.3)

where £(t) € R is the only point where the function v(t, ) = (4 — 92)~tu(t,-) attains its mazimum.
We first recall the following result (see for instance [9] or [8]).

Lemma 3.1 (Control of distances between energies; see [8]). Let u € L3(R) withy = (1-0%)u € M+ (R).
If ”u - @c,a”?—[ < 52, then
|E(u) = E(¢ea)l < O(e?) (3.4)

and
[F(u) = F(¢e,a)| < O(e?), (3.5)

where O(+) only depends on the speed ¢ and the parameter «.

To prove Theorem 3.1, by the conservation of E(-), F(-) and the continuity of the map ¢ — u(t) from
[0, T to H (since H ~ L?), it suffices to prove that for any function u € L?(R) satisfying y = (1 —92)u €
MT(R), (3.4) and (3.5), if

inf llu — L < 1/4 .
ZHEIJR ||u @c,a( Z)H’H S € ) (3 6)

then
[t = @e,a(- =&l < CVe, (3.7)

where £ € R is the only point of maximum of v.

Let us present some important properties of smooth-peakons defined in (1.8), which will play a crutial
role in the proof of Theorem 3.1. The smooth-peakon p., belong to H*(R) < C?(R) (by the Sobolev
embedding) since ., belong to H*(R) (defined in (1.6)). It is a positive even function, which admits
a single maximum (¢ — «)/6 at point 0, and decays at infinity to 0 (see Figure 2a). Its derivative o
belong to H?(R) — C'(R) (by the Sobolev embedding), it is an odd function, which vanishes only at
the origin, has positive values on | — 00, 0] and negative values on [0, +oo[. It admits a single maximum
(¢ — a)/12 at point —In2 and a single minimum —(c — «)/12 at point In2, and decays at infinity to 0
(see Figure 2b). Its second derivative p!/, belong to H'(R) < C°(R) (by the Sobolev embedding), it
is an even function, which vanishes at two points +In2, takes positive values on | — oo, —In2[U]In2, +o0]
and negative values on [—In2,In2]. It admits a single minimum —(c¢ — «)/3 at point 0 and two maxima
(c — a)/24 at points +In4, and decays at infinity to 0 (see Figure 2c).

Next, we will need the following estimates.

Lemma 3.2 (CY and C! approximations). Letu € L*(R) withy = (1—92)u € MT(R). If |u—pec.alln <
el/4 then
Hu - @c,a”CU(R) < 0(51/8) (3.8)

and
HU - pC,a”C'l(R) < 0(51/4)~ (3'9)



Proof. Let us begin with the second estimate. From the definition of E(-) and #H (see respectively
(1.3) and (1.5)), one can see that [ju| is equivalent to ||v]|g2(r), since |[v]|gzm) < ||ulln < 5]|v] g2m®)-
Then, assumption u is H-close to ¢., implies that v is H?2-close to p... Now, using the Sobolev
embedding of H%(R) into C*(R), we deduce (3.9).

For the first estimate, note that the assumption y = (1 — 92)u > 0 implies that u = (1 — 92) "1y >0
and satisfies |u,| < u on R (see (2.2)). Then, applying triangular inegality, and using that |¢f. ,| = @c.a
on R and (2.3), we have

lu = @eallrw < lullme) + lecallm®)
< 2f|ullp2®) + 2l 0e,allL2®)
< 2llu — Spc,aHL2(R + 4H‘Pc,a||L2(R)
<0V +0(1),

where O(1) = 4(c — «). Therefore, applying the Gagliardo-Nirenberg inegality and using that ||u —
Geallr < e/ (with H ~ L?), we obtain

||u_(pc7a||C0(]R) < CG’HU <Pca||L2(R)||U (pcaHHl(]R
< 0% (0(="%) + 0(1))
< O(e'?),

where C¢ is the constant of Gagliardo-Nirenberg. This proves the lemma.

The following lemma specifies the distance to minimize for stability.

Lemma 3.3 (Quadratic identity; see [9]). For any u € L?>(R) and £ € R, it holds

BW) ~ Blpen) = = peal = O + e a) (w6 - T52). (3.10)

where v = (4 — §2)~1

Proof. Following the idea of Constantin and Strauss with the CH equation (see [1], Lemma 1), we
will present another way to establish identity (3.10). We compute

E(u—¢ca) = E(u) + E(pc,a) — 2 <(1 - 8%)9%@(' —§),(4 - 63)71U>H—17H1
= E(u) + E(¢e,a) = 2((1 = 0)pcal- = €),0) g1 g s (3.11)

where (-, ) -1 g1 denotes the duality H~'(R) over H'(R). Now, using the definition of ¢/, ,(- —¢) and
integration by parts, we have

<(1 - a:z)%,a(' - 5)”U>H*1,H1 = Ve, o =8+

_—

3

/Ux@c ol
R

(Pca _£+

%

— 00

+oo
VzPe, a - 5) /5 ’Um(aoc,a(' - 5)
—a)v(¢ (3.12)

I

&
—
n



0.18

0.16

0.14

0.12

0.1

0.08 -

0.06 -

0.04

0.02

(a) p(z) = :15 —ll 6 —2[z] profile.

0.05 T T T T T
\ \7
0.08 ; /\\ 0 ‘/\\\ f"
0.06 /’ \‘ \\ \/
/ \‘ ~0.05f \ /
0.04 - 4 ‘
\ i . |
0.02F ‘ 1 “ ‘\
i
0 | 015} \‘ “
|
-0.02 ‘ b ‘ “
‘ -0.2 ’ ‘
—0.04 - 7 ‘ ‘
\ / -0.25 : i
_0.06} |/ 4 H
\/ |
~0.08 \/ R _' l
A s = ) ) 0 2 <‘1 o s 10 -0 35 10 -8 6 _4 2 6 2 4 6 8 10

(b) o/ () = (ge~I#1 — ge2el) |+ (e 2ol — ge=2Iel)

250 (c) p'(z) = *6 —le ‘—g —2lz| profile
profile.

Figure 2: Variation of the smooth-peakon with the amplitude 1/6 at initial time.

Recall that the energy of peakons gives us
E(<)007a) = <( )(pc (Xa(4 a:)

pc a@ca /pc oz(pca
R

= T' (3.13)

Thus, combining (3.11)-(3.13), we obtain the lemma.

Now we will study carefully the local extrema of v = (4—92)~*u. Let u € L*(R) with y = (1—-0%)u €
MT(R), and assume that (3.6) holds for some z € R. We consider the interval in which the mass of
smooth-peakons is concentrated, and the interval in which the mass of second derivative of smooth-



peakons is strictly negative. In the sequel of this paper, the notation a ~ § means that 0.9 x § < a <
1.1 x 8. We set

~1
©=[2—6.7,2+6.7], where 6.7~1In <1 - 2309> ) (3.14)
and In2 In2
n n
P 1
1% [z 5 2+ 2} (3.15)

One can clearly see that V is a subset of © (since 20/(20 — v/399) > v/2), and we chose the values +6.7
such that pe o (£6.7) >~ (c—a)/2400 ~ 4.1x10~*(c—«) as in [§]. Also, we have pl, ,(=6.7) = —p.. ,(6.7) ~
—4.1 x 107*(c — @) and p// ,(£6.7) ~ 4.1 x 107 *(¢c — ). Then po(- — 2), pl. o (- — 2) and p (- — z) are
very small with respect to the amplitude (¢ — «) on R\ ©.

We claim the following result.

Lemma 3.4 (Uniqueness of the local maximum). Let u € L?(R), with y = (1 — 0*)u € M*(R), that
satisfies (3.6) for some z € R. There exist g > 0 only depending on the speed ¢ and the parameter «,
such that if 0 < & < &g, then the function v = (4 — 02)~tu admits a unique local extremum on ©. This
extremum is a maximum, and it holds

c—a
< — .
v(z) < 300 Ve e R\ O, (3.16)

c—«
< — R . 1
u(z) < 300 Ve e R\ © (3.17)

Proof. The key is to study the impact of assumption y € MT(R) on v. First, let us show that
|vz] < 2v on R. We recall that from the assumption y > 0, we have v > 0 and v > 0 on R. According to
the definition of v, we have for all x € R,

672x T , 62a: +oo ,
v(x) = 1 / e* u(x')dx' + T/ e 2" u(z)da'
and
672x i , €2x +oo ,
ve(z) = — 5 / 2 u(x')dx' + 7/ e 2" u(x)da',
which yields
| (2)] < 2v(x), Vz eR. (3.18)
Second, let us show that u < 6v on R. Using the Fourier transform, one can check that
(=) (=R ()= F g — o
“ v 31+w?) 3(4+w?)
1 _ 1 _
== - (- ), (3.19)
and one can rewrite v as
1 1
b= (=) (1 -0y = (1= B2 Ny - S (1= 3) Ny, (3:20)

Then for all z € R,
u(x) — 6v(z) = —(1 - 7)'y(x) +2(4 — 97) " y(x)
=-3 /Re_‘z_z/‘y(x’)dx’ + % / e 2=y (2" da!

R
<0, (3.21)



since e 2l < eIl on R.
Next, let us show that v, is uniformly close to pi ,(- — z) on R. From the definition of v and using
(3.21), we have
[vpz ()] = |4v(z) — u(x)] < 4v(z) + u(z) < 10v(z), Va € R. (3.22)

Also, using that |u,| < u < 6v on R (see (2.2)), and that |v;| < 2v on R (see (3.18)), we get
[Vgze (2)| = [dvg(z) — ug(2)] < 4vg(x)] + |ug(2)| < 14v(z), Vo eR. (3.23)

Then, combining (3.18), (3.22) and (3.23), we infer that

3
vlls@) =Y 109v]|2) < 27]|v]l L2 (w)- (3.24)
=0

Please note that, all these properties hold with p. . = (4 — 92) 71, o. Now, combining (3.9) and (3.24),
one can check that

[v = pe,a(- = 2)la3®) < lvllas®) + |oe,ollm3®)
< 27|l L2®) + 27| pc,all L2 (®)
<27)|v = peal- = 2)|L2®) + 54 pe.allL2®)
< O(EYY +0(1), (3.25)

where O(1) = v/594(c — «). Applying the Gagliardo-Nirenberg inegality, and using (3.9) and (3.25), it
holds

vee = pla(- = 2)ll () < Callv = peal- = 2) | Hag lv = peal- = 2) o
< O(="/%)(0('%) + 0(1))
< O(/8), (3.26)

which leads to the desired result.
We are now ready to prove the uniqueness of local maxima. Since v, () = p[. ,(z — 2) +0(e'/*) for all

x € R (thanks to (3.9)), in particular, we have v,(z) = O(c'/*), since Peo(0) = 0. Then, we will restrict
our research of local extrema of v on V. Let us study the sign of v,, on V. One can easy check that for

all x € V,
V2 -2
Peal®) < —

Then, combining (3.26) and (3.27), taking 0 < € < g9 with g9 < 1, we have for all z € V,

\TG* 2(c—a)+ O(eV%) < %

(c—a). (3.27)

Urx(x) < (C — Ot) < 0,

which implies that v, is strictly decreasing on V. Let us study the sign of v, on © \ V. One can easy

check that
w2y e AR
Pea\T797 ) T 7% 2 )~ "6

and one can clearly see that p/, () >4 x 107%(c — «) for all z € [z — 6.7, 2 — In2/2]. Then using (3.9)
and taking 0 < £ < go with g9 < 1, we have v, () >4 x 107%(¢c — o) > 0 for all z € [z — 6.7, z — In2/2].
Proceeding in the same way, we obtain v,(z) < —4 x 107°(c — @) < 0 for all z € [z + In2/2, 2 + 6.7].
Since v, is strictly decreasing on V and changes sign, then v, vanishes once on V, and thus v admits a
single local extemum on V, which is a maximum since v, < 0 on V.

(c—a) and p, ( (c— ), (3.28)



Now, using that p. (- — 2) is increasing on | — 00, 2], (3.9) and taking 0 < € < g¢ with g9 < 1, it
holds for all x €] — 00,z — 6.7],

0(2) = pea( — 2) + O/ < c—a o' < c—a

— 2400 - 300 °
Proceeding in the same way for 2 €]z + 6.7, +oo[, we obtain (3.16).
Combining (3.8), (3.21) and proceeding as for the estimate (3.16), we get (3.17). Note that ¢ o(£6.7) ~
1.2 x 1073(¢ — ). This completes the proof of the lemma.
We deduce from the above lemma that v has got a unique point of global maximum on R. In the sequel
of this section, we will denote by ¢ this point of global maximum and we set M = v(§) = max,ecg v(z).
The next two lemmas can be directly deduced from the similar lemmas established in [9] and [8].

Lemma 3.5 (Connection between E(-) and M?; see [9]). Let u € L*(R) and v = (4 — 92)~'u € H%(R).
Define the function g by

20 4 Vpp — Uz, x <E,
g(a) = (3.29)
20 + gy + 30, x> €.
Then it holds
/92 (u) — 12M2. (3.30)
R

Lemma 3.6 (Connection between F(-) and M3; see [9]). Let u € L?*(R) and v = (4 — 92)~tu € H*(R).
Define the function h by

- Uzz — 6 x + 16 9 < )
h(z) = 4 Ve Ova 100w < d (3.31)
— Vg + 6V, + 160, x > E.
Then it holds
/ h(x)g?(x)dx = F(u) — 144M3. (3.32)
R

We can now connect the conservation laws.

Lemma 3.7 (Connection between E(-) and F(-)). Let u € L*(R), with y = (1 — 8%)u € MT(R), that
satisfies (3.6) for some z € R. There exists g > 0 only depending on the speed ¢ and the parameter a,
such that if 0 < € < g, then it holds

M3 — iE( VM + 72F( u) < (3.33)

Proof. The key is to show that h < 18 M on R. Note that by (3.9) we know that 18M > (¢ — «)/4.
Let us set A =2 — 6.7, p = z + 6.7, and we rewrite the function A as

— Vgy — 6V, + 160, = < A,
u—6v, +12v, A<z <,
u+6v, + 120, €<z < p,
— Uy + 60V, + 16V, x > pu.

h(z) =

If x € R\ O, using that vy, = 4v —u, (3.16) and (3.17), it holds
c—
h < |vgg| + 6|vz] + 160 < uw+ 320 < 5 < 18M.

If M <x<¢, then v, > 0, and using that u < 6v on R, we have

h=u—6v; +12v < 18w.



If ¢ < x < p, then v, <0, and similarly using that u < 6v, we get
h=u+ 6v; +12v < 18w.
Therefore, it holds
h(z) < 18 maxw(x) = 18M, Va € R. (3.34)

z€R
Now, combining (3.30), (3.32) and (3.34), we get

Fu) — 144M° — /]R h(@)g* (@) < |1 =@ /]R *(z)dz < 18M(E(u) — 12M2),

and we obtain the lemma.

Proof of Theorem 3.1. As noticed after the statement of the theorem, it suffices to prove (3.7)
assuming that v € L?(R) satisfies (3.1), (3.2) and (3.6). We recall that M = v(£) = max,er v(z) and we
set § = (¢ — ) /6 — M. We first remark that if 6 < 0, combining (3.4) and (3.10), it holds

lu = @e.al- = E)llx < |E(uo) — E(pea)|? < Oe),

that yields the desired result. Now suppose that § > 0, that is the maximum of the function v is less
than the maximum of p. . Combining (3.4), (3.5) and (3.33), we get

1 1
M3 — ZE(peo)M + —
1 Ppea) M+ 25

Using that E(¢eq) = (¢ — a)?/3 and F(¢c,qo) = 2(c — )3 /3, our inequality becomes

(M—Cgo‘)g(MJrC;a) < 0(?).

Next, substituting M by (¢ — «)/6 — § and using that [M + (¢ — a)/3]7! < 3/(c — a), we obtain

F(@C,a) < 0(52)~

5?2 < 0(?) = 6 < O(e). (3.35)
Finally, combining (3.4), (3.10) and (3.35), we infer that
[u = peal- —Elln < CVe,

where C' > 0 only depends on the speed ¢ and the parameter «v. This completes the proof of the stability
of a single peakon.

4 Proof of Theorem 1.1

In this section, we generalize the stability result to the sum of ordered trains of peakons (respectively
smooth-peakons). For v > 0 and L > 0, we define the following neighborhood of all the sums of N
peakons of speed ¢y, ...,cy with spatial shifts z; that satisfied z; — z;_1 > L,

N
u—Zgoci,a('—zi) <'y}. (4.1)
i=1 H

By the continuity of the map ¢ — u(t) from [0, T'[ into H (since H =~ L?), to prove Theorem 1.1 it suffices
to prove that there exist A > 0, g > 0 and Ly > 0 such that for all L > Ly and 0 < € < &g, if ug satisfies
(1.10)-(1.12), and if for some 0 < ¢ty < T,

zi—zi—1>L

U(y,L) = {u € L*(R), inf

ut) €U <A(\£ + L7U8), s) , Yt e [0,to], (4.2)

10



then

u(ty) €U (‘;(ﬁ+ L7183, 23L) . (4.3)

Therefore, in the sequel of this section we will assume (4.2) for some 0 < € < g9 and L > Ly, with A, ¢
and Lo to be specified later, and we will prove (4.3).

Remark 4.1 (Distance between v and the sum of N smooth-peakons). Recall that ||u||% is equivalent
to ||v]|g2(r), where v = (4 — 82)"'u. Thus if u(t) € U(y,L/2) on [0,to], then v(t) stays H?-close to
SOV Persal- — zi) for all ¢ € [0, ).

4.1 Control of the distance between the peakons (respectively the smooth-
peakons)

In this subsection, we want to prove that the different bumps of u (respectively v = (4 — 92)~!u) that
are individually close to a peakon (respectively a smooth-peakon) get away from each others as time is
increasing. This is crucial in our analysis since we do not know how to manage strong interactions.

Lemma 4.1 (Modulation argument in H?). Let ug satisfying (1.10)-(1.12). There exist 9 > 0, Lo > 0
and Cy > 0 such that for all 0 < v < v and 0 < Lo < L, if u(t) € U(y,L/2) on [0,to] for some
0 <to < T, then there exist N C! functions &1,...,Txn defined on [0,to] such that

N
u(t) - Z‘pcri,oc(' - ji(ﬂ) < O(’Y), (44)
1=1 H
N
v(t) =Y peral- = E:(t)) < O(v), (4.5)
i=1 C1(R)
|Zi(t) = ci] < (er — )7 (0(7) + O(e*L/‘*)) , i=1,...,N, (4.6)
and
Folt) — Fioa () > %+w i=2...,N. (4.7)
Moreover, fori=1,...,N, setting J; = [y;(t), yi+1(t)], with
Y1 = —00,
yi(t) = xi*1<t)2+ Tt i_o N, (4.8)
YN+1 = +OO7
it holds
L
where £(t) = (&(t),...,&n(t)) € RN is any point such that
v(t,&(t)) = maxwv(t,z), i=1,...,N, (4.10)

x€J;

and where v = (4 — 02)~u, and O(-) only depends on the speeds (c;)N., and the parameter a.
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Proof. The proof is a standard application of the implicit function theorem. We will repeat the
technique used in [8] taking account of the dispersion term a(u; — Ugq,), with « # 0. This implies that
it is necessary to show more the following almost orthogonality condition for all ¢ € [0, ¢o] (see (4.19)):

N
o <v(t) =Y pejal-— &i(1)), 02pe;al- — i“j(t))> ~ 0,
j=1

L2

where (-,-);> denotes the scalar product in L2.
For Z = (21,...,2n) € RY fixed such that |z; — z;_1| > L/2, we set

N N
Rz() = ZPCi,a(' —2;) and Sz() = Z@Ci,a(' - 2). (4.11)
i=1 1=1

For 0 < v < 79, we define the function

y : (_’777)]\] X BHz(RZ7’Y) _>RN7
(y17"'7yN7U)'_> (yl(ylv"'7yN7U)7--~7yN(y17--~7yNaU))

with
N
yz(yla"'ayNav):/ U_ch_]'7a(._zj_yj) azpciya('_zi_yi)'
R -
j=1

Y is clearly of class C*. Fori=1,..., N,

A
0y‘ (ylv"'vvav)zf/R U= Z pcj7a('7zj7yj) agpcma('fzi*yi)

1<j<N
J#i
and for j # 1,
oY?
B (yla - YN, U) = / awpcj,a(' I yj)awpci,a(' B yi)'
Yj R
Hence
oY? 9 (c; —)? (c1 —a)?
o = zPc;,a - 2
8yi (07 3O?RZ) ||a p T ||L2(R) 54 54

and for j # 4, using the exponential decay of ¢, o and that |z; — z_1| > L/2, for L > Ly > 0 with
Lo > 1, it holds

5
y;

0,...,0,Rz)

/Rampc_j,a(' - Zj)azPCi,a(' — %)

=| [ pesate = )22~ )
1
< §(ci —a)(e; — ) {/ e~lemzl—lrml gy 4 2/ e~lemzl =2zl gy
R

R

+}/6_2‘w_zj‘_‘x_zild$+/6_2|$_Zj|_2|$_zi|d$
2 R R
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We deduce that, for L > 0 large enough, Dy, ., V(0,...,0,Rz) = D + P where D is an invertible
diagonal matrix with ||[D7!| < [(¢; — @)/3v/6]72 and ||P|| < O(e~*/*). Hence there exists Ly > 0 such
that for L > Lyg, D(thw)y(o, ...,0, Rz) is invertible with an inverse matrix of norm smaller than

2[(c1 — @)/3v/6]72. From the implicit function theorem we deduce that there exists 3y > 0 and C*
functions (y1,...,yn) from By2(Rz, ) to a neighborhood of (0, ...,0) which are uniquely determined
such that

V(yi(v),...,yn(v),v) =0, Vv € Byz(Rz, ).
In particular, there exists Cy > 0 such that if v € By2(Rz, ), with 0 < 8 < Sy, then

Z lyi(v)] < CoB. (4.12)

Note that 8y and Cy only depend on ¢; and Ly and not on the point (z1,...,2x). For v € By2(Rz, 5o)
we set Z;(v) = z + yi(v). Assuming that 8y < Lo/8Co, (#1(v),...,Zn(v)) are thus C! functions on
Byz2(Rz, B) satisfying

Z;(0) = Zi—1(v) = z; — zi—1 +yi(v) — yi—1(v) > £ —2Cy8 > % (4.13)

2

For L > Ly and 0 < v < 79 < 5op/2 to be chosen later, we define the modulation of v in the following
way: we cover the trajectory of v by a finite number of open balls in the following way:

{v(t),t € [0,t0]} C U By (Rgr, 27).
k=1,...,M

This is possible thanks to Remark 4.1. Tt is worth noticing that, since 0 < v < vy < Bo/2, the functions
Z;(v) are uniquely determined for v € By2(Rzx,27v) N By2 (R4, 27). We can thus define the functions
t— Z;(t) on [0, 9] by setting #;(t) = Z;(v(t)). By construction

N
Lo =X pe =50 | 02l = 31000 =0 (1.14)
j=1
For 0 < 7y < 7, with 7o < 1, using that u € U(v, L/2) and (4.12), we have
Jut) = S ol

N
< et = Szl + D Ipeal = 2) = peal = 2 = vi0(®) 2wy
i=1
1/2
<y+V2 Z ( / Pova(@)de - /R Persal® = 2i)Peial@ = 21 — yi(vu)))dx)

v 1/2
=7+ \[Z (1 _ e lwe@®)l _ |yi(v(t))‘67\yl( (t))\)

<7+ ZO(Iyi(v(t))l)

i=1

<O(),

where we apply two time the mean value theorem with the function ¢ on [0, |y;(v(t))|] for substituting
(1 — e~ vy by |y, (v(t))]|e Wi ID " with 6(|y; (v(t))]) €]0, lyi(v(t))|[, and this proves (4.4).
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To get (4.5) it suffice to use (4.4), Remark 4.1, and the Sobolev embedding of H2(R) into C'*(R).
Next, to prove that the speed of Z;(+) stays close to ¢;, we set

N
Si(t) = #ejal- = Z5(1)), e1(t) = ult) - Z S;(t)

=1

<

and
N
Ri(t) = pe;.a(- = 35(1), ea(t) =v(t) = > R;(t).

One can notice that
02R; = 4R; — S, (4.15)

and recall that from (3.19),
2\—1 2\—1 1 21 1 2\—1
(1-02)"(4=0:)" () =501 -0)7 () —5(4 =) ().
Differentiating (4.14) with respect to time and using (4.15), we get
/8,5623IRZ' Z.I;'i(t) (4/82Ri —/625i>
R R R
and thus

<|2:(t)] (4lle2l o @) | Rill Loy + lle2ll Lo @) 1Sl 1wy

/ 8t528$R1-
R

< |&i(t) = cilO(y) + O(y). (4.16)
Substituting u by &1 + Z;\le S; in (1.7) and using that S; satisfies

0,5 = —(i(t) — ¢;)0:5; — a0, S, — %axsf - 2(1 —92)710,52,

we infer that e, satisfies on [0, o],

N
dher — (&5 (1) — )05,

J=1

N 2 N
1
= —adse1 — 50s (51 + Zsj) -> 5

Multiplying by (4 — 82)~! and using (3.19), we get

N

2
N
. 1
8t52 - Z(.’fj(t) - Cj)awRJ = —OéawEg - 5893(1 - 85)_1 (51 + Z Sj) - Z SJZ
Jj=1

j=1 j=1

14



Taking the L? scalar product with 0, R;, and integrating by parts, we find
~(@u(t) — <) [ (0aR)*
/ DR+ Y (35(t) — ) /(azRi)(aij)

1<j<N
N

N N
va[atrirg [a-a) (a2 8] -3 8| an,
R R j=1 j=1

We set,

2
N N N
Q=|a+> 8| =D SF=ct+2: (D S|+ >SS,
j=1

J=1 Jj=1 1<ij<N
i
and multiplying by (1 — 9%)~!, we have
(1-0%)71Q=(1-0% +2Z 1= @S+ >, (1-0)71(S:S))
1<i,j<N
i

=I+J+K.

We derive the following estimates

s 1. 1
I= §/R€ =23 (2f) < 5\\6 l IHL‘X’(R)”El”%Z(R) < §H€1||2L2(R)a

N N N
J = Z/ “lmm ey (2)S5(a) < Mle Mo llerllza@ D ISile@ < | D¢ | lellzem)
j=1"R j=1 j=1
and ) 1
K = 5 Z /R€7|I7I |Sj(x')51( ! 5 /S
1<i,j<N 1<i,j<N
J#i J#i

Thus, using (4.4) and the exponential decay of S;, we infer that

(1= 02) 7 Qllp(r) < O(y) + O(e™1/*)
and then
1

1
’2 /[(1 — 97) ' QIOZR;| < §||(1 =07 Ql @) 102 R 11 ()
R

< O(y) + O(e™H/%),

Using (4.5), the term which depends on « give us

i| < ledllleall e @) 107 Rill Ly )

(&% 528§R
R

< O().
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Now, combining (4.16)-(4.19) and using the exponential decay of R;, it holds
#4(0) — a9 Ry < [31(6) — | O() +0(3) + O,
then
2 0) £ 0 +0(e )

which yields (4.6).
Taking 0 < v < 79 and L > Ly > 0, with 79 < 1 and Ly > 1, combining (1.10)-(1.12), (4.6) and
(4.13), we deduce that

i i—1)t

S L — 90 + 2c )
3L (Ci CZ,1>t
=" 2 ’

this proves (4.7).
From (4.5), we infer that

N
v(@) =3 pe;alz — ;) +0(7), Vo eR,
Jj=1

please note that, we abuse notation by writing e2(z) = O(v). Applying this formula with z = §; and
v(&;) = maxgcz, v(x), and using (4.7), it holds

zeJ;

N
v(§;) = max ZPCJ,a(m - i"j) +O0(v)

S o) +0)

Ci —
-7
On the other hand, for z € J; \ [Z;(¢t) — L/12, Z;(t) + L/12], we get

o) < SRR 1 O +0() < S

This ensures that &; € [#;(t) — L/12, &;(t) + L/12], and this concluded the proof of the lemma.

4.2 Monotonicity property

Thanks to the preceding lemma, for €9 > 0 small enough and Ly > 0 large enough, one can construct
N C! functions Z1,...,Zy defined on [0,%p] such that (4.4)-(4.8) are satisfied. In this subsection we
state the almost monotonicity of functionals that are very close to the energy at the right of ith bump,
i=1,...,N — 1 of u (respectively v = (4 — 92)"!u). Let ¢ be a C*° test-function (see Figure 3) such

that )
0<y(x) <1, ¥'(x) >0, r €R,
Y(x) / () (4.20)
(WD (2)] <10¢/(z), ¢=2,3,4,5, x € [-10,10],
and
RN LR (1.21)
Xr) = .
1—e 1 2> 10.
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Setting ¥ = ¢(-/K), we introduce for i = 2,... N,
Tix(t) = / (40 + 502 +v2,) Yy k (1), (4.22)
R

where ¥; k(t,x) = i (z — y;(t)) with y;’s as in (4.8). Note that J; x(t) is close to ||u(t)||§_t(m>yi(t))
(respectively ||v(t)||f{2(x>yi(t))) and thus measures the energy at the right of the (¢ — 1)th bump of u
(respectively v). Finally, we set

o9 = Emin{cl,@—cl,...,cN—cN_l}. (4.23)

Figure 3: 9(9(x), ¢ =0,1,2,3,4,5, profiles. Here v(z) = ag + a;tanh(asz), with ag, a1, as > 0.

We derive the following monotonicity result.

Proposition 4.1 (Exponential decay of the functional J; k(t)). Assume that max(0,«) < ¢1. Let
u € X([0,T]), with 0 < T < 400, be a solution of the DPsd equation that satisfies (1.10)-(1.12) and
(4.4)-(4.5). There exist vo > 0 and Lo > 0 only depending on the speed ¢y and the parameter «, such that
if 0 << and L > Ly > 0, then for any 4 < K < VL,

Jix(t) — Tix(0) <O(e™5%), Vte[0,t], i=2,...,N. (4.24)
The proof of Proposition 4.1 relies on the following Virial type identity.

Lemma 4.2 (Virial type identity). Let u € X([0,T]), with 0 < T < 400, be a solution of the DPsd
equation that satisfies (1.10)-(1.12). For any smooth space function g : R — R, it holds

d
— (41}2 + 51)325 + Ufm) g
dt Jr

2 1 1
:f/USg'—4/u2vg’—f/uzvg’”—kf/u%mg"—&—/uhg'
3 R R 2 R 2 R R
1 7 § "o " } (4)
+ uhgg vhzg 2 [ v.hg" + vhg
2 R 2 R R 2 R

5 .
+a / (402 + 502 + vge)g — 2 / v?g" = 2a / g+ o / v?g®, (4.25)
R 2 R R 2 R

where y = (1 — 0*)u, v = (4 — 92)"tu, and h = (1 — 92)~1u?.
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Since E(-) is a conservation law, then by computing 2 p J (41} + 502 + v2 )g it is sure to have only
integrals with the derivatives of ¢ as in (4.25) (all terms of the form [(...)g w111 cancel each other). Then
taking g = 1 (as in Figure 4), we establish the monotony of functional J; x(¢). The full proof of Lemma
4.2 is given in the appendix.

Proof of Proposition 3.1. We first note that, combining (4.6) and (4.8), it holds for i = 2,..., N

)

() = B E 2

Ci—1 + ¢
SRR TS
cii1+0('?)

c1 + O(’Yl/2) (426)

AVARY)

Recall that the assumption (1.10) ensures that u > 0 and v > 0 on R. Now, applying the Virial type
identity (4.25) with g = v i, using that the term f4fu2m/1§7K is negative, and (4.26), we have

d 2 1
)= i [ (50 2 2 [ [t et
R R

1 1 5
+ 5 /“ wazK‘*‘/Uh%K‘*‘*/Uhx@/K - */thl/’z/‘/K
2 Jr ’ 2 Jr ’ 2 Jr ’

=2 [ahtlict g [ ool o [ a0+ 50+ on)vl

S« 5

5[ tie—0 [+ 5 [ ol

R
< (Oé —c + 0(71/2>) / (4’(}2 + 5’Ui + ’ng) w;,l{ + ZIk + Ig’a + IlO,a + Ill,a~ (427)
R k=1
Next, we divide R into two regions D; and Df with
D; = {jil(t) + =, Z(t) — } , 1=2,...,N.

Combining (4.7), (4.8) and (4.23), one can check that for z € D¢,

Ti(t) —Tia(t) L
—y(t)] > 2L ey 2
o - ()] > T ;
& Ci—1t+ £
- 4 8
L
> oot + 3 (4.28)
Now, we claim that for £ =1,...,8, it holds
C
I < (0(/?) + O(e™H/%) / (40 + 507 +02,) ¥ g + 2 lluo[Fre™* oD, (4.29)
" ,
and that for £k = 9,10, 11,
Io < O(L_l)/(élv + 502 + V2 )Y - (4.30)
R

The estimates (4.29) was completed in detail in [8], so we will present a brief proof of some of them. Let
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us begin by the estimate of ;. Using (4.28) and the exponential decay of v} ;- on Df, we have

2 3 _2/ 3 2/ 3
S/RU wi,K—g DXU %,K‘f‘?) Dfu Vi K

1

2 2
gHUHLw(Di)/U2¢§,K+§|W§,KHL°€(D5)
R

IA

|“HL°°(R)HU”%2(R)

2 C _ (s
< Slullmo [ w0 sc+ Elullage O, (131)
R

Now, using that u = 4v — ves, ]k < (10/K?)¢); ;- on D; and |4} | decays exponentially on Dy, and
that [[v]| 2@y < [|ulln = [luoll3, and K > 4, we have

/Uzz/’;,K = /(4U *Um)zd’;,K
R R
= 16/ VL | Uik *S/sz%l(
R ' R ' R '

= 16/ 1}21/}»271( + 'Ugr'(/);K +8/ Ui'll);vK +4/ 8m(’112)1/},77K
R R R R
16 [ outct [htaors [ et ol
R R R R
< / (160° + 807 +v3,) ¥ g +4 / V|| + 4 / O
R D; Ds
10 c L
S / (160* + 807 +v7,) V] + 2 / 0] g + ﬁlluollie (o0t +L/8)
R R

< 5/ (40* 4+ 502 +v2,) ¥ x + %Huoﬂie*%("owwg). (4.32)
R

Next, applying the triangular inequality, and using (4.4) and that [¢r, | = ¢c; .o on R, we have

N
letll @ < lullm@ + D I0es.0
j=1
N
< 2llull 2@y + 2 0.l 2@
j=1
N
<2llerlle@ + 4D llee,
j=1

< 0(y)+0(1), (4.33)

‘Hl(]R)

‘LQ(]R)

N

where ] = u — Zjvzl Peja(- —Tj) on R as in Lemma 4.1, and O(1) =43,

the Gagliardo-Nirenberg inequality, and using (4.33), we obtain

(¢; —a). Then, applying

1/2 1/2
lerlloe @) < Collenll o llealli s,

<O0(B'*)(0('?) +0(1))
<O0(y'?). (4.34)
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Thus, using (4.34) and the exponential decay of ¢, o on D;, it holds

N
lllz~ () < llerllzeon + 3 |06l = F5O) e
j=1

<O(M?) 4+ 0(e L. (4.35)
Therefore, combining (4.31), (4.32) and (4.35), we deduce that I; satisfies (4.29).
As the second example, let us do the estimate of I,. On D§ we obtain
/ uhapy g < |15 k|l Lo (D) / uh
D¢ R
= Whaclemiop) [ (1 =320

= Waclemop) [ (1= 02)7"u
< Wi kel (05 |1 = 02) ™Ml Loy |72 gy
Applying the Holder inegality, we have for all = € R,

1

- —|z—a’ Lo 1
(1-02) " u(z) = 3 /Re 2= ly(2")dz' < §||€ N p2y lull L2 ) = §||U||L2(R),

and thus, using the exponential decay of w;, x on Df, we infer that

1 e
/D.c uhy) e < ﬁIIUII‘L(R)e K0t L/8), (4.36)

i

On D; the estimate of I, give us

/ whtfl e < =y / (1 - 02) \ulul
D R

K3

= lullz=(o, / 21— 92) ) (4.37)

On the other hand, using that [1;"s| < (10/K?)4] ;- on R, we have

1 10
(1= )0 ee) = V(o) ~ iz 0lcle) > (1= 33 ) vlle), Vo€,

and since K > 4, it holds
2\—1,_// 10 - /
(1-0;) Yy gl(x) < | 1= K2 Vi k(T), Vo eR. (4.38)

Therefore, combining (4.35)-(4.38), we infer that I also satisfies (4.29).
Let us tackle now the estimate of Is. First, noticing that for all x € R,
—x x , e “+oo ,
h(z) = —/ e u?(z)da’ + ?/ e " u?(2))da'

and
e [* x' ) 20,1 r e e -z’ 20,0 /
hm(x):fT e” u®(z")dx +? e " u*(a")da',
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and we infer that

|ha(2)| < h(z), Yz eR. (4.39)
Using (4.39), the estimate of Is on DY leads to
) )
o [ hevii <5 [ olhallvl
D¢ D¢

IA

)
Skl o [ olhl
R

IA

5
§H¢ZK||L°°(D§) / vh
R

) -
= Sl [ 10-32) ol
R

5 _
< SHi kMl Lo (o) 1 (1 = 02) ™ 0l oo () lull 7 2 -
2

With the aid of identity (3.19), we have for all € R,

(1= 02) M o(a) < 510 — 02) " ulw)] + 514~ 2) u(a)]

1
3|
< Hlull 2w + ——= ull 2@
~ 6 12¢/2

4442

=5 lullz@, (4.40)
Then, using (4.40) we deduce that
5 20 — 5v/2 1,
5/}3 vhatflic| < = lullme i (c0t+L/8) (4.41)

Next, using that |¢! | < (10/K)vY! .- on R and (4.39), the estimate of Is on D; yields
i, K i, K

5
’/ 'thl/)z/'/K
2 Jp, ’

5
< Slellzeoo [ Mrallix
R

25
< Rlollimoy [ Wik

25 _
= =0y [ 0= 33wl (4.4

Now, using the exponential decay of p., o on D; and (4.4), it holds

N
lollz~ (o) < leallzmoy + 3 Noes ol = F5O)|
j=1

< O(y) +0(e™%), (4.43)

where eo = v — Zjvzl Peia(-—Z;) on R as in Lemma 4.1. Therefore, combining (4.38), (4.41)-(4.43), we
deduce that Is also satisfies (4.29).

For the estimate of Iy, we have two possibility. First, one can use that |v,| < 2v on R, and proceed as
for the estimate of Is. Second, using the exponential decay of p., o and |pr, ,| on D;, and (4.5), it holds

N
loller oy < llealler oy + D 1oeal = 3O o p,)

j=1

< O(y) + O(e™ 173, (4.44)
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Then, using (4.44) and proceeding as for the estimate of I, one can obtain the estimate of I7. In the
same way, one can establish the estimates of the remaining terms. Please note that, since u < 6v on R
(see (3.21)) and using (4.44), one can obtain the estimates of I, I3, I3, Iy and I5 more easily. Also, in
the estimates (4.29) the error term becomes O(7) instead of O(y'/2).

Let us now estimate the terms which depend on the parameter «. By the definition of i, we have
[ < (10/K?)9] ;- and |z/11(5l)(| < (10/K*)i;  on R. Thus, using that K = O(L'?) and |jv[|g(r) <
|lul|3¢, we easy deduce that (4.30) holds for k = 9,10, 11.

Finally, combining (4.27), (4.29) and (4.30), it holds actually

d C
Gac(®) < (o= e+ OGM2) 4+ O™ [ (002 4502 4 oo g+ e H0HE,

R

Therefore, taking max(0,a) < ¢1, 0 <y <5 and L > Lo > 0, with vo < 1 and Lo > 1, and integrating
between 0 and t, we obtain

IN

C K o, K .
Tore(®) = Ti(0) < Tluolfy (= oe o)y Eemike)

L
< Juolie™ .

A

and this proves the proposition for smooth initial solutions.

For u € X([0,T][), we will use that for any T, > 0 and any sequence (ug,)n>1 C L*(R) such that
(wo.n — O2ug n)n>1 C MT(R) and ug,, — up in L*(R), the sequence of emanating global weak solutions
(Un)n>1 to the DPsd equation satisfies

u, — u in C([0,Tp); L*(R)), (4.45)

n—-+oo

where u is the global weak solution emanating from wug. This fact can be easily deduced from the proof
of the existence of the global weak solutions in [5]. Indeed, by the same arguments developed in this
proof, we obtain that, up to a subsequence, (uy)n>1 converges in C ([O7 Tol; LQ(R)) towards a solution of
the DPsd equation emanating from ug. (4.45) then follows by the uniqueness result. Finally, combinig
(4.45) and Remark 4.1, it holds

v, — v in C([0,Tp]; H*(R)), (4.46)

n—-+oo

where v = (4 — 92)~!u. Therefore, combining (4.45) and (4.46), it is not too hard to check that (see [8],
Proposition 4.1, for details)

lim  sup [ (un(t)) — Jiic (u(t))] = 0. (4.47)

n—=+00 0<t<T
Thanks to this continuity property, the monotonicity formula (4.24) holds for any v € X([0,T), with
0<T < +o0.

4.3 A localized and a global estimate
Let K = +/L/8 and define the function ¢; = ¢;(t,z) (see Figure 4) by

$r=1—o g =1—Yg(-—ya(t))
i =ik —Yiv1k = V(- —yi(t) =Y (- —yip1(8), i=2,...,N —1, (4.48)
én = YNk = V(- —yn(t)),
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where 9; ’s and y;’s are defined in Subsection 4.2. One can see that the ¢;’s are positive functions and
that Zf;l ¢; = 1. We take L/K > 4 so that ¢; satisfies fori=1,..., N,

L L
11— ¢ < 2e75% on :|yi+8ayi+1_8|: (4.49)
and
L L
| i <2¢75F on R\]yi—8,y¢+1+8[. (4.50)
We will use the following localized version of the conservation laws defined for i = 1,..., N by

E;(u(t)) = /]R (40 + 502 +v2,) di(t), Ei(u(t)) = /R (—v3, + 12002, — 48v%v,, + 640%) ¢4(t).  (4.51)

One can remark that the functionals E;(-) and F;(-) do not depend on time in the statement below since
we fix —co=1y; <yo <...<yny < Yny1 = +00.

Fori=1,...,N, we set Q; =]y; — L/8,y;+1 + L/8[, the interval in which the mass of each peakon
©¢;,o (and smooth-peakon p, o) is concentrated. One can see that

N
> pey (@ — &) = po,(x — &) + O(e M), Vr e, (4.52)
j=1

we abuse notation by writing pe, o(z — #;) = O(e=%/4) for all 2 € R\ ©;. We will decompose §; as in
Section 3 by setting

(4.53)

—1
V399
20 ’

0; =[%; —6.7,&; + 6.7], where 6.7 ~1In <1 -

and note that
N C; —

2400

Then, repeating the proof of Lemma 3.4 on each €;, we deduce the following result.

Peia(£6.7)

(4.54)

Lemma 4.3 (Uniqueness of local maxima). Let u € L?(R), with y = (1 — 82)u € M (R), that satisfies
(4.4)-(4.5). There exist 0 > 0 and Lo > 0 only depending on the speeds (c;)., and the parameter a,
such that if 0 < v < 9 and L > Lo > 0, then fori =1,...,N, the function v = (4 — 92) " u admits a
unique local extremum on ©;. This extremum is a maximum, and it holds

Ci —
< _ . . .
v(z) 300 Vo e ;)\ 6, (4.55)
Ci —
< \ O, ,
u(z) 300 Vo e Q;\ 6, (4.56)
and
L L
©; C |y + FReird (4.57)

In the sequel of Subsection 4.3, we will denote by (£;), the point with local maximum values of v
on Uf\il ©;, and the corresponding local maximum by M; = max,ceo, v(z) = maxgzes,50, v(z) = v(§;) as
in Lemma 4.1.
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a . A
2D N A

o 20 40 60

Figure 4: Locatization-functions ¢green () = ¢(x — 15) — ¥(x — 65), deyan(x) = Y(x — 65) — (z — 115)
(at time ¢t = 10) profiles. Also the sum of two peakons 4¢(x — 40) 4+ 9p(2 — 90) and two smooth-peakons
4dp(x —40) 4+ 9p(x — 90) (at time t = 10, with respective speeds 4, 9, and o = 0) profiles. In this example,
one can see that ¢green (respectively @eyqn) is close to 1 in |25, 55[ (respectively in ]75,105[) and decays
exponentially in R\]10, 70[ (respectively in R\]60, 120]) .

Lemma 4.4 (Connection between E;(-) and M?; see [8]). Let u € L*(R) and v = (4 — 92)"tu € H*(R).
Fori=1,...,N, define the function g; by

20 + Vgy — 30y, x <&,
() = 4.58
9:(2) {21}—1—1}193—&—3%, x> &;. ( )
Then it holds
[ 2 @eia) = Butw) — 1201701(6) + [l 02). (4.59)

Lemma 4.5 (Connection between Fj(-) and M3; see [8]). Let u € L*(R) and v = (4 — 92)"'u € H%(R).
Fori=1,...,N, define the function h; by

— Ugzx — 6 z T+ 16 5 < (2]
hi(z) = Ve Ove 160, <L (4.60)
— Vg + 6v; + 160, x > &;.
Then it holds
/Rhi(x)gf(x)@(x) = Fi(u) — 144M}$i(&) + [Jul|3,0(L713). (4.61)

These results follows directly by repeating the proof of similar lemmas in [8] with a single point ¢&;
with local maximum value of v on each ©;, fori=1,..., N.

Lemma 4.6 (Connection between E;(-) and F;(-); see [8]). Let u € L*(R), withy = (1 —0%)u € M+ (R),
that satisfies (4.4)-(4.5). Let be given N — 1 real numbers —oo = y; < y2 < ... < yny < YnN+1 = 00
with y; — yi—1 > 2L/3. There exist v9 > 0 and Lo > 0 only depending on the speeds (c;)¥.; and the
parameter a, such that if 0 <y <~y and L > Lo > 0, then defining the functional E;(-)’s and F;(-)’s as
in (4.48)-(4.51), it holds

Fi(u) < 18M;E;(u) — 72M7 + ||ull3,0(L™Y?), i=1,...,N. (4.62)
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Proof. Combining (4.49), (4.57) and (4.59) with K = v/L/8, we get
Rg?(x)@(z) = Bj(u) — 12M7 + [|u|3,0(L7"7?). (4.63)

Similarly, combining (4.49), (4.57) and (4.61), we get
/ hi(2)g(2)g(@)dw = Fy(u) — 144M? + [[ul}3,0(L~1/2). (4.64)
R

Now, let us show that h; < 18M; on ;. Note that, using (4.4) and (4.52), one can check that 18M; >
(c; —a)/4. We set \; = Z; — 6.7, u; = ; + 6.7, and we rewrite the function h; as

— VUgy — 6v, + 160, x < Ay,
u—6vy + 120, A\ <z <,
u+ 6v, +12v, & <z <y,
— Ugy + 6V + 160, = > p;.

Then, if z € Q; \ O;, using that v, = 4v — u, |v;| < 2v on R, (4.55) and (4.56), it holds

Ci —

hi < |vge| 4 6Jvg| + 160 < u + 320 < < 18M;.

If \; <z <&, then v, > 0, and using that v < 6v on R, we have
h;i =u — 6v, + 12v < 18w.

If & < & < p;, then v, <0, and similarly using that « < 6v on R, we obtain
h; = u + 6v,; + 12v < 18w.

Therefore, it holds

hi(z) < 18 maxv(z) = 18M;, Vx € ;. (4.65)

€,

Next, taking ¢; = 1 on R in (4.59), we have ||g;||L2®) < ||ul|3. Also, one can see that ||h;|| e ®) <
38||v]| Lo (m) < O(||ull%). Thus, combining (4.50) and (4.63)-(4.65), we obtain

Fi(u) — 144M? = / i) g2 (@) i () + [[ul|,0(L172)

R
— [ h@g@otade+ [ @@ + fulow )
Q Q¢

<180, [ g@)on(ode + [l ol ey 164y + 0L
< 18M; Ej(u) — 216 M7 + ||lu||3,0(L~Y/?),
and we deduce the lemma.

Lemma 4.7 (Quadratic identity; see [8]). Let Z = ()., € RN with |z; — z;_1| > L/2, and u € L*(R).
It holds
N
C; —

N
Bw) = Y- Blpesa) = = Szl + 43 (e — o) [u(a) - 52 w0t o)

i=1

where Sz is defined in (4.11), and O(-) only depends on the speeds (c;)., and the parameter a.
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Proof. We compute

B(u—8z) = B(u) + B(S7) —2((1 - 02)87,(4 = 03 u) 1
N
= B(u) + B(Sz) - 22 (1= ) ¢eial- = 20),0) s g - (4.67)

Now, using that |¢f, ,(- — 2i)| = @¢,.a(- — 2i) and integration by parts, we have
<(1 - 65)9%1-,04(' - Zi)aU>H717H1 = /Rmpci,a( i) + /RUI(P/ci,a(' - z;)
Z; +oo
= / U(pci,a(' - Zi) +/ Um@ci,a(' - Zi) - / Ux@c,-,a(' - Zz)
R z

—0o0 i

= 2(¢; — a)v(z;). (4.68)
A similar calculation leads to

BE(Sz) = ((1-0)Sz,(4—32)""5z)

:/RZSZ+/RIZS/Z
—+oo
/RZSZ+Z</ Riypeal- —2) — / R/Z@m,a('_zi)>

i

H-1,H1

N
=2 Z(C — a)pe;,al0) +2 (ci — O‘)pcj,oz(zz zj)
i=1 1<ij<N
i
N
-1 D (e —a)? +0(e MY, (4.69)
3 i=1

where we also use that |z; —z;| > L/4, the exponential decay of p.; o (- —z;), and that Ry = (4—02)"*Sy
as in Lemma 4.1 (see (4.11)). Thus, combining (4.67)-(4.69), we obtain the lemma.
4.4 End of the proof of Theorem 1.1

Let u € X([0,T]), with 0 < T < 400, be a solution of the DPsd equation satisfying (1.10)-(1.12) and
(4.2) for some ty €]0,T[. Let us recall that M; = v(to,&;(tg)) = maxyey, v(to, ), with J;’s as in (4.9),
and set §; = (¢; — a)/6 — M;. First, from (4.7) and (4.9), we know that for i =2,..., N,

gi(t()) — fifl(t()) > 2L/3 > L/27 (470)
and from (1.11) it is easy to check that (see [8], Lemma 4.7)

N
=Y E(pe,a)| < O(E%) + O(e™ M. (4.71)
i=1
Applying (4.66) with u(tp) and using (4.71), we get
2
ch,,a &(to)|| < 42 — a)8; + O(e2) + O(e™ 114, (4.72)
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In the same way, from (4.62) we get

which leads to

N

F(u(to)) = > _ Fi(u(t)) < 18> M;E;(u(to)) — 72> M} + O(L™'/?), (4.73)

i=1 i=1 i=1

by summing over ¢ € {1,...,N}.
Now, we will use the following notation: for a function f: R, — R, we set

AY f = f(to) = £(0). (4.74)
From (4.73) and the fact that F(-) and F(-) are conservation laws for u, we obtain
N N
0=APF(u) =Y APFi(u) <18)  M;AY E;i(u)
i=1 i=1
N
+ ) [-72MP + 18M; B (u) — Fi(ug)] + O(L™Y?). (4.75)
i=1

By (1.11), the exponential decay of ¢, o’s and the ¢;’s, and the definition of E;(-) and F;(+), it is easy
to check that (see [8], Lemma 4.7)

|Bi(uo) — E(@e, 0)| + |Fi(wo) — F¢ea)l < O(?) +0(e™vE), i=1,...,N. (4.76)
Then it holds

Ci —

N N

1 =1

] +0(e%) + 0(eVE). (4.77)

K2

Combining (4.75) and (4.77), we get

N N
 — 1
362 [Mi +4 3 O‘} < 1 2 MAPEi(u) + O() + O(L™?),
=1 =1

and using the Abel transformation with My = 0, we obtain

N N

—a] _1 :

252-2 |:Mz + & 3 a] < 1 Z(Mz — M)A Ji k (u) + O(%) + O(L™1/?) (4.78)
i=1 i=1

where J; k (t) is defined in (4.22).

From (4.2) we know that u(tg) € U(y, L/2), on account of Lemma 4.1 there exists X = (Z1,...,%x)
with #; € J; such that F (u(to) — Sg) < O(4?), where Sg is defined in (4.11). Since v(to,&(to)) =
max,c s, v(to, r) and using (4.66), we obtain E (u(to) — S¢) < O(y2) + O(e™F/%), with € = (&1,...,&N).
From (4.5) , we deduce that

N
v(to) = D pejial- = &i(t0) < 0() + O(e /%),
a COR)
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Thus
N
() = Zﬂcw(' —&(t0)) +O(y) + O(e™1/®), vz eR,

and applying this formula with = = £;(¢o) and using (4.70), we get
N
0(&i(t0)) = Y peya(&ilto) — &(to)) + O(y) + O(e /%)
j=1

a(&i(to) — &(to)) + O(y) + O(e™1/%)

1<j<N
Jj#i
= 24 0() + O(e7HY).

We take v = A (y/£ + L71/8), then M; = (¢; — @) /6 + O(e'/2) + O(L~Y/®). Therefore, for 0 < ¢ < ¢ and
L > Ly >0, with ¢g < 1 and Ly > 1, it holds

0< M <...<My. (4.79)

Combining (4.78), (4.79) and using the monotonicity estimate (4.24), it holds

N
> |
=1

Therefore, using that [M; + (¢; — )/3]7! < 3/(¢; — a), there exists C > 0 only depending on o and
(¢;), such that

G- 0‘] < 0(2) + O(L /).

6; <Cle+ LYY, i=1,...,N. (4.80)
Now, combining (4.72) and (4.80), we obtain

N
- Z Peial —&ilto))

and the theorem follows by choosing A = 2C.

< CO(Ve+L7Y8),

H

Appendix. Proof of Lemma 4.2

The aim of this subsection is to establish the Virial type identity (4.25). Let us first assume that u is
a smooth solution. The case u € X([0,T[) will follow by a density argument. A part of this calculation
was performed in [8] (Lemma 4.2), we will use these results and focus on terms that are dependent of the
parameter «.

We recall that in [8] (Lemma 4.2) we establish that

1
/yvg—/ (40 + 502 +v2,) g — 5/ 29”72/ v2g" + = /1129(4) (4.81)
2 R 2 Jr
and

d d 5 1
—/ (40* + 502 +v2,) g = — / yug + 2/ v,y — = / vheg” — 2/ vehg” + = / vhagW. (4.82)
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Let us compute the variation of the energy

d
pn yvg—/ytvg—&-/yvtg

=I+J

Applying the operator (1 — d2) on both sides of equation (1.7), we get

Yp = f%(l - ﬁz)muz - g@aﬂf —al - 5‘3)8mu

Substituting y; by this value, I becomes

1 25 2 3 W) va — a — 0%)0,ul v
[:—5/]1%[(1—81)81u | vg — Q/R[aw( )] vg /R[(l 0;)0zu] vg
:Il+12+13'

Thanks to the calculations done in [8] (Lemma 4.2), the terms I; and Iy (independent of «) are known,

and give us
4 3 1
L+1L=- / udg' — 4/ u?vg — = / uv,g" — = / u?vg". (4.83)
3 Jr R 2 Jr 2 Jr

Let us now compute the term which depends on a:
I3 = a/ (1= 92)u] 9,(vg)
R
= a/ [(1 — 83)11] Vg + a/ [(1 — ag)u] vg'
R R

=1+ 15

with
:a/ uvzg_a/uzzvzg
R R
:a/uv$g+a/uw(9w(vwg)
R R
=a/ uvmg+a/uwvmg+a/uzvzg’
R R R
za/uvg;g a/u@w(vmg) —a/u@I(Ug;g’)
R R R
a/uvlg a/uvxmg—Qoz/uvmg'—a/uvmg” (4.84)
R R R R
and
a/uvg o | Uggvg
R
:a/uvg/Jra uz 0 (vg")
R

:a/uvg/—i—a
R

:a/uvg —a
R

a/uvg —a
R

UgVe g + a/ Ugvg”
R
uz(veg’) — a/ udy (vg")
R

W0pzg — 2a/ wvgg” — a/ uvg’”. (4.85)
R R

—r—r—
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Adding (4.84) and (4.85), we get

I3 :a/uvmg—a/uvmxg—i-a/uvg’—Sa/uvmg'—3a/uv$g”—a/uvg”’
R R R R R R
= a/ u[(1—02)v,) g+a/ ul(1—302)] g — 3a/ wvgg” —a/ uvg’”.
R R R R

The first two integrals lead to

a/u[(1—82)vz]g=a/u[(4—8£)vm—3v$]g:a/uuwg—3a/uvzg:—g/uQQ’—Zioz/uvwg
R R R R 2 Jr R

and

a/ ul(1-392)] g = 3a/ u [(4 — %) — Hv] g = Sa/ u?g — 11a/ uvg’.
R R 3 R R

)
I3 = —3a/uvzg+ —a/uzg’ - 11a/ uvg’—3a/uvwg” —a/uvg”’. (4.86)
R 2 Jr R R R
Finally, combining (4.83) and (4.86), we get
4 / 3 1
J=_— u39/_4/u2vg/_7/u2v$g//_7/u2vg///
3 Jr R 2 Jr 2 Jr

)
—3a/uvwg+—a/u2g'— 11a/uvg’—Sa/uvwg”—a/uvg"’. (4.87)
R 2 Jr R R R

Now, applying the operator (4 — 92)~! on both sides of equation (1.7) and using (3.19), we get

Therefore

1

T2
1

T2

— %(4 —- 32711 - 82710 — a4 — 0%)10,u

(1—03)710,u* — a(4 — 02)"10,u.

(4 — 0%)" 10 u?

Ut

Substitute v; by this value, J becomes

J = _1/ [(1— 8271 0,u?] yg — 0‘/ [(4=02)""0uu] yg
2 ) R
= J1 —+ JQ.

Setting h = (1 — 92)~1u? and using the calculations done in [8] (Lemma 4.2), we know that

2 1
J1= —f/u?’g’—k/uhg’—i—f/umg”. (4.88)
3 Jr R 2 Jr

Let us compute the term which depends on a:
Jo = a/ 0:(yg)v
R

=a/ymvg+a/yvg’
R R

=Js+Jy
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with

J3 = a/(um - uzmm)vg
R

:a/umvg—a/ummvg

R R

= —a/u@m(vg)—&—a/um&;(vg)
R R

:—a/uvg’—a/uvmg—i—a
R R

wg — o

Vi
UpzV + Q& | UggUzg

I
|
Q

Uz 02 (V29)

—a/uszg’
R

U0 (Vazg) + / u0y (vzg')

I
|
Q

T ——

I
|
Q

wg — UpaVg +

Il
|
Q

UVzg +

g
&
+
=}
T — T —r—
e
|
Q
%\%\%\%\%\
e
&

uvyg” + 2a/ Wzeg + a/ -
R R

Jy = a/(u — Ugy)Vg = a/ uvg’ — a/ Ugpa VG .
R R R

Adding (4.89) and (4.90), we get

Jy = —a/uvwg—&—a/uvxg”—i—Za/uvmg’—l—a/uvwmg.
R R R R

Next, using that v,, = 4v — u and v, = 4v; — u,, we have

Qa/uvmg’=2oz/u(4v—u)g’ :8a/uvg’—2a/u2g’
R R R R

and

and

a/uvmmg:a/ug(élvm—ux):4a/uvmg—a/uuxg:4a/uvmg+g/u29'.
R R R R R 2 Jr

Thus

J2—3a/uv$g+8a/uvg ——/ug +a/uvwg”.
R R R

Finally, combining (4.88) and (4.91), we get

2 3
Jz—f/ug —|—/uhg + - /uhxg”—k?)a/uvmg+8a/uvg'——a/u29’+o¢/uvxg".
3 R R 2 Jr R

Therefore, combining (4.82), (4.87) and (4.92), it holds

(4v +5v +v )g

2 1 1
_ = / USgI o 4/ u2,ug/ = / ” vg/” 4= /U2U;¢g// + / uhg'
3 Jr R 2 Jr 2 Jr R
1 0 0 1" 7 1 (4)
+ = [ wuheg' — = | vheg' —2 | vihg" + = | vhzg
2 Jr 2 Jr R 2 Jr
—|—a/uzg’—3a/uvg’—2a/uvmg”—a/uvg”’
R R R R
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The four last integrals which depend on « give us

K, = a/ u?g
R
:a/(4v—vm)2g’
R
:16a/vg+a/ Sa/vvmg’
R R R
= 16a/v2g'+a/vizg’—l—Sa/vig’+4a/8z(v2)g”
R R R R

= a/ (160 + 802 +v2,) ¢’ — 4a/ v2g",
R R

73a/uvg’
R
= —3a/(4v — Vgg )G
R
/ 2g’—3a/8x(vg')vm
R
—12a/ 3a/ 3a/vvxg”
R R R
3
—a/ (120° +302) ¢’ + —a/UQg'”,
R 2 Jr

K3 = —204/ uvgg”
R

= —2a/(4v — Vg )V g”
R

= fSa/vvzg”JrQa/vmvmg”
R
:—4a/3 )9’ +a/8m(v2

_ 4Cv/ 29/// / 29///
R R
and proceeding as for Ks, we get

K4:_a/uvg///:_4a/ 29//1_ /Uig///+g/v2g(5).
R R 2 R

Summing over j € {1,2,3,4} and using (4.81), it holds

ZK —a/ (402 + 502 + v30)g  — / 2" —2 / v2g" + 2/v29(5)=a/yvg'. (4.94)
R R

The lemma follows by combining (4.93) and (4.94).

Ks

= —12«
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