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Abstract

In this paper, we present a new argument (see Lemma 3.4) that allows us to simplify the proof of
stability of peakons established in [9] (Theorem 1.1), [6] (Theorem 1.1) and [8] (Theorem 1.3). Also,
we extend the result of stability of ordered trains of peakons obtained in [8] (Theorem 1.1), to the
Degasperis-Procesi equation with strong dispersion.

1 Introduction

In this paper, we consider the Degasperis-Procesi equation with strong dispersion (DPsd)

ut − utxx + 4uux + α(ux − uxxx) = 3uxuxx + uuxxx, (t, x) ∈ R∗
+ × R, (1.1)

where α is a real constant. The case α = 0 is called the Degasperis-Procesi equation (DP)

ut − utxx + 4uux = 3uxuxx + uuxxx, (t, x) ∈ R∗
+ × R. (1.2)

The DP and DPsd equations possess two identical conservation laws (note that the DP equation is
completely integrable, see [2])

E(u) =

∫
R
yv =

∫
R

(
4v2 + 5v2x + v2xx

)
, F (u) =

∫
R
u3 =

∫
R

(
−v3xx + 12vv2xx − 48v2vxx + 64v3

)
, (1.3)

where y = (1− ∂2x)u and v = (4− ∂2x)
−1u. One can remark that the conservation law E(·) is equivalent

to ‖ · ‖2L2(R). Indeed, using integration by parts (we assume that u(±∞) = v(±∞) = 0), it holds

‖u‖2L2(R) =

∫
R
u2 =

∫
R
(4v − vxx)

2 =

∫
R

(
16v2 + 8v2x + v2xx

)
∼ E(u). (1.4)

In the sequel we will denote
‖u‖H =

√
E(u). (1.5)

The DPsd equation admits non-smooth solitary waves of the form (see [7], [12])

u(t, x) = ϕc,α(x− ct) = (c− α)ϕ(x− ct) = (c− α)e−|x−ct|, with c 6= α, (1.6)
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and called peakons (see Figure 1). In the case α = 0, we recover the peakons for the DP equation. One
can notice that, thanks to the parameter α we can change the amplitude of peakons without changing
their speeds. As for the Camassa-Holm equation (CH) (see for instance [1], [4] and [3]), the peakons
are not strong solutions of (1.1), but solutions in the distribution sense of the DPsd equation in the
conservative form

ut + α∂xu+
1

2
∂xu

2 +
3

2
(1− ∂2x)

−1∂xu
2 = 0, (t, x) ∈ R∗

+ × R. (1.7)

Our first goal is to simplify the proof given in [9] of the stability of a single peakon. Recall that
the proof of the stability for the CH equation in [1] follows from two integral relations between two
conservation laws of CH, maxR u and fonctions related to u. In [9] the proof is more complicated, since
all the local maxima and minima of v = (4 − ∂2x)

−1u are involved in the relations. In this paper we
present a simplication of this proof, where only the maximum of v is involved in the relations. Our proof
is thus closer to the proof for CH in [1]. The main idea is the following: since u is L2-close to the peakon
ϕc,α(· − ξ), for some ξ ∈ R, and (u− uxx) ∈ M+(R), it is easy to check that u is actually C0-close to the
peakon, and thus v is C2-close to the smooth-peakon (see Figure 1)

ρc,α(x− ξ) = (4− ∂2x)
−1ϕc,α(x− ξ) =

c− α

3
e−|x−ξ| − c− α

6
e−2|x−ξ|. (1.8)

First, since ρc,α(· − ξ), ρ′c,α(· − ξ) and ρ′′c,α(· − ξ) are very small with respect to the amplitude (c − α)
outside of the interval Θ = [ξ − 6.7, ξ + 6.7], we can restrict ourself to study v on Θ. Now we observe
that ρ′′c,α(· − ξ) has strictly negative values in the interval V = [ξ − ln2/2, ξ + ln2/2], with vx strictly
positive on [ξ − 6.7, ξ − ln2/2] and vx strictly negative on [ξ − ln2/2, ξ + 6.7]. This forces vx to change
sign only one time on Θ, and thus v has only one local extremum (which is a maximum) on Θ. This fact
will considerably simplify the proof of the stability.

Our second goal is to prove that ordered trains of peakons are stable under small perturbations in the
energy space H (equivalent to L2). Since the proof of the stability result is principally based on energy
arguments (see for instance [3], [4], [6], [8], [9], [11]), from the fact that the DP and DPsd equations
have the same conservation laws, the term α(ux − uxxx) will play a significant role only in the estimate
of the speed of peakons (respectively smooth-peakons) as time is increasing (see Subsection 4.1), and in
the monotonicity of the local energy (see Subsection 4.2). The rest of the arguments which lead to the
stability result will be mainly deduced from the work done in [8] with the DP equation.

Let us introduce the function space where will live our class of solutions to the equation. For I a
finite or infinite time interval of R+, we denote by X (I) the function space 1

X (I) =
{
u ∈ C

(
I;H1(R)

)
∩ L∞ (I;W 1,1(R)

)
, ux ∈ L∞ (I;BV (R))

}
. (1.9)

We have the following stability theorem.

Theorem 1.1 (Stability of the trains of peakons). Let be given α ∈ R and N velocities c1, . . . , cN such
that max(0, α) < c1 < . . . < cN . Let u ∈ X ([0, T [), with 0 < T ≤ +∞, be a solution of the DPsd equation.
There exist C > 0, L0 > 0 and ε0 > 0 only depending on the speeds (ci)

N
i=1 and the parameter α, such

that if
y0 = (1− ∂2x)u0 ∈ M+(R) (1.10)

and ∥∥∥∥∥u0 −
N∑
i=1

ϕci,α(· − z0i )

∥∥∥∥∥
H

≤ ε2, with 0 < ε < ε0, (1.11)

for some z01 , . . . , z
0
N satisfying

z01 < . . . < z0N and z0i − z0i−1 ≥ L, with L > L0 > 0, i = 2, . . . , N, (1.12)

1W 1,1(R) is the space of L1(R) functions with derivatives in L1(R) and BV (R) is the space of function with bounded
variation.
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then there exist ξ(t) = (ξ1(t), . . . , ξN (t)) ∈ RN such that∥∥∥∥∥u(t)−
N∑
i=1

ϕci,α(· − ξi(t))

∥∥∥∥∥
H

≤ C(
√
ε+ L−1/8), ∀t ∈ [0, T [ (1.13)

and

ξi(t)− ξi−1(t) >
L

2
, ∀t ∈ [0, T [, i = 2, . . . , N, (1.14)

see Lemmas 4.1-4.3 for the definition and the properties of ξ(t).
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Figure 1: Sum of three red peakons
∑3

i=1(2i − 1)ϕ[x − 10(2i − 1)] and three blue smooth-peakons∑3
i=1(2i− 1)ρ[x− 10(2i− 1)] (at time t = 10 with respective speeds 1, 3, 5, and α = 0) profiles.

2 Preliminaries

In this section, we briefly recall the global well-posedness results for the Cauchy problem of the DPsd
equation (see [5] and [10]), and its consequences.

Theorem 2.1 (Global weak solution; see [5] and [10]). Assume that u0 ∈ L2(R) with y0 = (1− ∂2x)u0 ∈
M+(R). Then the DPsd equation has a unique global weak solution u ∈ X (R+) such that

y(t, ·) = (1− ∂2x)u(t, ·) ∈ M+(R), ∀t ∈ R+ (2.1)

and

|ux(t, x)| ≤ u(t, x), ∀(t, x) ∈ R+ × R. (2.2)

Moreover E(·) and F (·) are conserved by the flow.

Remark 2.1 (Control of L∞ norm by L2 norm). Using the Sobolev embedding of H1(R) into L∞(R)
and (2.2), we infer that there exists a constant CS > 0 such that

‖u‖L∞(R) ≤ CS‖u‖H1(R) ≤ 2CS‖u‖L2(R). (2.3)
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3 Stability of a single peakon

In this section, we present our simplification of the proof of stability of peakons.

Theorem 3.1 (Stability of peakons). Let u ∈ X ([0, T [), with 0 < T ≤ +∞, be a solution of the DPsd
equation and ϕc,α be the peakon defined in (1.6), traveling to the right at the speed c > max(0, α). There
exist C > 0 and ε0 > 0 only depending on the speed c and the parameter α, such that if

y0 = (1− ∂2x)u0 ∈ M+(R) (3.1)

and
‖u0 − ϕc,α‖H ≤ ε2, with 0 < ε < ε0, (3.2)

then
‖u(t, ·)− ϕc,α(· − ξ(t))‖H ≤ C

√
ε, ∀t ∈ [0, T [, (3.3)

where ξ(t) ∈ R is the only point where the function v(t, ·) = (4− ∂2x)
−1u(t, ·) attains its maximum.

We first recall the following result (see for instance [9] or [8]).

Lemma 3.1 (Control of distances between energies; see [8]). Let u ∈ L2(R) with y = (1−∂2x)u ∈ M+(R).
If ‖u− ϕc,α‖H ≤ ε2, then

|E(u)− E(ϕc,α)| ≤ O(ε2) (3.4)

and
|F (u)− F (ϕc,α)| ≤ O(ε2), (3.5)

where O(·) only depends on the speed c and the parameter α.

To prove Theorem 3.1, by the conservation of E(·), F (·) and the continuity of the map t 7→ u(t) from
[0, T [ to H (since H ' L2), it suffices to prove that for any function u ∈ L2(R) satisfying (3.1), (3.2),
(3.4) and (3.5), if

inf
z∈R

‖u− ϕc,α(· − z)‖H ≤ ε1/4, (3.6)

then
‖u− ϕc,α(· − ξ)‖H ≤ C

√
ε, (3.7)

where ξ ∈ R is the only point of maximum of v.
Let us present some important properties of smooth-peakons defined in (1.8), which will play a crutial

role in the proof of Theorem 3.1. The smooth-peakon ρc,α belong to H3(R) ↪→ C2(R) (by the Sobolev
embedding) since ϕc,α belong to H1(R) (defined in (1.6)). It is a positive even function, which admits
a single maximum (c − α)/6 at point 0, and decays at infinity to 0 (see Figure 2a). Its derivative ρ′c,α
belong to H2(R) ↪→ C1(R) (by the Sobolev embedding), it is an odd function, which vanishes only at
the origin, has positive values on ]−∞, 0] and negative values on [0,+∞[. It admits a single maximum
(c − α)/12 at point −ln2 and a single minimum −(c − α)/12 at point ln2, and decays at infinity to 0
(see Figure 2b). Its second derivative ρ′′c,α belong to H1(R) ↪→ C0(R) (by the Sobolev embedding), it
is an even function, which vanishes at two points ±ln2, takes positive values on ] −∞,−ln2[∪]ln2,+∞[
and negative values on [−ln2, ln2]. It admits a single minimum −(c − α)/3 at point 0 and two maxima
(c− α)/24 at points ±ln4, and decays at infinity to 0 (see Figure 2c).

Next, we will need the following estimates.

Lemma 3.2 (C0 and C1 approximations). Let u ∈ L2(R) with y = (1−∂2x)u ∈ M+(R). If ‖u−ϕc,α‖H ≤
ε1/4, then

‖u− ϕc,α‖C0(R) ≤ O(ε1/8) (3.8)

and
‖v − ρc,α‖C1(R) ≤ O(ε1/4). (3.9)
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Proof. Let us begin with the second estimate. From the definition of E(·) and H (see respectively
(1.3) and (1.5)), one can see that ‖u‖H is equivalent to ‖v‖H2(R), since ‖v‖H2(R) ≤ ‖u‖H ≤ 5‖v‖H2(R).
Then, assumption u is H-close to ϕc,α implies that v is H2-close to ρc,α. Now, using the Sobolev
embedding of H2(R) into C1(R), we deduce (3.9).

For the first estimate, note that the assumption y = (1− ∂2x)u ≥ 0 implies that u = (1− ∂2x)
−1y ≥ 0

and satisfies |ux| ≤ u on R (see (2.2)). Then, applying triangular inegality, and using that |ϕ′
c,α| = ϕc,α

on R and (2.3), we have

‖u− ϕc,α‖H1(R) ≤ ‖u‖H1(R) + ‖ϕc,α‖H1(R)

≤ 2‖u‖L2(R) + 2‖ϕc,α‖L2(R)

≤ 2‖u− ϕc,α(· − ξ)‖L2(R) + 4‖ϕc,α‖L2(R)

≤ O(ε1/4) +O(1),

where O(1) = 4(c − α). Therefore, applying the Gagliardo-Nirenberg inegality and using that ‖u −
ϕc,α‖H ≤ ε1/4 (with H ' L2), we obtain

‖u− ϕc,α‖C0(R) ≤ CG‖u− ϕc,α‖1/2L2(R)‖u− ϕc,α‖1/2H1(R)

≤ O(ε1/8)
(
O(ε1/8) +O(1)

)
≤ O(ε1/8),

where CG is the constant of Gagliardo-Nirenberg. This proves the lemma.

The following lemma specifies the distance to minimize for stability.

Lemma 3.3 (Quadratic identity; see [9]). For any u ∈ L2(R) and ξ ∈ R, it holds

E(u)− E(ϕc,α) = ‖u− ϕc,α(· − ξ)‖2H + 4(c− α)

(
v(ξ)− c− α

6

)
, (3.10)

where v = (4− ∂2x)
−1u.

Proof. Following the idea of Constantin and Strauss with the Camassa-Holm (CH) equation (see [1],
Lemma 1), we will present another way to establish identity (3.10). We compute

E(u− ϕc,α) = E(u) + E(ϕc,α)− 2
〈
(1− ∂2x)ϕc,α(· − ξ), (4− ∂2x)

−1u
〉
H−1,H1

= E(u) + E(ϕc,α)− 2
〈
(1− ∂2x)ϕc,α(· − ξ), v

〉
H−1,H1 , (3.11)

where 〈·, ·〉H−1,H1 denotes the duality H−1(R) over H1(R). Now, using the definition of ϕ′
c,α(· − ξ) and

integration by parts, we have

〈
(1− ∂2x)ϕc,α(· − ξ), v

〉
H−1,H1 =

∫
R
vϕc,α(· − ξ) +

∫
R
vxϕ

′
c,α(· − ξ)

=

∫
R
vϕc,α(· − ξ) +

∫ ξ

−∞
vxϕc,α(· − ξ)−

∫ +∞

ξ

vxϕc,α(· − ξ)

= 2(c− α)v(ξ). (3.12)
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Figure 2: Variation of the smooth-peakon with the amplitude 1/6 at initial time.

Recall that the energy of peakons gives us

E(ϕc,α) =
〈
(1− ∂2x)ϕc,α, (4− ∂2x)

−1ϕc,α

〉
H−1,H1

=

∫
R
ρc,αϕc,α +

∫
R
ρ′c,αϕ

′
c,α

=

∫
R
ρc,αϕc,α +

∫ 0

−∞
ρ′c,αϕc,α −

∫ +∞

0

ρ′c,αϕc,α

= 2(c− α)ρc,α(0)

=
(c− α)2

3
. (3.13)

Thus, combining (3.11)-(3.13), we obtain the lemma.

Now we will study carefully the local extrema of v = (4−∂2x)−1u. Let u ∈ L2(R) with y = (1−∂2x)u ∈
M+(R), and assume that (3.6) holds for some z ∈ R. We consider the interval in which the mass of
smooth-peakons is concentrated, and the interval in which the mass of second derivative of smooth-
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peakons is strictly negative. We set

Θ = [z − 6.7, z + 6.7], where 6.7 ' −ln

(
1−

√
399

20

)
, (3.14)

and

V =

[
z − ln2

2
, z +

ln2

2

]
. (3.15)

One can clearly see that V is a subset of Θ, and we chose the values ±6.7 such that ρc,α(±6.7) '
(c− α)/2400 ' 4.1× 10−4(c− α) as in [8]. Also, we have ρ′c,α(−6.7) = −ρ′c,α(6.7) ' −4.1× 10−4(c− α)
and ρ′′c,α(±6.7) ' 4.1 × 10−4(c − α). Then ρc,α(· − z), ρ′c,α(· − z) and ρ′c,α(· − z) are very small with
respect to the amplitude (c− α) on R \Θ.

We claim the following result.

Lemma 3.4 (Uniqueness of the local maximum). Let u ∈ L2(R), with y = (1 − ∂2x)u ∈ M+(R), that
satisfies (3.6) for some z ∈ R. There exist ε0 > 0 only depending on the speed c and the parameter α,
such that if 0 < ε < ε0, then the function v = (4 − ∂2x)

−1u admits a unique local extremum on Θ. This
extremum is a maximum, and it holds

v(x) ≤ c− α

300
, ∀x ∈ R \Θ, (3.16)

u(x) ≤ c− α

300
, ∀x ∈ R \Θ. (3.17)

Proof. The key is to study the impact of assumption y ∈ M+(R) on v. First, let us show that
|vx| ≤ 2v on R. We recall that from the assumption y ≥ 0, we have u ≥ 0 and v ≥ 0 on R. According to
the definition of v, we have for all x ∈ R,

v(x) =
e−2x

4

∫ x

−∞
ex

′
u(x′)dx′ +

e2x

4

∫ +∞

x

e−2x′
u(x′)dx′

and

vx(x) = −e
−2x

2

∫ x

−∞
e2x

′
u(x′)dx′ +

e2x

2

∫ +∞

x

e−2x′
u(x′)dx′,

which yields
|vx(x)| ≤ 2v(x), ∀x ∈ R. (3.18)

Second, let us show that u ≤ 6v on R. Using the Fourier transform, one can check that

(1− ∂2x)
−1(4− ∂2x)

−1(·) = F−1

[
1

3(1 + ω2)
− 1

3(4 + ω2)

]
=

1

3
(1− ∂2x)

−1(·)− 1

3
(4− ∂2x)

−1(·), (3.19)

and one can rewrite v as

v = (4− ∂2x)
−1(1− ∂2x)

−1y =
1

3
(1− ∂2x)

−1y − 1

3
(4− ∂2x)

−1y. (3.20)

Then for all x ∈ R,

u(x)− 6v(x) = −(1− ∂2x)
−1y(x) + 2(4− ∂2x)

−1y(x)

= −1

2

∫
R
e−|x−x′|y(x′)dx′ +

1

2

∫
R
e−2|x−x′|y(x′)dx′

≤ 0, (3.21)
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since e−2|·| ≤ e−|·| on R.
Next, let us show that vxx is uniformly close to ρ′′c,α(· − z) on R. From the definition of v and using

(3.21), we have
|vxx(x)| = |4v(x)− u(x)| ≤ 4v(x) + u(x) ≤ 10v(x), ∀x ∈ R. (3.22)

Also, using that |ux| ≤ u ≤ 6v on R (see (2.2)), and that |vx| ≤ 2v on R (see (3.18)), we get

|vxxx(x)| = |4vx(x)− ux(x)| ≤ 4|vx(x)|+ |ux(x)| ≤ 14v(x), ∀x ∈ R. (3.23)

Then, combining (3.18), (3.22) and (3.23), we infer that

‖v‖H3(R) =
3∑

j=0

‖∂(j)x v‖L2(R) ≤ 27‖v‖L2(R). (3.24)

Please note that, all these properties hold with ρc,α = (4− ∂2x)
−1ϕc,α. Now, combining (3.9) and (3.24),

one can check that

‖v − ρc,α(· − z)‖H3(R) ≤ ‖v‖H3(R) + ‖ρc,α‖H3(R)

≤ 27‖v‖L2(R) + 27‖ρc,α‖L2(R)

≤ 27‖v − ρc,α(· − z)‖L2(R) + 54‖ρc,α‖L2(R)

≤ O(ε1/4) +O(1), (3.25)

where O(1) =
√
594(c − α). Applying the Gagliardo-Nirenberg inegality, and using (3.9) and (3.25), it

holds

‖vxx − ρ′′c,α(· − z)‖L∞(R) ≤ CG‖v − ρc,α(· − z)‖1/2H2(R)‖v − ρc,α(· − z)‖1/2H3(R)

≤ O(ε1/8)(O(ε1/8) +O(1))

≤ O(ε1/8), (3.26)

which leads to the desired result.
We are now ready to prove the uniqueness of local maxima. Since vx(x) = ρ′c,α(x−z)+O(ε1/4) for all

x ∈ R (thanks to (3.9)), in particular, we have vx(z) = O(ε1/4), since ρ′c,α(0) = 0. Then, we will restrict
our research of local extrema of v on V. Let us study the sign of vxx on V. One can easy check that for
all x ∈ V,

ρ′′c,α(x) ≤
√
2− 2

6
(c− α). (3.27)

Then, combining (3.26) and (3.27), taking 0 < ε < ε0 with ε0 � 1, we have for all x ∈ V,

vxx(x) ≤
√
2− 2

6
(c− α) +O(ε1/8) ≤

√
2− 2

600
(c− α) < 0,

which implies that vx is strictly decreasing on V. Let us study the sign of vx on Θ \ V. One can easy
check that

ρ′c,α

(
− ln2

2

)
=

√
2− 1

6
(c− α) and ρ′c,α

(
ln2

2

)
= −

√
2− 1

6
(c− α), (3.28)

and one can clearly see that ρ′c,α(x) ≥ 4.1× 10−4(c− α) for all x ∈ [z − 6.7, z − ln2/2]. Then using (3.9)
and taking 0 < ε < ε0 with ε0 � 1, we have vx(x) ≥ 4.1× 10−5(c−α) > 0 for all x ∈ [z− 6.7, z− ln2/2].
Proceeding in the same way, we obtain vx(x) ≤ −4.1 × 10−5(c − α) < 0 for all x ∈ [z + ln2/2, z + 6.7].
Since vx is strictly decreasing on V and changes sign, then vx vanishes once on V, and thus v admits a
single local extemum on V, which is a maximum since vxx < 0 on V.
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Now, using that ρc,α(· − z) is increasing on ] − ∞, z], (3.9) and taking 0 < ε < ε0 with ε0 � 1, it
holds for all x ∈]−∞, z − 6.7[,

v(x) = ρc,α(x− z) +O(ε1/4) ≤ c− α

2400
+O(ε1/4) ≤ c− α

300
.

Proceeding in the same way for x ∈]z + 6.7,+∞[, we obtain (3.16).
Combining (3.8), (3.21) and proceeding as for the estimate (3.16), we get (3.17). Note that ϕc,α(±6.7) '

1.2× 10−3(c− α). This completes the proof of the lemma.
We deduce from the above lemma that v has got a unique point of global maxximum on R. In the sequel

of this section, we will denote by ξ this point of global maximum and we set M = v(ξ) = maxx∈R v(x).
The next two lemmas can be directly deduced from the similar lemmas established in [9] and [8].

Lemma 3.5 (Connection between E(·) and M2; see [9]). Let u ∈ L2(R) and v = (4− ∂2x)
−1u ∈ H2(R).

Define the function g by

g(x) =

{
2v + vxx − 3vx, x < ξ,

2v + vxx + 3vx, x > ξ.
(3.29)

Then it holds ∫
R
g2(x)dx = E(u)− 12M2. (3.30)

Lemma 3.6 (Connection between F (·) and M3; see [9]). Let u ∈ L2(R) and v = (4− ∂2x)
−1u ∈ H2(R).

Define the function h by

h(x) =

{
− vxx − 6vx + 16v, x < ξ,

− vxx + 6vx + 16v, x > ξ.
(3.31)

Then it holds ∫
R
h(x)g2(x)dx = F (u)− 144M3. (3.32)

We can now connect the conservation laws.

Lemma 3.7 (Connection between E(·) and F (·)). Let u ∈ L2(R), with y = (1 − ∂2x)u ∈ M+(R), that
satisfies (3.6) for some z ∈ R. There exists ε0 > 0 only depending on the speed c and the parameter α,
such that if 0 < ε < ε0, then it holds

M3 − 1

4
E(u)M +

1

72
F (u) ≤ 0. (3.33)

Proof. The key is to show that h ≤ 18M on R. Note that by (3.9) we know that 18M ≥ (c− α)/4.
Let us set λ = z − 6.7, µ = z + 6.7, and we rewrite the function h as

h(x) =


− vxx − 6vx + 16v, x < λ,

u− 6vx + 12v, λ < x < ξ,

u+ 6vx + 12v, ξ < x < µ,

− vxx + 6vx + 16v, x > µ.

If x ∈ R \Θ, using that vxx = 4v − u, (3.16) and (3.17), it holds

h ≤ |vxx|+ 6|vx|+ 16v ≤ u+ 32v ≤ c− α

9
≤ 18M.

If λ < x < ξ, then vx ≥ 0, and using that u ≤ 6v on R, we have

h = u− 6vx + 12v ≤ 18v.

9



If ξ < x < µ, then vx ≤ 0, and similarly using that u ≤ 6v, we get

h = u+ 6vx + 12v ≤ 18v.

Therefore, it holds
h(x) ≤ 18max

x∈R
v(x) = 18M, ∀x ∈ R. (3.34)

Now, combining (3.30), (3.32) and (3.34), we get

F (u)− 144M3 =

∫
R
h(x)g2(x)dx ≤ ‖h‖L∞(R)

∫
R
g2(x)dx ≤ 18M(E(u)− 12M2),

and we obtain the lemma.
Proof of Theorem 3.1. As noticed after the statement of the theorem, it suffices to prove (3.7)

assuming that u ∈ L2(R) satisfies (3.1), (3.2) and (3.6). We recall that M = v(ξ) = maxx∈R v(x) and we
set δ = (c− α)/6−M . We first remark that if δ ≤ 0, combining (3.4) and (3.10), it holds

‖u− ϕc,α(· − ξ)‖H ≤ |E(u0)− E(ϕc,α)|1/2 ≤ O(ε),

that yields the desired result. Now suppose that δ > 0, that is the maximum of the function v is less
than the maximum of ρc,α. Combining (3.4), (3.5) and (3.33), we get

M3 − 1

4
E(ϕc,α)M +

1

72
F (ϕc,α) ≤ O(ε2).

Using that E(ϕc,α) = (c− α)2/3 and F (ϕc,α) = 2(c− α)3/3, our inequality becomes(
M − c− α

6

)2(
M +

c− α

3

)
≤ O(ε2).

Next, substituting M by (c− α)/6− δ and using that [M + (c− α)/3]−1 < 3/(c− α), we obtain

δ2 ≤ O(ε2) ⇒ δ ≤ O(ε). (3.35)

Finally, combining (3.4), (3.10) and (3.35), we infer that

‖u− ϕc,α(· − ξ)‖H ≤ C
√
ε,

where C > 0 only depends on the speed c and the parameter α. This completes the proof of the stability
of a single peakon.

4 Proof of Theorem 1.1

In this section, we generalize the stability result to the sum of ordered trains of peakons (respectively
smooth-peakons). For γ > 0 and L > 0, we define the following neighborhood of all the sums of N
peakons of speed c1, ..., cN with spatial shifts zi that satisfied zi − zi−1 ≥ L,

U(γ, L) =

{
u ∈ L2(R), inf

zi−zi−1>L

∥∥∥∥∥u−
N∑
i=1

ϕci,α(· − zi)

∥∥∥∥∥
H

< γ

}
. (4.1)

By the continuity of the map t 7→ u(t) from [0, T [ into H (since H ' L2), to prove Theorem 1.1 it suffices
to prove that there exist A > 0, ε0 > 0 and L0 > 0 such that for all L > L0 and 0 < ε < ε0, if u0 satisfies
(1.10)-(1.12), and if for some 0 < t0 < T ,

u(t) ∈ U

(
A(

√
ε+ L−1/8),

L

2

)
, ∀t ∈ [0, t0], (4.2)
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then

u(t0) ∈ U

(
A

2
(
√
ε+ L−1/8),

2L

3

)
. (4.3)

Therefore, in the sequel of this section we will assume (4.2) for some 0 < ε < ε0 and L > L0, with A, ε0
and L0 to be specified later, and we will prove (4.3).

Remark 4.1 (Distance between v and the sum of N smooth-peakons). Recall that ‖u‖H is equivalent
to ‖v‖H2(R), where v = (4 − ∂2x)

−1u. Thus if u(t) ∈ U(γ, L/2) on [0, t0], then v(t) stays H2-close to∑N
i=1 ρci,α(· − zi) for all t ∈ [0, t0].

4.1 Control of the distance between the peakons (respectively the smooth-
peakons)

In this subsection, we want to prove that the different bumps of u (respectively v = (4 − ∂2x)
−1u) that

are individually close to a peakon (respectively a smooth-peakon) get away from each others as time is
increasing. This is crucial in our analysis since we do not know how to manage strong interactions.

Lemma 4.1 (Modulation argument in H2). Let u0 satisfying (1.10)-(1.12). There exist γ0 > 0, L0 > 0
and C0 > 0 such that for all 0 < γ < γ0 and 0 < L0 < L, if u(t) ∈ U(γ, L/2) on [0, t0] for some
0 < t0 < T , then there exist N C1 functions x̃1, . . . , x̃N defined on [0, t0] such that∥∥∥∥∥u(t)−

N∑
i=1

ϕci,α(· − x̃i(t))

∥∥∥∥∥
H

< O(γ), (4.4)

∥∥∥∥∥v(t)−
N∑
i=1

ρci,α(· − x̃i(t))

∥∥∥∥∥
C1(R)

≤ O(γ), (4.5)

∣∣ ˙̃xi(t)− ci
∣∣ ≤ (c1 − α)−2

(
O(γ) +O(e−L/4)

)
, i = 1, . . . , N, (4.6)

and

x̃i(t)− x̃i−1(t) ≥
3L

4
+

(ci − ci−1)t

2
, i = 2, . . . , N. (4.7)

Moreover, for i = 1, . . . , N , setting Ji = [yi(t), yi+1(t)], with
y1 = −∞,

yi(t) =
x̃i−1(t) + x̃i(t)

2
,

yN+1 = +∞,

i = 2, . . . , N, (4.8)

it holds

|ξi(t)− x̃i(t)| ≤
L

12
, i = 1, . . . , N, (4.9)

where ξ(t) = (ξi(t), . . . , ξN (t)) ∈ RN is any point such that

v(t, ξi(t)) = max
x∈Ji

v(t, x), i = 1, . . . , N, (4.10)

and where v = (4− ∂2x)
−1u, and O(·) only depends on the speeds (ci)

N
i=1 and the parameter α.
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Proof. The proof is a standard application of the implicit function theorem. We will repeat the
technique used in [8] taking account of the dispersion term α(ux − uxxx), with α 6= 0. This implies that
it is necessary to show more the following almost orthogonality condition for all t ∈ [0, t0] (see (4.19)):

α

〈
v(t)−

N∑
j=1

ρcj ,α(· − x̃j(t)), ∂
2
xρcj ,α(· − x̃j(t))

〉
L2

≈ 0,

where 〈·, ·〉L2 denotes the scalar product in L2.
For Z = (z1, . . . , zN ) ∈ RN fixed such that |zi − zi−1| > L/2, we set

RZ(·) =
N∑
i=1

ρci,α(· − zi) and SZ(·) =
N∑
i=1

ϕci,α(· − zi). (4.11)

For 0 < γ < γ0, we define the function

Y : (−γ, γ)N ×BH2(RZ , γ) → RN ,

(y1, . . . , yN , v) 7→
(
Y1(y1, . . . , yN , v), . . . ,YN (y1, . . . , yN , v)

)
with

Yi(y1, . . . , yN , v) =

∫
R

v − N∑
j=1

ρcj ,α(· − zj − yj)

 ∂xρci,α(· − zi − yi).

Y is clearly of class C1. For i = 1, . . . , N ,

∂Yi

∂yi
(y1, . . . , yN , v) = −

∫
R

v − ∑
1≤j≤N

j 6=i

ρcj ,α(· − zj − yj)

 ∂2xρci,α(· − zi − yi)

and for j 6= i,
∂Yi

∂yj
(y1, . . . , yN , v) =

∫
R
∂xρcj ,α(· − zj − yj)∂xρci,α(· − zi − yi).

Hence
∂Yi

∂yi
(0, . . . , 0, RZ) = ‖∂xρci,α‖2L2(R) =

(ci − α)2

54
≥ (c1 − α)2

54

and for j 6= i, using the exponential decay of ϕci,α and that |zi − zi−1| > L/2, for L > L0 > 0 with
L0 � 1, it holds∣∣∣∣∂Yi

∂yj
(0, . . . , 0, RZ)

∣∣∣∣
=

∣∣∣∣∫
R
∂xρcj ,α(· − zj)∂xρci,α(· − zi)

∣∣∣∣
=

∣∣∣∣∫
R
ρcj ,α(· − zj)∂

2
xρci,α(· − zi)

∣∣∣∣
≤ 1

9
(ci − α)(cj − α)

{∫
R
e−|x−zj |−|x−zi|dx+ 2

∫
R
e−|x−zj |−2|x−zi|dx

+
1

2

∫
R
e−2|x−zj |−|x−zi|dx+

∫
R
e−2|x−zj |−2|x−zi|dx

}
≤ O(e−L/4).
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We deduce that, for L > 0 large enough, D(y1,...,yN )Y(0, . . . , 0, RZ) = D + P where D is an invertible

diagonal matrix with ‖D−1‖ ≤ [(c1 − α)/3
√
6]−2 and ‖P‖ ≤ O(e−L/4). Hence there exists L0 > 0 such

that for L > L0, D(y1,...,yN )Y(0, . . . , 0, RZ) is invertible with an inverse matrix of norm smaller than

2[(c1 − α)/3
√
6]−2. From the implicit function theorem we deduce that there exists β0 > 0 and C1

functions (y1, . . . , yN ) from BH2(RZ , β0) to a neighborhood of (0, . . . , 0) which are uniquely determined
such that

Y(y1(v), . . . , yN (v), v) = 0, ∀v ∈ BH2(RZ , β0).

In particular, there exists C0 > 0 such that if v ∈ BH2(RZ , β), with 0 < β ≤ β0, then

N∑
i=1

|yi(v)| ≤ C0β. (4.12)

Note that β0 and C0 only depend on c1 and L0 and not on the point (z1, . . . , zN ). For v ∈ BH2(RZ , β0)
we set x̃i(v) = zi + yi(v). Assuming that β0 ≤ L0/8C0, (x̃1(v), . . . , x̃N (v)) are thus C1 functions on
BH2(RZ , β) satisfying

x̃i(v)− x̃i−1(v) = zi − zi−1 + yi(v)− yi−1(v) >
L

2
− 2C0β >

L

4
. (4.13)

For L > L0 and 0 < γ < γ0 < β0/2 to be chosen later, we define the modulation of v in the following
way: we cover the trajectory of v by a finite number of open balls in the following way:

{v(t), t ∈ [0, t0]} ⊂
⋃

k=1,...,M

BH2(RZk , 2γ).

This is possible thanks to Remark 4.1. It is worth noticing that, since 0 < γ < γ0 < β0/2, the functions
x̃i(v) are uniquely determined for v ∈ BH2(RZk , 2γ) ∩ BH2(RZk′ , 2γ). We can thus define the functions
t 7→ x̃i(t) on [0, t0] by setting x̃i(t) = x̃i(v(t)). By construction

∫
R

v(t, ·)− N∑
j=1

ρcj ,α(· − x̃j(t))

 ∂xρci,α(· − x̃i(t)) = 0. (4.14)

For 0 < γ < γ0, with γ0 � 1, using that u ∈ U(γ, L/2) and (4.12), we have

‖u(t)− SX̃(t)‖H

≤ ‖u(t)− SZ(t)‖H +
N∑
i=1

‖ϕci,α(· − zi)− ϕci,α(· − zi − yi(v(t)))‖L2(R)

≤ γ +
√
2

N∑
i=1

(∫
R
ϕ2
ci,α(x)dx−

∫
R
ϕci,α(x− zi)ϕci,α(x− zi − yi(v(t)))dx

)1/2

= γ +
√
2

N∑
i=1

(ci − α)
(
1− e−|yi(v(t))| − |yi(v(t))|e−|yi(v(t))|

)1/2
≤ γ +

N∑
i=1

O(|yi(v(t))|)

≤ O(γ),

where we apply two time the mean value theorem with the function ϕ on [0, |yi(v(t))|] for substituting
(1− e−|yi(v(t))|) by |yi(v(t))|e−θ(|yi(v(t))|), with θ(|yi(v(t))|) ∈]0, |yi(v(t))|[, and this proves (4.4).
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To get (4.5) it suffice to use (4.4), Remark 4.1, and the Sobolev embedding of H2(R) into C1(R).
Next, to prove that the speed of x̃i(·) stays close to ci, we set

Sj(t) = ϕcj ,α(· − x̃j(t)), ε1(t) = u(t)−
N∑
j=1

Sj(t)

and

Rj(t) = ρcj ,α(· − x̃j(t)), ε2(t) = v(t)−
N∑
j=1

Rj(t).

One can notice that

∂2xRi = 4Ri − Si, (4.15)

and recall that from (3.19),

(1− ∂2x)
−1(4− ∂2x)

−1(·) = 1

3
(1− ∂2x)

−1(·)− 1

3
(4− ∂2x)

−1(·).

Differentiating (4.14) with respect to time and using (4.15), we get∫
R
∂tε2∂xRi = ˙̃xi(t)

(
4

∫
R
ε2Ri −

∫
R
ε2Si

)
and thus ∣∣∣∣∫

R
∂tε2∂xRi

∣∣∣∣ ≤ | ˙̃xi(t)|
(
4‖ε2‖L∞(R)‖Ri‖L1(R) + ‖ε2‖L∞(R)‖Si‖L1(R)

)
≤ | ˙̃xi(t)− ci|O(γ) +O(γ). (4.16)

Substituting u by ε1 +
∑N

j=1 Sj in (1.7) and using that Sj satisfies

∂tSj = −( ˙̃xj(t)− cj)∂xSj − α∂xSj −
1

2
∂xS

2
j − 3

2
(1− ∂2x)

−1∂xS
2
j ,

we infer that ε1 satisfies on [0, t0],

∂tε1 −
N∑
j=1

( ˙̃xj(t)− cj)∂xSj

= −α∂xε1 −
1

2
∂x


ε1 + N∑

j=1

Sj

2

−
N∑
j=1

S2
j


− 3

2
∂x(1− ∂2x)

−1


ε1 + N∑

j=1

Sj

2

−
N∑
j=1

S2
j

 .
Multiplying by (4− ∂2x)

−1 and using (3.19), we get

∂tε2 −
N∑
j=1

( ˙̃xj(t)− cj)∂xRj = −α∂xε2 −
1

2
∂x(1− ∂2x)

−1


ε1 + N∑

j=1

Sj

2

−
N∑
j=1

S2
j

 .
14



Taking the L2 scalar product with ∂xRi, and integrating by parts, we find

−( ˙̃xi(t)− ci)

∫
R
(∂xRi)

2

= −
∫
R
∂tε2∂xRi +

∑
1≤j≤N

j 6=i

( ˙̃xj(t)− cj)

∫
R
(∂xRi)(∂xRj)

+ α

∫
R
ε2∂

2
xRi +

1

2

∫
R
(1− ∂2x)

−1


ε1 + N∑

j=1

Sj

2

−
N∑
j=1

S2
j

 ∂2xRi. (4.17)

We set

Q =

ε1 + N∑
j=1

Sj

2

−
N∑
j=1

S2
j = ε21 + 2ε1

 N∑
j=1

Sj

+
∑

1≤i,j≤N
j 6=i

SiSj ,

and multiplying by (1− ∂2x)
−1, we have

(1− ∂2x)
−1Q = (1− ∂2x)

−1ε21 + 2
N∑
j=1

(1− ∂2x)
−1(ε1Sj) +

∑
1≤i,j≤N

j 6=i

(1− ∂2x)
−1(SiSj)

= I + J +K.

We derive the following estimates

I =
1

2

∫
R
e−|x−x′|ε21(x

′) ≤ 1

2
‖e−|·|‖L∞(R)‖ε1‖2L2(R) ≤

1

2
‖ε1‖2L2(R),

J =
N∑
j=1

∫
R
e−|x−x′|ε1(x

′)Sj(x
′) ≤ ‖e−|·|‖L∞(R)‖ε1‖L2(R)

N∑
j=1

‖Sj‖L2(R) ≤

 N∑
j=1

cj

 ‖ε1‖L2(R)

and

K =
1

2

∑
1≤i,j≤N

j 6=i

∫
R
e−|x−x′|Sj(x

′)Si(x
′) ≤ 1

2

∑
1≤i,j≤N

j 6=i

∫
R
Sj(x

′)Si(x
′).

Thus, using (4.4) and the exponential decay of Sj , we infer that

‖(1− ∂2x)
−1Q‖L∞(R) ≤ O(γ) +O(e−L/4)

and then ∣∣∣∣12
∫
R
[(1− ∂2x)

−1Q]∂2xRi

∣∣∣∣ ≤ 1

2
‖(1− ∂2x)

−1Q‖L∞(R)‖∂2xRi‖L1(R)

≤ O(γ) +O(e−L/4). (4.18)

Using (4.5), the term which depends on α give us∣∣∣∣α ∫
R
ε2∂

2
xRi

∣∣∣∣ ≤ |α|‖ε2‖L∞(R)‖∂2xRi‖L1(R)

≤ O(γ). (4.19)
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Now, combining (4.16)-(4.19) and using the exponential decay of Ri, it holds∣∣ ˙̃xi(t)− ci
∣∣ ‖∂xRi‖2L2(R) ≤

∣∣ ˙̃xi(t)− ci
∣∣O(γ) +O(γ) +O(e−L/4),

then ∣∣ ˙̃xi(t)− ci
∣∣ ( (ci − α)2

54
−O(γ)

)
≤ O(γ) +O(e−L/4),

which yields (4.6).
Taking 0 < γ < γ0 and L > L0 > 0, with γ0 � 1 and L0 � 1, combining (1.10)-(1.12), (4.6) and

(4.13), we deduce that

x̃i(t)− x̃i−1(t) = x̃i(0)− x̃i−1(0) + (ci − ci−1)t

≥ L− 2C0γ0 +
(ci − ci−1)t

2

≥ 3L

4
+

(ci − ci−1)t

2
,

this proves (4.7).
From (4.5), we infer that

v(x) =

N∑
j=1

ρcj ,α(x− x̃j) +O(γ), ∀x ∈ R,

please note that, we abuse notation by writing ε2(x) = O(γ). Applying this formula with x = ξi and
v(ξi) = maxx∈Ji v(x), and using (4.7), it holds

v(ξi) = max
x∈Ji


N∑
j=1

ρcj ,α(x− x̃j)

+O(γ)

=
ci − α

6
+O(e−L/4) +O(γ)

≥ ci − α

7
.

On the other hand, for x ∈ Ji \ [x̃i(t)− L/12, x̃i(t) + L/12], we get

v(x) ≤ ci − α

3
e−L/12 +O(e−L/4) +O(γ) ≤ ci − α

8
.

This ensures that ξi ∈ [x̃i(t)− L/12, x̃i(t) + L/12], and this concluded the proof of the lemma.

4.2 Monotonicity property

Thanks to the preceding lemma, for ε0 > 0 small enough and L0 > 0 large enough, one can construct
N C1 functions x̃1, . . . , x̃N defined on [0, t0] such that (4.4)-(4.8) are satisfied. In this subsection we
state the almost monotonicity of functionals that are very close to the energy at the right of ith bump,
i = 1, . . . , N − 1 of u (respectively v = (4 − ∂2x)

−1u). Let ψ be a C∞ test-function (see Figure 3) such
that {

0 < ψ(x) < 1, ψ′(x) > 0, x ∈ R,

|ψ(q)(x)| ≤ 10ψ′(x), q = 2, 3, 4, 5, x ∈ [−10, 10],
(4.20)

and

ψ(x) =

{
e−|x|, x < −10,

1− e−|x|, x > 10.
(4.21)
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Setting ψK = ψ(·/K), we introduce for i = 2, . . . , N ,

Ji,K(t) =

∫
R

(
4v2 + 5v2x + v2xx

)
ψi,K(t), (4.22)

where ψi,K(t, x) = ψK(x − yi(t)) with yi’s as in (4.8). Note that Ji,K(t) is close to ‖u(t)‖2H(x>yi(t))

(respectively ‖v(t)‖2H2(x>yi(t))
) and thus measures the energy at the right of the (i − 1)th bump of u

(respectively v). Finally, we set

σ0 =
1

4
min{c1, c2 − c1, . . . , cN − cN−1}. (4.23)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 3: ψ(q)(x), q = 0, 1, 2, 3, 4, 5, profiles.

We derive the following monotonicity result.

Proposition 4.1 (Exponential decay of the functional Ji,K(t)). Assume that max(0, α) < c1. Let
u ∈ X ([0, T [), with 0 < T ≤ +∞, be a solution of the DPsd equation that satisfies (1.10)-(1.12) and
(4.4)-(4.5). There exist γ0 > 0 and L0 > 0 only depending on the speed c1 and the parameter α, such that
if 0 < γ < γ0 and L > L0 > 0, then for any 4 ≤ K .

√
L,

Ji,K(t)− Ji,K(0) ≤ O(e−
L
8K ), ∀t ∈ [0, t0], i = 2, . . . , N. (4.24)

The proof of Proposition 4.1 relies on the following Virial type identity.

Lemma 4.2 (Virial type identity). Let u ∈ X ([0, T [), with 0 < T ≤ +∞, be a solution of the DPsd
equation that satisfies (1.10)-(1.12). For any smooth space function g : R 7→ R, it holds

d

dt

∫
R

(
4v2 + 5v2x + v2xx

)
g

=
2

3

∫
R
u3g′ − 4

∫
R
u2vg′ − 1

2

∫
R
u2vg′′′ +

1

2

∫
R
u2vxg

′′ +

∫
R
uhg′

+
1

2

∫
R
uhxg

′′ − 5

2

∫
R
vhxg

′′ − 2

∫
R
vxhg

′′ +
1

2

∫
R
vhxg

(4)

+ α

∫
R
(4v2 + 5v2x + vxx)g

′ − 5α

2

∫
R
v2g′′′ − 2α

∫
R
v2xg

′′′ +
α

2

∫
R
v2g(5), (4.25)

where y = (1− ∂2x)u, v = (4− ∂2x)
−1u, and h = (1− ∂2x)

−1u2.
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Since E(·) is a conservation law, then by computing d
dt

∫ (
4v2 + 5v2x + v2xx

)
g it is sure to have only

integrals with the derivatives of g as in (4.25) (all terms of the form
∫
(. . .)g will cancel each other). Then

taking g = ψ (as in Figure 4), we establish the monotony of functional Ji,K(t). The full proof of Lemma
4.2 is given in the appendix.

Proof of Proposition 3.1. We first note that, combining (4.6) and (4.8), it holds for i = 2, . . . , N ,

ẏi(t) =
˙̃xi−1(t) + ˙̃xi(t)

2

=
ci−1 + ci

2
+O(γ1/2)

≥ ci−1 +O(γ1/2)

≥ c1 +O(γ1/2) (4.26)

Recall that the assumption (1.10) ensures that u ≥ 0 and v ≥ 0 on R. Now, applying the Virial type
identity (4.25) with g = ψi,K , using that the term −4

∫
u2vψ′

i,K is negative, and (4.26), we have

d

dt
Ji,K(t) = −ẏi

∫
R

(
4v2 + 5v2x + v2xx

)
ψ′
i,K +

2

3

∫
R
u3ψ′

i,K − 4

∫
R
u2vψ′

i,K − 1

2

∫
R
u2vψ′′′

i,K

+
1

2

∫
R
u2vxψ

′′
i,K +

∫
R
uhψ′

i,K +
1

2

∫
R
uhxψ

′′
i,K − 5

2

∫
R
vhxψ

′′
i,K

− 2

∫
R
vxhψ

′′
i,K +

1

2

∫
R
vhxψ

(4)
i,K + α

∫
R
(4v2 + 5v2x + vxx)ψ

′
i,K

− 5α

2

∫
R
v2ψ′′′

i,K − 2α

∫
R
v2xψ

′′′
i,K +

α

2

∫
R
v2ψ

(5)
i,K

≤
(
α− c1 +O(γ1/2)

)∫
R

(
4v2 + 5v2x + v2xx

)
ψ′
i,K +

8∑
k=1

Ik + I9,α + I10,α + I11,α. (4.27)

Next, we divide R into two regions Di and D
c
i with

Di =

[
x̃i−1(t) +

L

4
, x̃i(t)−

L

4

]
, i = 2, . . . , N.

Combining (4.7) and (4.8), one can check that for x ∈ Dc
i ,

|x− yi(t)| ≥
x̃i(t)− x̃i−1(t)

2
− L

4

≥ ci − ci−1

4
t+

L

8

≥ σ0t+
L

8
. (4.28)

Now, we claim that for k = 1, . . . , 8, it holds

Ik ≤
(
O(γ1/2) +O(e−L/8)

)∫
R

(
4v2 + 5v2x + v2xx

)
ψ′
i,K +

C

K
‖u0‖3He−

1
K (σ0t+L/8), (4.29)

and that for k = 9, 10, 11,

Ik,α ≤ O(L−1)

∫
R
(4v2 + 5v2x + v2xx)ψ

′
i,K . (4.30)

The estimates (4.29) was completed in detail in [8], so we will present a brief proof of some of them. Let
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us begin by the estimate of I1. Using (4.28) and the exponential decay of ψ′
i,K on Dc

i , we have

2

3

∫
R
u3ψ′

i,K =
2

3

∫
Di

u3ψ′
i,K +

2

3

∫
Dc

i

u3ψ′
i,K

≤ 2

3
‖u‖L∞(Di)

∫
R
u2ψ′

i,K +
2

3
‖ψ′

i,K‖L∞(Dc
i )
‖u‖L∞(R)‖u‖2L2(R)

≤ 2

3
‖u‖L∞(Di)

∫
R
u2ψ′

i,K +
C

K
‖u‖3L2(R)e

− 1
K (σ0t+L/8). (4.31)

Now, using that u = 4v − vxx, |ψ′′′
i,K | ≤ (10/K2)ψ′

i,K on Di and |ψ′′′
i,K | decays exponentially on Dc

i , and
that ‖v‖L2(R) ≤ ‖u‖H = ‖u0‖H, and K ≥ 4, we have

∫
R
u2ψ′

i,K =

∫
R
(4v − vxx)

2ψ′
i,K

= 16

∫
R
v2ψ′

i,K +

∫
R
v2xxψ

′
i,K − 8

∫
R
vvxxψ

′
i,K

= 16

∫
R
v2ψ′

i,K +

∫
R
v2xxψ

′
i,K + 8

∫
R
v2xψ

′
i,K + 4

∫
R
∂x(v

2)ψ′′
i,K

= 16

∫
R
v2ψ′

i,K +

∫
R
v2xxψ

′
i,K + 8

∫
R
v2xψ

′
i,K − 4

∫
R
v2ψ′′′

i,K

≤
∫
R

(
16v2 + 8v2x + v2xx

)
ψ′
i,K + 4

∫
Di

v2|ψ′′′
j,K |+ 4

∫
Dc

i

v2|ψ′′′
j,K |

≤
∫
R

(
16v2 + 8v2x + v2xx

)
ψ′
i,K +

40

K2

∫
R
v2ψ′

i,K +
C

K3
‖u0‖2He−

1
K (σ0t+L/8)

≤ 5

∫
R

(
4v2 + 5v2x + v2xx

)
ψ′
i,K +

C

K3
‖u0‖2He−

1
K (σ0t+L/8). (4.32)

Next, applying the triangular inequality, and using (4.4) and that |ϕ′
ci,α| = ϕci,α on R, we have

‖ε1‖H1(R) ≤ ‖u‖H1(R) +
N∑
j=1

‖ϕcj ,α‖H1(R)

≤ 2‖u‖L2(R) + 2
N∑
j=1

‖ϕcj ,α‖L2(R)

≤ 2‖ε1‖L2(R) + 4

N∑
j=1

‖ϕcj ,α‖L2(R)

≤ O(γ) +O(1), (4.33)

where ε1 = u −
∑N

j=1 ϕcj ,α(· − x̃j) on R as in Lemma 4.1, and O(1) = 4
∑N

j=1(cj − α). Then, applying
the Gagliardo-Nirenberg inequality, and using (4.33), we obtain

‖ε1‖L∞(R) ≤ CG‖ε1‖1/2L2(R)‖ε1‖
1/2
H1(R)

≤ O(γ1/2)(O(γ1/2) +O(1))

≤ O(γ1/2). (4.34)
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Thus, using (4.34) and the exponential decay of ϕci,α on Di, it holds

‖u‖L∞(Di) ≤ ‖ε1‖L∞(Di) +
N∑
j=1

∥∥ϕcj ,α(· − x̃j(t))
∥∥
L∞(Di)

≤ O(γ1/2) +O(e−L/8). (4.35)

Therefore, combining (4.31), (4.32) and (4.35), we deduce that I1 satisfies (4.29).
As the second example, let us do the estimate of I4. On Dc

i we obtain∫
Dc

i

uhψ′
i,K ≤ ‖ψ′

i,K‖L∞(Dc
i )

∫
R
uh

= ‖ψ′
i,K‖L∞(Dc

i )

∫
R
u[(1− ∂2x)

−1u2]

= ‖ψ′
i,K‖L∞(Dc

i )

∫
R
u2[(1− ∂2x)

−1u]

≤ ‖ψ′
i,K‖L∞(Dc

j )
‖(1− ∂2x)

−1u‖L∞(R)‖u‖2L2(R).

Applying the Hölder inegality, we have for all x ∈ R,

(1− ∂2x)
−1u(x) =

1

2

∫
R
e−|x−x′|u(x′)dx′ ≤ 1

2
‖e−|·|‖L2(R)‖u‖L2(R) =

1

2
‖u‖L2(R),

and thus, using the exponential decay of ψ′
i,K on Dc

i , we infer that∫
Dc

i

uhψ′
i,K ≤ 1

2K
‖u‖3L2(R)e

− 1
K (σ0t+L/8). (4.36)

On Di the estimate of I4 give us∫
Di

uhψ′
i,K ≤ ‖u‖L∞(Di)

∫
R
[(1− ∂2x)

−1u2]ψ′
i,K

= ‖u‖L∞(Di)

∫
R
u2[(1− ∂2x)

−1ψ′
i,K ]. (4.37)

On the other hand, using that |ψ′′′
i,K | ≤ (10/K2)ψ′

i,K on R, we have

(1− ∂2x)ψ
′
i,K(x) = ψ′

i,K(x)− 1

K2
ψ′′′
i,K(x) ≥

(
1− 10

K2

)
ψ′
i,K(x), ∀x ∈ R,

and since K ≥ 4, it holds

(1− ∂2x)
−1ψ′

i,K(x) ≤
(
1− 10

K2

)−1

ψ′
i,K(x), ∀x ∈ R. (4.38)

Therefore, combining (4.35)-(4.38), we infer that I4 also satisfies (4.29).
Let us tackle now the estimate of I6. First, noticing that for all x ∈ R,

h(x) =
e−x

2

∫ x

−∞
ex

′
u2(x′)dx′ +

ex

2

∫ +∞

x

e−x′
u2(x′)dx′

and

hx(x) = −e
−x

2

∫ x

−∞
ex

′
u2(x′)dx′ +

ex

2

∫ +∞

x

e−x′
u2(x′)dx′,
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and we infer that
|hx(x)| ≤ h(x), ∀x ∈ R. (4.39)

Using (4.39), the estimate of I6 on Dc
i leads to∣∣∣∣∣52

∫
Dc

i

vhxψ
′′
i,K

∣∣∣∣∣ ≤ 5

2

∫
Dc

i

v|hx||ψ′′
i,K |

≤ 5

2
‖ψ′′

i,K‖L∞(Dc
i )

∫
R
v|hx|

≤ 5

2
‖ψ′′

i,K‖L∞(Dc
i )

∫
R
vh

=
5

2
‖ψ′′

i,K‖L∞(Dc
i )

∫
R
[(1− ∂2x)

−1v]u2

≤ 5

2
‖ψ′′

i,K‖L∞(Dc
i )
‖(1− ∂2x)

−1v‖L∞(R)‖u‖2L2(R).

With the aid of identity (3.19), we have for all x ∈ R,

(1− ∂2x)
−1v(x) ≤ 1

3
|(1− ∂2x)

−1u(x)|+ 1

3
|(4− ∂2x)

−1u(x)|

≤ 1

6
‖u‖L2(R) +

1

12
√
2
‖u‖L2(R)

=
4 +

√
2

24
‖u‖L2(R), (4.40)

Then, using (4.40) we deduce that∣∣∣∣∣52
∫
Dc

i

vhxψ
′′
i,K

∣∣∣∣∣ ≤ 20− 5
√
2

48K2
‖u‖3L2(R)e

− 1
K (σ0t+L/8). (4.41)

Next, using that |ψ′′
i,K | ≤ (10/K)ψi,K on R and (4.39), the estimate of I6 on Di yields∣∣∣∣52

∫
Di

vhxψ
′′
i,K

∣∣∣∣ ≤ 5

2
‖v‖L∞(Di)

∫
R
|hx||ψ′′

i,K |

≤ 25

K
‖v‖L∞(Di)

∫
R
hψ′

i,K

=
25

K
‖v‖L∞(Di)

∫
R
u2[(1− ∂2x)

−1ψ′
i,K ]. (4.42)

Now, using the exponential decay of ρci,α on Di and (4.4), it holds

‖v‖L∞(Di) ≤ ‖ε2‖L∞(Di) +
N∑
j=1

∥∥ρcj ,α(· − x̃j(t))
∥∥
L∞(Di)

≤ O(γ) +O(e−L/8), (4.43)

where ε2 = v −
∑N

j=1 ρci,α(· − x̃j) on R as in Lemma 4.1. Therefore, combining (4.38), (4.41)-(4.43), we
deduce that I6 also satisfies (4.29).

For the estimate of I7, we have two possibility. First, one can use that |vx| ≤ 2v on R, and proceed as
for the estimate of I7. Second, using the exponential decay of ρci,α and |ρ′ci,α| on Di, and (4.5), it holds

‖v‖C1(Di) ≤ ‖ε2‖C1(Di) +
N∑
j=1

∥∥ρcj ,α(· − x̃j(t))
∥∥
C1(Di)

≤ O(γ) +O(e−L/8). (4.44)
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Then, using (4.44) and proceeding as for the estimate of I6, one can obtain the estimate of I7. In the
same way, one can establish the estimates of the remaining terms.

Let us now estimate the terms which depend on the parameter α. By the definition of ψ, we have

|ψ′′′
i,K | ≤ (10/K2)ψ′

i,K and |ψ(5)
i,K | ≤ (10/K4)ψ′

i,K on R. Thus, using that K = O(L1/2) and ‖v‖H1(R) ≤
‖v‖H, we easy deduce that (4.30) holds for k = 9, 10, 11.

Finally, combining (4.27), (4.29) and (4.30), it holds actually

d

dt
Ji,K(t) ≤

(
α− c1 +O(γ1/2) +O(L−1)

)∫
R
(4v2 + 5v2x + v2xx)ψ

′
i,K +

C

K
‖u0‖3He−

1
K (σ0t+L/8).

Therefore, taking max(0, α) < c1, 0 < γ < γ0 and L > L0 > 0, with γ0 � 1 and L0 � 1, and integrating
between 0 and t, we obtain

Ji,K(t)− Ji,K(0) ≤ C

K
‖u0‖3H

(
−K

σ0
e−

1
K (σ0t+L/8) +

K

σ0
e−

L
8K

)
≤ C

σ0
‖u0‖3He−

L
8K ,

and this proves the proposition for smooth initial solutions.
For u ∈ X ([0, T [), we will use that for any T0 > 0 and any sequence (u0,n)n≥1 ⊂ L2(R) such that

(u0,n − ∂2xu0,n)n≥1 ⊂ M+(R) and u0,n → u0 in L2(R), the sequence of emanating global weak solutions
(un)n≥1 to the DPsd equation satisfies

un −→
n→+∞

u in C
(
[0, T0];L

2(R)
)
, (4.45)

where u is the global weak solution emanating from u0. This fact can be easily deduced from the proof
of the existence of the global weak solutions in [5]. Indeed, by the same arguments developed in this
proof, we obtain that, up to a subsequence, (un)n≥1 converges in C

(
[0, T0];L

2(R)
)
towards a solution of

the DPsd equation emanating from u0. (4.45) then follows by the uniqueness result. Finally, combinig
(4.45) and Remark 4.1, it holds

vn −→
n→+∞

v in C
(
[0, T0];H

2(R)
)
, (4.46)

where v = (4− ∂2x)
−1u. Therefore, combining (4.45) and (4.46), it is not too hard to check that (see [8],

Proposition 4.1, for details)

lim
n→+∞

sup
0≤t<T

|Ji,K(un(t))− Ji,K(u(t))| = 0. (4.47)

Thanks to this continuity property, the monotonicity formula (4.24) holds for any u ∈ X ([0, T [), with
0 < T ≤ +∞.

4.3 A localized and a global estimate

Let K =
√
L/8 and define the function φi = φi(t, x) (see Figure 4) by

φ1 = 1− ψ2,K = 1− ψK(· − y2(t)),

φi = ψi,K − ψi+1,K = ψK(· − yi(t))− ψK(· − yi+1(t)),

φN = ψN,K = ψK(· − yN (t)),

i = 2, . . . , N − 1, (4.48)

where ψi,K ’s and yi’s are defined in Subsection 4.2. One can see that the φi’s are positive functions and

that
∑N

i=1 φi = 1. We take L/K > 4 so that φi satisfies for i = 1, . . . , N ,

|1− φi| ≤ 2e−
L
8K on

]
yi +

L

8
, yi+1 −

L

8

[
(4.49)
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and

|φi| ≤ 2e−
L
8K on R \

]
yi −

L

8
, yi+1 +

L

8

[
. (4.50)

We will use the following localized version of the conservation laws defined for i = 1, . . . , N by

Ei(u(t)) =

∫
R

(
4v2 + 5v2x + v2xx

)
φi(t), Fi(u(t)) =

∫
R

(
−v3xx + 12vv2xx − 48v2vxx + 64v3

)
φi(t). (4.51)

One can remark that the functionals Ei(·) and Fi(·) do not depend on time in the statement below since
we fix −∞ = y1 < y2 < . . . < yN < yN+1 = +∞.

For i = 1, . . . , N , we set Ωi =]yi − L/8, yi+1 + L/8[, the interval in which the mass of each peakon
ϕci,α (and smooth-peakon ρci,α) is concentrated. One can see that

N∑
j=1

ρcj (x− x̃j) = ρci(x− x̃i) +O(e−L/4), ∀x ∈ Ωi, (4.52)

we abuse notation by writing ρci,α(x − x̃i) = O(e−L/4) for all x ∈ R \ Ωi. We will decompose Ωi as in
Section 3 by setting

Θi = [x̃i − 6.7, x̃i + 6.7], where 6.7 ' −ln

(
1−

√
399

20

)
, (4.53)

and note that

ρci,α(±6.7) ' ci − α

2400
. (4.54)

Then, repeating the proof of Lemma 3.4 on each Ωi, we deduce the following result.

Lemma 4.3 (Uniqueness of local maxima). Let u ∈ L2(R), with y = (1− ∂2x)u ∈ M+(R), that satisfies
(4.4)-(4.5). There exist γ0 > 0 and L0 > 0 only depending on the speeds (ci)

N
i=1 and the parameter α,

such that if 0 < γ < γ0 and L > L0 > 0, then for i = 1, . . . , N , the function v = (4 − ∂2x)
−1u admits a

unique local extremum on Θi. This extremum is a maximum, and it holds

v(x) ≤ ci − α

300
, ∀x ∈ Ωi \Θi, (4.55)

u(x) ≤ ci − α

300
, ∀x ∈ Ωi \Θi, (4.56)

and taking L > L0 > 0,

Θi ⊂
]
yi +

L

8
, yi+1 −

L

8

[
. (4.57)

In the sequel of Subsection 4.3, we will denote by (ξi)
N
i=1 the point with local maximum values of v

on
⋃N

i=1 Θi, and the corresponding local maximum by Mi = maxx∈Θi v(x) = maxx∈Ji⊃Ωi v(x) = v(ξi) as
in Lemma 4.1.

Lemma 4.4 (Connection between Ei(·) and M2
i ; see [8]). Let u ∈ L2(R) and v = (4− ∂2x)

−1u ∈ H2(R).
For i = 1, . . . , N , define the function gi by

gi(x) =

{
2v + vxx − 3vx, x < ξi,

2v + vxx + 3vx, x > ξi.
(4.58)

Then it holds ∫
R
g2i (x)φi(x) = Ei(u)− 12M2

i φi(ξi) + ‖u‖2HO(L−1/2). (4.59)
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Figure 4: Locatization-functions φgreen(x) = ψ(x− 15)− ψ(x− 65), φcyan(x) = ψ(x− 65)− ψ(x− 115)
(at time t = 10) profiles. Also the sum of two peakons 4ϕ(x− 40) + 9ϕ(x− 90) and two smooth-peakons
4ρ(x− 40)+9ρ(x− 90) (at time t = 10, with respective speeds 4, 9, and α = 0) profiles. In this example,
one can see that φgreen (respectively φcyan) is close to 1 in ]25, 55[ (respectively in ]75, 105[) and decays
exponentially in R\]10, 70[ (respectively in R\]60, 120[) .

Lemma 4.5 (Connection between Fi(·) and M3
i ; see [8]). Let u ∈ L2(R) and v = (4− ∂2x)

−1u ∈ H2(R).
For i = 1, . . . , N , define the function hi by

hi(x) =

{
− vxx − 6vx + 16v, x < ξi,

− vxx + 6vx + 16v, x > ξi.
(4.60)

Then it holds ∫
R
hi(x)g

2
i (x)φi(x) = Fi(u)− 144M3

i φi(ξi) + ‖u‖3HO(L−1/2). (4.61)

These results follows directly by repeating the proof of similar lemmas in [8] with a single point ξi
with local maximum value of v on each Θi, for i = 1, . . . , N .

Lemma 4.6 (Connection between Ei(·) and Fi(·); see [8]). Let u ∈ L2(R), with y = (1−∂2x)u ∈ M+(R),
that satisfies (4.4)-(4.5). Let be given N − 1 real numbers −∞ = y1 < y2 < . . . < yN < yN+1 = +∞
with yi − yi−1 ≥ 2L/3. There exist γ0 > 0 and L0 > 0 only depending on the speeds (ci)

N
i=1 and the

parameter α, such that if 0 < γ < γ0 and L > L0 > 0, then defining the functional Ei(·)’s and Fi(·)’s as
in (4.48)-(4.51), it holds

Fi(u) ≤ 18MiEi(u)− 72M3
i + ‖u‖3HO(L−1/2), i = 1, . . . , N. (4.62)

Proof. Combining (4.49), (4.57) and (4.59) with K =
√
L/8, we get∫

R
g2i (x)φi(x) = Ei(u)− 12M2

i + ‖u‖2HO(L−1/2). (4.63)

Similarly, combining (4.49), (4.57) and (4.61), we get∫
R
hi(x)g

2
i (x)φi(x)dx = Fi(u)− 144M3

i + ‖u‖3HO(L−1/2). (4.64)
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Now, let us show that hi ≤ 18Mi on Ωi. Note that, using (4.4) and (4.52), one can check that 18Mi ≥
(ci − α)/4. We set λi = x̃i − 6.7, µi = x̃i + 6.7, and we rewrite the function hi as

hi(x) =


− vxx − 6vx + 16v, x < λi,

u− 6vx + 12v, λi < x < ξi,

u+ 6vx + 12v, ξi < x < µi,

− vxx + 6vx + 16v, x > µi.

Then, if x ∈ Ωi \Θi, using that vxx = 4v − u, |vx| ≤ 2v on R, (4.55) and (4.56), it holds

hi ≤ |vxx|+ 6|vx|+ 16v ≤ u+ 32v ≤ ci − α

9
≤ 18Mi.

If λi < x < ξi, then vx ≥ 0, and using that u ≤ 6v on R, we have

hi = u− 6vx + 12v ≤ 18v.

If ξi < x < µi, then vx ≤ 0, and similarly using that u ≤ 6v on R, we obtain

hi = u+ 6vx + 12v ≤ 18v.

Therefore, it holds

hi(x) ≤ 18max
x∈Ωi

v(x) = 18Mi, ∀x ∈ Ωi. (4.65)

Next, taking φi ≡ 1 on R in (4.59), we have ‖gi‖L2(R) ≤ ‖u‖H. Also, one can see that ‖hi‖L∞(R) ≤
38‖v‖L∞(R) ≤ O(‖u‖H). Thus, combining (4.63)-(4.65), we obtain

Fi(u)− 144M3
i =

∫
R
hi(x)g

2
i (x)φi(x)dx+ ‖u‖3HO(L−1/2)

=

∫
Ωi

hi(x)g
2
i (x)φi(x)dx+

∫
Ωc

i

hi(x)g
2
i (x)φi(x)dx+ ‖u‖3HO(L−1/2)

≤ 18Mi

∫
Ωi

g2i (x)φi(x)dx+ ‖hi‖L∞(R)‖gi‖2L2(R)‖φi‖L∞(Ωc
i )
+ ‖u‖3HO(L−1/2)

≤ 18MiEi(u)− 216M3
i + ‖u‖3HO(L−1/2),

and we deduce the lemma.

Lemma 4.7 (Quadratic identity; see [8]). Let Z = (zi)
N
i=1 ∈ RN with |zi − zi−1| ≥ L/2, and u ∈ L2(R).

It holds

E(u)−
N∑
i=1

E(ϕci,α) = ‖u− SZ‖2H + 4

N∑
i=1

(ci − α)

[
v(zi)−

ci − α

6

]
+O(e−L/4), (4.66)

where SZ is defined in (4.11), and O(·) only depends on the speeds (ci)
N
i=1 and the parameter α.

Proof. We compute

E(u− SZ) = E(u) + E(SZ)− 2
〈
(1− ∂2x)SZ , (4− ∂2x)

−1u
〉
H−1,H1

= E(u) + E(SZ)− 2
N∑
i=1

〈
(1− ∂2x)ϕci,α(· − zi), v

〉
H−1,H1 . (4.67)
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Now, using that |ϕ′
ci,α(· − zi)| = ϕci,α(· − zi) and integration by parts, we have

〈
(1− ∂2x)ϕci,α(· − zi), v

〉
H−1,H1 =

∫
R
vϕci,α(· − zi) +

∫
R
vxϕ

′
ci,α(· − zi)

=

∫
R
vϕci,α(· − zi) +

∫ zi

−∞
vxϕci,α(· − zi)−

∫ +∞

zi

vxϕci,α(· − zi)

= 2(ci − α)v(zi). (4.68)

A similar calculation leads to

E(SZ) =
〈
(1− ∂2x)SZ , (4− ∂2x)

−1SZ

〉
H−1,H1

=

∫
R
RZSZ +

∫
R
R′

ZS
′
Z

=

∫
R
RZSZ +

N∑
i=1

(∫ zi

−∞
R′

Zϕci,α(· − zi)−
∫ +∞

zi

R′
Zϕci,α(· − zi)

)

= 2
N∑
i=1

(ci − α)RZ(zi)

= 2

N∑
i=1

(ci − α)ρci,α(0) + 2
∑

1≤i,j≤N
i6=j

(ci − α)ρcj ,α(zi − zj)

=
1

3

N∑
i=1

(ci − α)2 +O(e−L/4), (4.69)

where we also use that |zi−zj | > L/4, the exponential decay of ρcj ,α(·−zj), and that RZ = (4−∂2x)−1SZ

as in Lemma 4.1 (see (4.11)). Thus, combining (4.67)-(4.69), we obtain the lemma.

4.4 End of the proof of Theorem 1.1

Let u ∈ X ([0, T [), with 0 < T ≤ +∞, be a solution of the DPsd equation satisfying (1.10)-(1.12) and
(4.2) for some t0 ∈]0, T [. Let us recall that Mi = v(t0, ξi(t0)) = maxx∈Ji v(t0, x), with Ji’s as in (4.9),
and set δi = (ci − α)/6−Mi. First, from (4.7) and (4.9), we know that for i = 2, . . . , N ,

ξi(t0)− ξi−1(t0) ≥ 2L/3 > L/2, (4.70)

and from (1.11) it is easy to check that (see [8], Lemma 4.7)∣∣∣∣∣E(u0)−
N∑
i=1

E(ϕci,α)

∣∣∣∣∣ ≤ O(ε2) +O(e−L/4). (4.71)

Applying (4.66) with u(t0) and using (4.71), we get∥∥∥∥∥u(t0)−
N∑
i=1

ϕci,α(· − ξi(t0))

∥∥∥∥∥
2

H

≤ 4
N∑
i=1

(ci − α)δi +O(ε2) +O(e−L/4). (4.72)

In the same way, from (4.62) we get

Fi(u(t0)) ≤ 18MiEi(u(t0))− 72M3
i +O(L−1/2),
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which leads to

F (u(t0)) =
N∑
i=1

Fi(u(t0)) ≤ 18
N∑
i=1

MiEi(u(t0))− 72
N∑
i=1

M3
i +O(L−1/2) , (4.73)

by summing over i ∈ {1, . . . , N}.
Now, we will use the following notation: for a function f : R+ 7→ R, we set

∆t0
0 f = f(t0)− f(0). (4.74)

From (4.73) and the fact that E(·) and F (·) are conservation laws for u, we obtain

0 = ∆t0
0 F (u) =

N∑
i=1

∆t0
0 Fi(u) ≤ 18

N∑
i=1

Mi∆
t0
0 Ei(u)

+
N∑
i=1

[
−72M3

i + 18MiEi(u0)− Fi(u0)
]
+O(L−1/2). (4.75)

By (1.11), the exponential decay of ϕci,α’s and the φi’s, and the definition of Ei(·) and Fi(·), it is easy
to check that (see [8], Lemma 4.7)

|Ei(u0)− E(ϕci,α)|+ |Fi(u0)− F (ϕci,α)| ≤ O(ε2) +O(e−
√
L), i = 1, . . . , N. (4.76)

Then it holds

N∑
i=1

[
−72M3

i + 18MiEi(u0)− Fi(u0)
]
= −72

N∑
i=1

δ2i

[
Mi +

ci − α

3

]
+O(ε2) +O(e−

√
L). (4.77)

Combining (4.75) and (4.77), we get

N∑
i=1

δ2i

[
Mi +

ci − α

3

]
≤ 1

4

N∑
i=1

Mi∆
t0
0 Ei(u) +O(ε2) +O(L−1/2),

and using the Abel transformation with M0 = 0, we obtain

N∑
i=1

δ2i

[
Mi +

ci − α

3

]
≤ 1

4

N∑
i=1

(Mi −Mi−1)∆
t0
0 Ji,K +O(ε2) +O(L−1/2) , (4.78)

where Ji,K(t) is defined in (4.22).

From (4.2) we know that u(t0) ∈ U(γ, L/2), on account of Lemma 4.1 there exists X̃ = (x̃1, . . . , x̃N )
with x̃i ∈ Ji such that E (u(t0)− SX̃) ≤ O(γ2), where SX̃ is defined in (4.11). Since v(t0, ξi(t0)) =
maxx∈Ji v(t0, x) and using (4.66), we obtain E (u(t0)− Sξ) ≤ O(γ2) + O(e−L/4), with ξ = (ξ1, . . . , ξN ).
From (4.5) , we deduce that∥∥∥∥∥∥v(t0)−

N∑
j=1

ρcj ,α(· − ξj(t0))

∥∥∥∥∥∥
C0(R)

≤ O(γ) +O(e−L/8).

Thus

v(x) =
N∑
j=1

ρcj ,α(· − ξj(t0)) +O(γ) +O(e−L/8), ∀x ∈ R,
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and applying this formula with x = ξi(t0) and using (4.70), we get

v(ξi(t0)) =
N∑
j=1

ρcj ,α(ξi(t0)− ξj(t0)) +O(γ) +O(e−L/8)

=
ci − α

6
+

∑
1≤j≤N

j 6=i

ρcj ,α(ξi(t0)− ξj(t0)) +O(γ) +O(e−L/8)

=
ci − α

6
+O(γ) +O(e−L/8).

We take γ = A
(√
ε+ L−1/8

)
, then Mi = (ci −α)/6+O(ε1/2)+O(L−1/8). Therefore, for 0 < ε < ε0 and

L > L0 > 0, with ε0 � 1 and L0 � 1, it holds

0 < M1 < . . . < MN . (4.79)

Combining (4.78), (4.79) and using the monotonicity estimate (4.24), it holds

N∑
i=1

δ2i

[
Mi +

ci − α

3

]
≤ O(ε2) +O(L−1/2).

Therefore, using that [Mi + (ci − α)/3]−1 < 3/(ci − α), there exists C > 0 only depending on α and
(ci)

N
i=1 such that

δi ≤ C(ε+ L−1/4), i = 1, . . . , N. (4.80)

Now, combining (4.72) and (4.80), we obtain∥∥∥∥∥u(t0)−
N∑
i=1

ϕci,α(· − ξi(t0))

∥∥∥∥∥
H

≤ C(
√
ε+ L−1/8),

and the theorem follows by choosing A = 2C.

Appendix. Proof of Lemma 4.2

The aim of this subsection is to establish the Virial type identity (4.25). Let us first assume that u is
a smooth solution. The case u ∈ X ([0, T [) will follow by a density argument. A part of this calculation
was performed in [8] (Lemma 4.2), we will use these results and focus on terms that are dependent of the
parameter α.

We recall that in [8] (Lemma 4.2) we establish that∫
R
yvg =

∫
R

(
4v2 + 5v2x + v2xx

)
g − 5

2

∫
R
v2g′′ − 2

∫
R
v2xg

′′ +
1

2

∫
R
v2g(4) (4.81)

and

d

dt

∫
R

(
4v2 + 5v2x + v2xx

)
g =

d

dt

∫
R
yvg + 2

∫
R
u2vxg

′′ − 5

2

∫
R
vhxg

′′ − 2

∫
R
vxhg

′′ +
1

2

∫
R
vhxg

(4). (4.82)

Let us compute the variation of the energy

d

dt

∫
R
yvg =

∫
R
ytvg +

∫
R
yvtg

= I + J.
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Applying the operator (1− ∂2x) on both sides of equation (1.7), we get

yt = −1

2
(1− ∂2x)∂xu

2 − 3

2
∂xu

2 − α(1− ∂2x)∂xu.

Substituting yt by this value, I becomes

I = −1

2

∫
R

[
(1− ∂2x)∂xu

2
]
vg − 3

2

∫
R

[
∂x(u

2)
]
vg − α

∫
R

[
(1− ∂2x)∂xu

]
vg

= I1 + I2 + I3.

Thanks to the calculations done in [8] (Lemma 4.2), the terms I1 and I2 (independent of α) are known,
and give us

I1 + I2 =
4

3

∫
R
u3g′ − 4

∫
R
u2vg′ − 3

2

∫
R
u2vxg

′′ − 1

2

∫
R
u2vg′′′. (4.83)

Let us now compute the term which depends on α:

I3 = α

∫
R

[
(1− ∂2x)u

]
∂x(vg)

= α

∫
R

[
(1− ∂2x)u

]
vxg + α

∫
R

[
(1− ∂2x)u

]
vg′

= I4 + I5

with

I4 = α

∫
R
uvxg − α

∫
R
uxxvxg

= α

∫
R
uvxg + α

∫
R
ux∂x(vxg)

= α

∫
R
uvxg + α

∫
R
uxvxxg + α

∫
R
uxvxg

′

= α

∫
R
uvxg − α

∫
R
u∂x(vxxg)− α

∫
R
u∂x(vxg

′)

= α

∫
R
uvxg − α

∫
R
uvxxxg − 2α

∫
R
uvxxg

′ − α

∫
R
uvxg

′′ (4.84)

and

I5 = α

∫
R
uvg′ − α

∫
R
uxxvg

′

= α

∫
R
uvg′ + α

∫
R
ux∂x(vg

′)

= α

∫
R
uvg′ + α

∫
R
uxvxg

′ + α

∫
R
uxvg

′′

= α

∫
R
uvg′ − α

∫
R
u∂x(vxg

′)− α

∫
R
u∂x(vg

′′)

= α

∫
R
uvg′ − α

∫
R
uvxxg

′ − 2α

∫
R
uvxg

′′ − α

∫
R
uvg′′′. (4.85)

Adding (4.84) and (4.85), we get

I3 = α

∫
R
uvxg − α

∫
R
uvxxxg + α

∫
R
uvg′ − 3α

∫
R
uvxxg

′ − 3α

∫
R
uvxg

′′ − α

∫
R
uvg′′′

= α

∫
R
u
[
(1− ∂2x)vx

]
g + α

∫
R
u
[
(1− 3∂2x)v

]
g′ − 3α

∫
R
uvxg

′′ − α

∫
R
uvg′′′.
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The first two integrals lead to

α

∫
R
u
[
(1− ∂2x)vx

]
g = α

∫
R
u
[
(4− ∂2x)vx − 3vx

]
g = α

∫
R
uuxg − 3α

∫
R
uvxg = −α

2

∫
R
u2g′ − 3α

∫
R
uvxg

and

α

∫
R
u
[
(1− 3∂2x)v

]
g′ = 3α

∫
R
u

[
(4− ∂2x)v −

11

3
v

]
g′ = 3α

∫
R
u2g′ − 11α

∫
R
uvg′.

Therefore

I3 = −3α

∫
R
uvxg +

5α

2

∫
R
u2g′ − 11α

∫
R
uvg′ − 3α

∫
R
uvxg

′′ − α

∫
R
uvg′′′. (4.86)

Finally, combining (4.83) and (4.86), we get

I =
4

3

∫
R
u3g′ − 4

∫
R
u2vg′ − 3

2

∫
R
u2vxg

′′ − 1

2

∫
R
u2vg′′′

− 3α

∫
R
uvxg +

5α

2

∫
R
u2g′ − 11α

∫
R
uvg′ − 3α

∫
R
uvxg

′′ − α

∫
R
uvg′′′. (4.87)

Now, applying the operator (4− ∂2x)
−1 on both sides of equation (1.7) and using (3.19), we get

vt = −1

2
(4− ∂2x)

−1∂xu
2 − 3

2
(4− ∂2x)

−1(1− ∂2x)
−1∂xu

2 − α(4− ∂2x)
−1∂xu

= −1

2
(1− ∂2x)

−1∂xu
2 − α(4− ∂2x)

−1∂xu.

Substitute vt by this value, J becomes

J = −1

2

∫
R

[
(1− ∂2x)

−1∂xu
2
]
yg − α

∫
R

[
(4− ∂2x)

−1∂xu
]
yg

= J1 + J2.

Setting h = (1− ∂2x)
−1u2 and using the calculations done in [8] (Lemma 4.2), we know that

J1 = −2

3

∫
R
u3g′ +

∫
R
uhg′ +

1

2

∫
R
uhxg

′′. (4.88)

Let us compute the term which depends on α:

J2 = α

∫
R
∂x(yg)v

= α

∫
R
yxvg + α

∫
R
yvg′

= J3 + J4
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with

J3 = α

∫
R
(ux − uxxx)vg

= α

∫
R
uxvg − α

∫
R
uxxxvg

= −α
∫
R
u∂x(vg) + α

∫
R
uxx∂x(vg)

= −α
∫
R
uvg′ − α

∫
R
uvxg + α

∫
R
uxxvg

′ + α

∫
R
uxxvxg

= −α
∫
R
uvg′ − α

∫
R
uvxg + α

∫
R
uxxvg

′ − α

∫
R
ux∂x(vxg)

= −α
∫
R
uvg′ − α

∫
R
uvxg + α

∫
R
uxxvg

′ − α

∫
R
uxvxxg − α

∫
R
uxvxg

′

= −α
∫
R
uvg′ − α

∫
R
uvxg + α

∫
R
uxxvg

′ + α

∫
R
u∂x(vxxg) + α

∫
R
u∂x(vxg

′)

= −α
∫
R
uvg′ − α

∫
R
uvxg + α

∫
R
uxxvg

′ + α

∫
R
uvxg

′′ + 2α

∫
R
uvxxg

′ + α

∫
R
uvxxxg (4.89)

and

J4 = α

∫
R
(u− uxx)vg

′ = α

∫
R
uvg′ − α

∫
R
uxxvg

′. (4.90)

Adding (4.89) and (4.90), we get

J2 = −α
∫
R
uvxg + α

∫
R
uvxg

′′ + 2α

∫
R
uvxxg

′ + α

∫
R
uvxxxg.

Next, using that vxx = 4v − u and vxxx = 4vx − ux, we have

2α

∫
R
uvxxg

′ = 2α

∫
R
u(4v − u)g′ = 8α

∫
R
uvg′ − 2α

∫
R
u2g′

and

α

∫
R
uvxxxg = α

∫
R
ug(4vx − ux) = 4α

∫
R
uvxg − α

∫
R
uuxg = 4α

∫
R
uvxg +

α

2

∫
R
u2g′.

Thus

J2 = 3α

∫
R
uvxg + 8α

∫
R
uvg′ − 3α

2

∫
R
u2g′ + α

∫
R
uvxg

′′. (4.91)

Finally, combining (4.88) and (4.91), we get

J = −2

3

∫
R
u3g′ +

∫
R
uhg′ +

1

2

∫
R
uhxg

′′ + 3α

∫
R
uvxg + 8α

∫
R
uvg′ − 3α

2

∫
R
u2g′ + α

∫
R
uvxg

′′. (4.92)

Therefore, combining (4.82), (4.87) and (4.92), it holds

d

dt

∫
R

(
4v2 + 5v2x + v2xx

)
g

=
2

3

∫
R
u3g′ − 4

∫
R
u2vg′ − 1

2

∫
R
u2vg′′′ +

1

2

∫
R
u2vxg

′′ +

∫
R
uhg′

+
1

2

∫
R
uhxg

′′ − 5

2

∫
R
vhxg

′′ − 2

∫
R
vxhg

′′ +
1

2

∫
R
vhxg

(4)

+ α

∫
R
u2g′ − 3α

∫
R
uvg′ − 2α

∫
R
uvxg

′′ − α

∫
R
uvg′′′. (4.93)
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The four last integrals which depend on α give us

K1 = α

∫
R
u2g′

= α

∫
R
(4v − vxx)

2g′

= 16α

∫
R
v2g′ + α

∫
R
v2xxg

′ − 8α

∫
R
vvxxg

′

= 16α

∫
R
v2g′ + α

∫
R
v2xxg

′ + 8α

∫
R
v2xg

′ + 4α

∫
R
∂x(v

2)g′′

= α

∫
R

(
16v2 + 8v2x + v2xx

)
g′ − 4α

∫
R
v2g′′′,

K2 = −3α

∫
R
uvg′

= −3α

∫
R
(4v − vxx)vg

′

= −12α

∫
R
v2g′ − 3α

∫
R
∂x(vg

′)vx

= −12α

∫
R
v2g′ − 3α

∫
R
v2xg

′ − 3α

∫
R
vvxg

′′

= −α
∫
R

(
12v2 + 3v2x

)
g′ +

3α

2

∫
R
v2g′′′,

K3 = −2α

∫
R
uvxg

′′

= −2α

∫
R
(4v − vxx)vxg

′′

= −8α

∫
R
vvxg

′′ + 2α

∫
R
vxvxxg

′′

= −4α

∫
R
∂x(v

2)g′′ + α

∫
R
∂x(v

2
x)g

′′

= 4α

∫
R
v2g′′′ − α

∫
R
v2xg

′′′,

and proceeding as for K2, we get

K4 = −α
∫
R
uvg′′′ = −4α

∫
R
v2g′′′ − α

∫
R
v2xg

′′′ +
α

2

∫
R
v2g(5).

Summing over j ∈ {1, 2, 3, 4} and using (4.81), it holds

4∑
j=1

Kj = α

∫
R
(4v2 + 5v2x + vxx)g

′ − 5α

2

∫
R
v2g′′′ − 2α

∫
R
v2xg

′′′ +
α

2

∫
R
v2g(5) = α

∫
R
yvg′. (4.94)

The lemma follows by combining (4.93) and (4.94).
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