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We consider a multivalued function of the form

We assume, for ε = 0, that the polycyle {H0 = H = 0} has only cuspidal singularity which we assume at the origin and other singularities are saddles.

We consider families of Darboux first integrals unfolding Hε (and its cuspidal point) and pseudo-Abelian integrals associated to these unfolding. Under some conditions we show the existence of uniform local bound for the number of zeros of these pseudo-Abelian integrals.

Formulation of main results

In this paper, we study a non generic case. Other non generic cases have been studied in [START_REF] Bobieński | Marcin Pseudo-Abelian integrals along Darboux cycles a codimension one case[END_REF][START_REF] Bobieński | Dmitry Pseudo-Abelian integrals: unfolding generic exponential[END_REF][START_REF] Bobieński | Dmitry Pseudo-Abelian integrals on slow-fast Darboux systems[END_REF][START_REF] Aymen | Les zéros des intégrales pseudo-abeliennes: cas non générique[END_REF]. Pseudo-Abelian integrals appear as the linear principal part of the displacement function in polynomial perturbation of Darboux integrable case.

More precisely consider Darboux integrable system ω given by

ω = M d log H, (1) 
where

M = k i=0 P i , H = k i=0 P αi i , α i > 0, P i ∈ R[x, y]. (2) 
Now we consider an unfolding ω ε of Darboux integrable system ω, where ω ε are one-forms with first integral

H ε = P α ε k i=1 P αi i , ω ε = M ε d log H ε , M ε = P ε k i=1 P i . (3) 
where the polynomial P 0 has a cuspidal singularity at p 0 = (0, 0), i.e. P 0 (x, y) = y 2 -x 3 + O((x, y) 4 ).

For non zero ε, the polynomial P ε = y 2 -x 3 -εx 2 + O((x, y, ε) 4 ). Choose a limit periodic set i.e. bounded component of R 2 \ { k i=0 P i = 0} filled cycles γ(h) ⊂ {H = h}, h ∈ (0, a). Denote by D ⊂ H -1 (0) the polycycle which is in the boundary of this limit periodic set.

Consider the unfolding ω ε = M ε d log H ε of the form ω. The foliation ω ε has a maximal nest of cycles γ(ε, h) ⊂ {H ε = h}, h ∈ (0, a(ε)), filling a connected component of R 2 \ {H ε = 0} whose boundary is a polycycle D ε close to D. Assume moreover that the foliation ω ε = 0 has no singularities on IntD ε .

Consider pseudo-Abelian integrals of the form

I(ε, h) := γ(ε,h) η 2 , η 2 = η 1 M ε (4) 1
where η 1 is a polynomial one-form of degree at most n. This integral appears as the linear term with respect to β of the displacement function of a polynomial perturbation

ω ε,β = ω ε + βη 1 = 0. (5) 
We assume the following genericity assumptions 1. The level curves P i = 0, i = 1, . . . , k are smooth and P i (0, 0) = 0.

2. The level curves P ε = 0, P i = 0, i = 1, . . . , k, intersect transversaly two by two.

Theorem 1. Under the genericity assumptions there exists a bound for the number of isolated zeros of the pseudo-Abelian integrals

I(ε, h) = γ(ε,h) η 2 in (0, a(ε)).
The bound is locally uniform with respect to all parameters in particular in ε.

Let F 1 : {ω ε = 0}, F 2 : {dε = 0} are the foliations of dimension two in complex space of dimension three with coordinates (x, y, ε).

Let F be the foliation of dimension one on the complex space of dimension three with coordinates (x, y, ε) which is given by the intersection of leaves of F 1 and F 2 (i.e. given by the 2-form Ω = ω ε ∧ dε). This foliation has a cuspidal singularity at the origin (a cusp).

We want to study the analytical properties of the foliation F in a neighborhood of the cusp. For this reason we make a global blowing-up of the cusp of the product space (x, y, ε) of phase and parameter spaces. We want our blow-up to seperate the two branche of the cusp. This requirements leads to the quasi-homogeneous blowing-up of weight (2, 3, 2). Remark 1. In term of first integrals, the foliation F is given by two first integrals

H(x, y, ε) = h, ε = s.
2 Quasi-homogeneous blowing-up of F Recall the construction of the quasi-homogenous blowing-up. We define the weighted projective space CP 2 2:3:2 as factor space of C 3 by the C * action (x, y, ε) → (t 2 x, t 3 y, t 2 ε). The quasi-homogeneous blowing-up of C 3 at the origin is defined as the incidence three dimensional manifold W = {(p, q) ∈ CP 2 2:3:2 × C 3 : ∃t ∈ C : (q 1 , q 2 , q 3 ) = (t 2 p 1 , t 3 p 2 , t 2 p 3 )}, where (q 1 , q 2 , q 3 ) ∈ C and [(p 1 , p 2 , p 3 )] ∈ CP 2 2:3:2 . The quasi-homogeneous blowing-up σ : W → C 3 is just the restriction to W of the projection CP 2 2:3:2 × C 3 . We will need explicit formula for the blow-up in the standard affine charts of W . The projective space CP 2 2:3:2 is covred by three affine charts: U 1 = {x = 0} with coordinates (y 1 , z 1 ), U 2 = {y = 0} with coordintaes (x 2 , z 2 ) and U 3 = {ε = 0} with coordinates (x 3 , y 3 ).

The transition formula follow from the requirement that the points (1, y 1 , z 1 ), (x 2 , 1, z 2 ) and (x 3 , y 3 , 1) lie on the same orbit of the action:

F 2 : (y 1 , z 1 ) → x 2 = 1/y 2/3 1 , z 2 = z 1 /y 1 √ y 1 F 3 : (y 1 , z 1 ) → (x 3 = 1/z 1 , y 3 = y 1 /z 1 √ z 1 ) .
These affine charts define affine charts on W , with coordinates (y 1 , z 1 , t 1 ), (x 2 , z 2 , t 2 ) and (x 3 , y 3 , t 3 ). The blow-up σ is written as

σ 1 : x = t 2 1 , y = t 3 1 y 1 , ε = t 2 1 z 1 (6) 
σ 2 : x = t 2 2 x 2 , y = t 3 2 , ε = t 2 2 z 2 (7) 
σ 3 : x = t 2 3 x 3 , y = t 3 3 y 3 , ε = t 2 3 . (8) 
We apply this blow-up σ to the one-dimensional foliation F . Let σ -1 F the lifting of the foliation F to the complement This foliation has a cuspidal singularity at the origin. The pull-back foliation σ * F will be called the strict transform of the foliation F is defined by the pull-back σ * Ω = σ * (ω ε ∧ dε) divided by a suitable power of the function defining the exceptional divisor. In this charts U j , j = 1, 2, 3 we have

σ * 1 Ω = x 2 Ω 1 , σ * 2 Ω = y 3 Ω 2 , σ * 3 Ω = ε 2 Ω 3 , where Ω 1 = (6y 2 1 -6 -4z 1 )dx ∧ dz 1 + 4y 1 z 1 dy 1 ∧ dx + 2xy 1 dy 1 ∧ dz 1 , (9) 
Ω 2 = (6 -6x 3 2 -4x 2 2 z 2 )dy ∧ dz 2 + (-6z 2 x 2 2 -4x 2 z 2 2 )dx 2 ∧ dy (10) + (-3yx 2 2 -2yx 2 z 2 )dx 2 ∧ dz 2 , (11) 
Ω 3 = (-6x 2 3 -4x 3 )dx 3 ∧ dε + 4y 3 dy 3 ∧ dε. ( 12 
)
Remark 2. In term of first integrals, the foliation σ * F is given by two first integrals

σ * H(x, y, ε) = h, σ * ε = s,
In particular in a neighborhood of the exceptional divisor the restrictions of the foliation σ * F to the charts U 1 and U 3 are given respectively, by

ψ 1 = H(t 2 1 , t 3 1 y 1 , t 2 1 z 1 ) = x 3 (y 2 1 -1) = h, ϕ 1 = xz 1 = s, (13) 
ψ 3 = H(t 2 3 x 3 , t 3 3 y 3 , t 2 3 ) = ε 3 (y 2 3 -x 2 3 -x 3 3 ) = h, ϕ 3 = ε = s, (14) 
where {x = 0} and {ε = 0} are local equations of the exceptional divisor respectively.

3 Singular locus of the foliation σ * F

In this section, we compute the singular locus of the pull-back σ * Ω in a neighborhood of the exceptional divisor CP 2 2:3:2 . We check it in each chart seperatly. In the chart U 1 , the zeros locus of the form Ω 1 in a neighborhood of the exceptional divisor {x = 0} consists of germs of two curves {y 1 = ±1, z 1 = 0} and a two singular points p 1 = (0, 1, 0), p 2 = (0, -1, 0) generated by the quasi-homogeneous blowing-up.

In the chart U 3 , the zeros locus of the form Ω 3 in a neighborhood of the exceptional divisor {ε = 0} consists of p 3 = (0, 0, 0) (Morse point) and p 4 = (-2 3 , 0, 0) (center). The singularities of this foliation are the line of Morse points x 3 = 0, y 3 = 0, the lines of centers x 3 = -2 3 , y 3 = 0 and the transform strict of {y 2 -x 3 -x 2 ε = 0}. Proposition 1. The singularities of σ * F are located at the points p 1 , p 2 , p 3 and p 4 . The points p 1 , p 2 and p 3 are linearisable saddles and the point p 4 is a center.

Proof. Since σ : W → C 3 is a biholomorphism autside the exceptional divisor CP 2 2:3:2 , all singularities of σ * F on C 3 \ {x = 0} correspond to singularities of F . Thus, it suffices to compute the singularities of σ * F on the exceptional divisor {x = 0}. More precisely, we consider the foliation on neighborhood of CP 2

(2:3:2) (the exceptional divisor) generated by the blown-up one-form σ * Ω. Let ψ 1 , ψ 3 are the functions given in (13) and ( 14).

(1) In the chart U 1 , near the divisor exceptional and for |z 1 | ≤ ǫ for ǫ sufficiently small, the foliation σ * F is given by two first integrals

G 1 = ϕ 3 1 ψ -1 1 = z 3 1 (y 2 1 -(1 + z 1 )) -1 V -1 = s 3 h -1 , ϕ 1 = xz 1 = s.
where V is analytic function such that V (0, 0, 0) = 0. In particular on the exceptional divisor {x = 0} the foliation σ * F is given by the levels

G 1 = s 3 h -1 = t.
Now we calculate the eigenvalues at p 1 and p 2 . The vector field V 1 generating the foliation σ * F is given by

V 1 (x, y 1 , z 1 ) = β 1 x ∂ ∂x + β 2 y 1 ∂ ∂y 1 + β 3 z 1 ∂ ∂z 1 ,
where the vector (β 1 , β 2 , β 3 ) satisfies the following equations

< (β 1 , β 2 , β 3 ), (3, 1, 0) >= 0, < (β 1 , β 2 , β 3 ), (1, 0, 1) >= 0
here <, > be the usual scalar product on C 3 . By simple computation, we obtain β 1 = 1, β 2 = -3 and

β 3 = -1.
(2) In the chart U 3 , near the exceptional divisor {ε = 0}, the foliation σ * F is given by

G 3 = ϕ 3 3 ψ -1 3 = (y 2 3 -x 2 3 (1 + x 3 )) -1 = s 3 h -1 , ϕ 3 = ε = s.
In particular the restriction of this foliation to the exceptional divisor {ε = 0}, by Morse lemma we can put the function 1/G 3 to the normal form y 2 3 -z 2 3 in a neighborhood of p 3 (we put the variable change z 3 = ±x 3 (1 + x 3 ) 1/2 ). On other hand the Hessian matrix of 1/G 3 at the point p 4 has two positive eigenvalus. [START_REF] Bobieński | Dmitry Pseudo-Abelian integrals on slow-fast Darboux systems[END_REF] The different scaled variations of δ(s, t)

In this section, we compute the scaled variations with respect to differents variables s and t of the integrals of the blown-up one form σ * 1 η 2 along the different relatives cycles using the same technics of [START_REF] Aymen | Les zéros des intégrales pseudo-abeliennes: cas non générique[END_REF].

Proposition 2. The computation of the different scaled variations of the cycle δ(s, t) us gives 1. For t ∈ [0, 2N ], the cycle δ(s, t) satisfies a iterated scaled variations with respect to t of the form

Var (t,3) • Var (t,-1) • Var (t,-α1) • . . . • Var (t,-α k ) δ(s, t) = 0. (15) 
2. For t ∈ [N, +∞], the cycle δ(s, t) satisfies a iterated scaled variations with respect to 1/t of the form

Var (1/t,-3) • Var (1/t,1) • Var (1/t,1) • Var (1/t,α1) • . . . • Var (1/t,α k ) δ(s, 1/t) = 0. (16) 
3. Near s = 0, we have

Var (s,1) • Var (s,1) δ(s, t) = Var (s,1) ( δ(s, t)) = 0, (17) 
where Var (s,1) δ(s, t) = δ(s, t) is a figure eight cycle.

Proof. As in [START_REF] Aymen | Les zéros des intégrales pseudo-abeliennes: cas non générique[END_REF], there exist a some local chart with coordinates (u, v, w) defined in a some neighborhood of each separatrix of polycycle such that the foliation σ * F is defined by two first integrals. Precisely:

1. for t ∈ [0, 2N ], there exist a local chart (V div , (u, v, w)) defined in neighborhood of the separatrix δ div such the foliation σ * F by two first integrals

F 1 = w 3 (v -1) -1 (v + 1) -1 = t, F 2 = uw = s,
2. for t ∈ [N, +∞], there exists a local chart (V + div , (u, v, w)) defined in neighborhood of the separatrix δ + div such that the foliation σ * 1 F is defined by two first integrals

F 1 = w 3 (v + 2) -1 v -1 = t, F 2 = uw = s,
3. for t ∈ [N, +∞], there exists a local chart (V - div , (u, v, w)) defined in a neighborhood of the separatrix δ - div such that the foliation σ * 1 F is defined by two first integrals

F 1 = w 3 (v -2) -1 v -1 = t, F 2 = uw = s.
In second step we prove that each relative cycle can be chosen as a lift of a path contained in the separatrix associated to this relative cycle. Precisely:

1. on the chart (V div , (u, v, w)), the linear projection π(u, v, w) = v is every where transverse to the levels of the foliation σ * F which corresponds simply to the graphs of the multivalued functions

v → (u, w) = st -1 3 (v -1) -1 3 (v + 1) -1 3 , t 1 3 (v -1) 1 3 (v + 1) 1 3 
, 2. on the chart (V + div , (u, v, w)), the linear projection π(u, v, w) = v is every where transverse to the levels of the foliation σ * F which corresponds simply to the graphs of the multivalued functions

v → (u, w) = st -1 3 v -1 3 (v + 2) -1 3 , t 1 3 v 1 3 (v + 2) 1 3 
, 3. on the chart (V - div , (u, v, w)), the linear projection π(u, v, w) = v is every where transverse to the levels of the foliation σ * F which corresponds simply to the graphs of the multivalued functions

v → (u, w) = st -1 3 v -1 3 (v -2) -1 3 , t 1 3 v 1 3 (v -2) 1 3 
.

In third step, we compute the different scaled variations of relatives cycles using the local expression of two first integrals F 1 and F 2 above near the singular points p 1 , p 2 and p 3 . Recall that the scaled variation of a relative cycle δ(s) is given by

Var (s,β) δ(s) = δ(se iπβ ) -δ(se -iπβ ).
In the local chart (V + div , (u, v, w)), the restriction of the blown-up foliation σ * 1 F to the transversals sections Σ - div = {w = 1} (near the point p 3 ) and Ω + = {u = 1} (near the point p 1 ) is given respectively by

F 1 | Σ - div = 1 v = t, F 2 | Σ - div = u = s, F 1 | Ω+ = w 3 v = t, F 2 | Ω+ = w = s.
Let us fix t ∈ [N, +∞]. We observe that the restriction of the foliation σ * 1 F to the transversal section Σ + div = {w = 1} is analytic with respect to s. Then, after taking an scaled variation with respect to s, the relative cycle δ + div (s, t) is replaced by a loop θ 1 , modulo homotopy, which consists of line segment ℓ 31 = [p 3 , p 1 ] connecting the Morse point p 3 with the point p 1 encircling the latter along a small counterclockwise circular arc α 1 and then returning along the segment ℓ 13 = [p 1 , p 3 ]. The loop θ 1 can be moved along the complex curve {u = w = 0}. Then, we have

Var (s,1) δ + div (s, t) = θ 1 = ℓ 31 α 1 ℓ 13 .
The same computation of the scaled variation with respect to s for the relative cycle δ - div (s, t) gives us a loop θ 3 , modulo homtopy, which can be moved along the complex plane {u = w = 0}. The loop θ 3 consists of line segment ℓ 32 = [p 3 , p 2 ] connecting the point p 3 with the point p 2 encircling the latter along a small counterclockwise circular arc α 3 and then returning along the segment ℓ 23 = [p 2 , p 3 ]. Then, we have Var (s,1) δ - div (s, t) = θ 3 = ℓ 32 α 3 ℓ 23 . In the local chart (V div , (u, v, w)), we define the transversal section Ω + = {u = 1} (resp Ω + = {u = 1}) near p 1 (resp near p 2 ). The restriction of the foliation σ * 1 F to the transversal section Ω + is given by

F 1 | Ω+ = w 3 v = t, F 2 | Ω+ = w = s.
On the second step let us fix t ∈ [0, 2N ]. After taking an scaled variation with respect to s, the relative cycle δ div (s, t) is replaced by a figure eight cycle which can be moved along the complex line

C t div = {x = 0, G 1 = t} of the foliation σ * 1 F
. This case is similar to the classical situation which is studied by Bobieński and Mardešić in [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF]. Now using the analycity of the lifting σ -1 F with respect to s, the scaled variation of the cycle of integration δ(s, t) with respect to s is equal to the scaled variation with respect to s of the following difference δ + div (s, t) -δ - div (s, t) which is equal, modulo homotopy, to the cycle θ 1 θ -1 3 , where θ -1 3 is the inverse of the loop θ 3 . Shematically, the loop θ 1 θ -1

3 is a figure eight cycle.

Remark 3.

• In the local chart (V + div , (u, v, w)) (resp V - div , (u, v, w)), the loop θ 1 (resp θ 3 ) generating the fundamental group of the complex plane {u = w = 0} \ {p 1 } (resp {u = w = 0} \ {p 2 }) with base point p 3 .

• By the univalness of the blown-up one form σ * 1 η 2 , we have

Var (t,α) δ(s,t) σ * 1 η 2 = Var (t,α) δ(s,t) σ * 1 η 2 .

Proof of the Theorem

In this section we first take benefit from the blowing-up in the family to prove our principal theorem. the proof is analoguous of the following :

Theorem 2. There exists a bound of the number of zeros of the function t → J(s, t), for t ∈ [0, +∞] and s > 0 sufficiently small. This bound is locally with respect to all parameters uniform, in particular with respect to s.

Let β = (β 1 , . . . , β k+2 ) where

β 1 = 3, β 2 = -1, β 3 = -α 1 , . . . , β k+2 = -α k .
Let D 1 is slit annulus in the complex plane C * t with boundary ∂D 1 . This boundary is decomposed as follows

∂D 1 = C R1 ∪ C r1 ∪ C ± , where C R1 = {|t| = R 1 , | arg t| ≤ απ}, C ± = {r 1 < |t| < R 1 , | arg t| = ±α} and C r1 = {|t| = r 1 , | arg t| ≤ απ}.
Petrov's method gives us that the number of zeros #Z(J(s, t)) of the function J(s, t) in slit annulus D 1 is bounded by the increment of the argument of J(s, t) along ∂D 1 divided by 2π i.e.

#Z(J(s, t)|

D1 ) ≤ 1 2π ∆ arg(J(s, t)| ∂D1 ) = 1 2π ∆ arg(J(s, t)| CR 1 ) + 1 2π ∆ arg(J(s, t)| C ± ) + 1 2π ∆ arg(J(s, t)| Cr 1 ) (A)
The increment of argument ∆ arg(J(s, t)| CR 1 ) is uniformly bounded by Gabrielov's theorem [START_REF] Gabrièlov | M Projections of semianalytic sets[END_REF].

(B) We use the Schwartz's principle Im(J(s, t))| C ± = ∓2iVar (t,α) J(s, t).

Thus, the increments of argument along segments C ± are bounded by zeros of the variation Var (t,α) J(s, t) on segment (r, R). By identity (18), the function Var (t,βi) J(s, t) can be written as follows Var (t,βi) J(s, t) = K(t where K is a meromorphic function. The function Var (t,βi) J(s, t) is logarithmico-analytic function of type 1 in the variable s (see [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmicoexponentielles[END_REF]). Then, there exist a finit recover of R k+µ+1 × R by a logarithmicoexponential cylinders, using Rolin-Lion's theorem [START_REF] Lion | Jean Phillipe Théorème de préparation pour les fonctions logarithmicoexponentielles[END_REF], such that on each cylinder of this family we have Var (t,βi) J(s, t) = y r0 0 y r1 1 A(t)U (t, y 0 , y 1 ), with y 0 = s -θ 0 (t), y 1 = log y 0 -θ 1 (t), where θ 0 , θ 1 , A are logarithmico-exponential functions and U is a logarithmico-exponential unity function. As the number of zeros of a logarithmico-exponential function is bounded, the number of zeros of Var (t,βi) J(s, t) is bounded.

(C) Finally, we estimate the increment of argument of J along the small arc C r1 . Then, it is necessarily to study the increment of argument of the leading term of the function J at t = 0. Lemma 1. The increment of the argument of J(s, t) along the small circular arc C r1 can be estimated by the increment of the argument of a some meromorphic function F (s, t).

Proof. The problem of the estimation of the increment of the argument of J(s, t) along the circular arc C r1 consist that the principal part of the function J contains the term log s → -∞ as s → 0. To resolve this problem we make a blowing-up at the origin in the total space with coordinates (x, y, z) where x = J 1 (s, t), y = J 2 (s, t), z = (log s) -1 .

The function J(s, t) can be rewritten as follows J(s, t) = J 1 (s, t) + J 2 (s, t) log s = ((log s) -1 J 1 (s, t) + J 2 (s, t)) log s = (zx + y)z -1 .

Thus, for z -1 ∈ R be sufficiently small, we have arg(J(s, t)) = arg((zx + y)z -1 ) = arg(zx + y).

To estimate the increment of argument of zx + y uniformly with respect to s > 0 we make a quasihomogeneous blowing-up π 1 with weight ( 

1 2 , 1 , 1 2 ) 3 .

 2123 of the polynomial zx + y at C 1 = {x = y = z = 0} (the centre of blowing-up). The explicit formula of the quasi-homogeneous blowing-up π 1 in the affine charts T 1 = {x = 0}, T 2 = {y = 0} and T 3 = {z = 0} is written respectively asπ 11 : x = √ x 1 , y = y 1 x 1 , z = z 1 √ x 1 , π 12 : x = x 2 √ y 2 , y = y 2 , z = z 2 √ y 2 , π 13 : x = x 3 √ z 3 , y = y 3 z 3 , z = √ z The pull-back π * 1 (zx + y) is given, in different charts, by π * 11 (zx + y) = x 1 (z 1 + y 1 ) = d 1 P 1 (x 1 , y 1 , z 1 ), π * 12 (zx + y) = y 2 (x 2 z 2 + 1) = d 2 P 2 (x 2 , y 2 , z2), π * 13 (zx + y) = z 3 (x 3 + y 3 ) = d 3 P 3 (x 3 , y 3 , z 3 ).

where d i = 0 and P i = 0 are equations of exceptional divisor and the strict transform of zx + y = 0 respectively.

Observe that P i = 0, i = 1, 3 has not a normal crossing with tha exceptional divisor d i = 0, i = 1, 3. To resolve this problem we make a second blowing-up π 2 with centre a subvariety C 2 which is given, in differents charts, as following:

1. In the chart T 1 , choose a local coordinate chart with coordinates (x 1 , y 1 , z 1 ) in which

) is covred by two coordinates charts U y1 and U z1 with coordinate (x 1 , ỹ1 , z1 ) where in y 1 -chart U y1 the blowing-up π 2 is given by x 1 = x1 , y 1 = ỹ1 , z 1 = z1 ỹ1 and in z 1 -chart U z1 the blowing-up π 2 is given by x 1 = x1 , y 1 = ỹ1 z1 , z 1 = z1 .

2. In the chart T 2 , the blowing-up π 2 is a biholomorphism (π 2 is a proper map).

3. In this chart T 3 , choose a local coordinate chart with coordinates (x 3 , y 3 , z 3 ) in which C 2 = {x 3 = y 3 = 0}. Then π -1 2 (C 2 ) is covred by two coordinates charts U x3 and U y3 with coordinate (x 3 , ỹ3 , z3 ) where in x 3 -chart U x3 the blowing-up π 2 is given by x 3 = x3 , y 3 = ỹ3 x3 , z 3 = z3 and in y 3 -chart U y3 the blowing-up π 2 is given by

• In the y 1 -chart U y1 , the transformation of the pull-back π * 1 (zx + y) by the blowing-up π 2 is given by

• In the z 1 -chart U z1 , the transformation of the pull-back π * 1 (zx + y) by the blowing-up π 2 is given by

• In the chart T 2 , we have

• In the x 3 -chart U x3 , the transformation of the pull-back π * 1 (zx + y) by the blowing-up π 2 is given by

• In the y 3 -chart U y3 , the transformation of the pull-back π * 1 (zx + y) by the blowing-up π 2 is given by

Finally, we distinguish three cases:

3. In the chart T 2 , the function F (s, t) = ((log s) -1 J 1 (s, t)) + J 2 (s, t) is meromorphic. Now we define the functional space P β which are formed of coefficients of the polynomials P i of the Darboux first integral H, the coefficients of the polynomials R, S of the perturbative one forme η, exponents α i and degrees n i = deg P i , n = max(deg R, deg S). Consider the following finite dimensional functional space

For the first two cases, the function J i (s, t), i = 1, 2 satisfies the following iterated variations equation with respect to t

Thus, by Lemma 4.8 from [START_REF] Bobieński | Pavao Pseudo-Abelian integrals along Darboux cycles[END_REF], there exists a non zero leading term

), µ 1 > 0, uniformly in s. Moreover, the function J i (s, t), i = 1, 2 satisfies the iterated variation equation

Thus, we have J i (s, t) = O(s µ2 ), µ 2 > 0, uniformly in t.

For each element in the parameter space, we can choose the leading term of P iβ . The increment of argument of this leading term is bounded by a constant C(M β , k + 2, β k+2 ). Since the leading term of P iβ is also the leading term of J i (s, t), the limit

In the chart T 2 , the function F is meromorphic. Thus, this function can be rewritten as following

where G is meromorphic function. The number #Z(G) of zeros of the function G is uniformly bounded. The latter claim is a direct application of fewnomials theory of Khovanskii [START_REF] Khovanskii | Real analytic manifolds with property of finitness, and complex abelian integrals[END_REF]: since the functions ǫ i (t) = t βi , ǫ(s) = (log s) -1 are Pfaffian functions (solutions of Pfaffian equations tdǫ i -β i ǫ i dt = 0 and sdǫ+ǫ 2 ds, respectively), the upper bound for this number of zeros can be given, using Rolle-Khovanskii arguments of [START_REF] Khovanskii | Translations of Mathematical Monographs[END_REF], in terms of the number of zeros of some polynomial and its derivatives. The latter are uniformly bounded by Gabrielov's theorem [START_REF] Gabrièlov | M Projections of semianalytic sets[END_REF].