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Abstract. We provide a learning algorithm combining distributed Ex-
treme Learning Machine and an information fusion rule based on the ag-
gregation of experts advice, to build day ahead probabilistic solar PV
power production forecasts. These forecasts use, apart from the current
day solar PV power production, local meteorological inputs, the most valu-
able of which is shown to be precipitation. Experiments are then run in
one French region, Provence-Alpes-Côte d’Azur, to evaluate the algorithm
performance.

1 Motivation

Renewable energy integration in electric power systems is progressing at an
unprecedented pace, particularly in Europe. The integration of renewable re-
sources, however, poses several challenges to the current paradigm for operating
power systems. One major challenge is to mitigate the effects of the unpre-
dictability and volatility of renewable supply, which stems from its strong de-
pendence on weather conditions.

Reserves i.e., capacity with the ability to be activated/deactivated in a short
time interval, are used to handle uncertainty in power systems operations. They
can be procured by flexible generation units and flexible loads in the system.
Generally speaking, renewable energy integration drives system operators to in-
crease the reserve margin. The determination of the reserve margin then becomes
critical. An overestimation of reserves would result in excess online generation,
which is expensive and also undermines the environmental benefits of renewable
energy. An underestimation of reserves, on the other hand, can compromise
system security. Currently, the process of determining reserves requirements is
carried out based on ad-hoc rules, or long-term studies, in most systems.

Stochastic programming is a framework that relies on an explicit modeling of
uncertainty in optimization problems. When applied to the short-term schedul-
ing of power systems, it endogenously optimizes the required reserves for the
time horizon to which it is applied, outperforming ad-hoc rules in the presence
of both renewable energy and component failures [5]. The drawback of stochas-
tic programming is that it requires a probabilistic description of the uncertain
parameters, which is usually unavailable and difficult to estimate.

This paper presents an algorithm based on Extreme Learning Machine (ELM),
that uses daily production data and local meteorological inputs to produce a 24



hour horizon probabilistic forecast of solar photovoltaic (PV) power production,
at a regional scale. This forecast will be used later as an input for a study of
the stochastic short-term scheduling of the European power system. The rest of
the paper is organized as follows: in Section 2 we first give an overview of ELM.
Then, we introduce probabilistic forecasting based on Prediction Interval (PI).
Finally, we detail our algorithm combining ELM and experts advice fusion. The
algorithm performance is evaluated in Section 3.

2 Proposed algorithm

Overview of Extreme Learning Machine (ELM): ELM is a single hidden
layer feed-forward Neural Network which randomly selects the input weights and
thresholds and determines the output weights through matrix computation. It is
theoretically capable of approximating any continuous function and implement-
ing any classification application [1], [7]. It avoids the traditional gradient based
algorithms which are used in Back-Propagation Neural Network algorithms to
tune the weights.

We focus on one French region: Provence-Alpes-Côte d’Azur (PACA), which
is known for its high sunshine level. We let (xi)i=1,...,sizeTrain , with xi ∈ Rd,∀i =
1, ..., sizeTrain, be the training data1. In our experiments, we forecast the solar
production on a 24 hour horizon basis with one prediction every 30 minutes
taking as input the current day solar PV production with a granularity of 30
minutes and meteorological inputs measured locally by stations associated with
the region. The output function of ELM is:

fL(x) =

L∑
j=1

βjhj(x) = h(x)β,∀x ∈ Rd (1)

where β is the (column) vector of the output weights between the hidden layer

of L nodes to the output node and h(x) =
(
h1(x), ..., hL(x)

)
is the output

vector of the hidden layer with respect to the input x. In our experiments
detailed in Section 3, hj(x) = g(wj.x+ bj),∀j = 1, ..., L, will be associated with
a sigmoid function where wj is a weight vector and bj is the threshold of the
j-th hidden neuron. We let H be the considered region hidden layer output

matrix: H =

 h(x1)
...

h(xsizeTrain
)

 =

 h1(x1) . . . hL(x1)
...

...
...

h1(xsizeTrain
) . . . hL(xsizeTrain

)

 and

T be the region training data target matrix: T =

 t1
...

tsizeTrain

. The input

weights and thresholds being randomly chosen, training our ELM is equivalent

1We use the following classical notations: vectors/matrices will be written in bold letters
and x.y represents the scalar product of vectors x,y.



to computing a solution of the following linear system : β̂ = H+T where H+ is
the Penrose-Moore generalized inverse of matrix H [1], computed using Singular
Value Decomposition (SVD).

Prediction Interval based ELM: We assume that the training data are cor-
rupted by noise [7] which implies that the ELM output described by Equa-

tion (1) becomes: ti = fL(xi) + ε(xi) with ε(xi) ∼ N
(

0;σ2
ε (xi)

)
. ELM gen-

erates the averaged values of targets conditioned on input variable xi: ŷ(xi) =

fL

(
xi, (ŵj)j=1,...,L, (b̂j)j=1,...,L, β̂

)
. Assuming that the error resulting from the

estimation of the true regression and the other resulting from the estimation
of the measured target are independent, we infer: σ2

t (xi) = σ2
ŷ(xi) + σ2

ε (xi).
A 100(1 − α)%, with α ∈ [0; 1], confidence level Prediction Interval (PI) of the
measured target ti is a stochastic interval defined by its lower and upper bounds:
Lα(xi) = ŷ(xi)− z1−α2

√
σ2
t (xi) and Uα(xi) = ŷ(xi) + z1−α2

√
σ2
t (xi) where z1−α2

is the corresponding critical value of the Gaussian density function. The PI
construction is based on pairs Bootstrap [7], replicated BM times, to obtain

ŷ(xi) and σ2
ŷ(xi). This leads us to: ŷ(xi) = 1

BM

∑BM
k=1 ŷk(xi) and σ2

ŷ(xi) =

1
BM−1

∑BM
k=1

(
ŷk(xi) − ŷ(xi)

)2
. To obtain the data noise variance, the Boot-

strap is replicated BN times using hε(xi) =
(
ŷ(xi) − ti

)2
,∀i = 1, ..., sizeTrain,

as output function. The output of the trained ELM being denoted r̂k(xi),

we obtain: σ2
ε (xi) = 1

BN

∑BN
k=1 r̂k(xi) + 1

BN−1
∑BN
k=1

(
r̂k(xi)− 1

BN

∑BN
l=1 r̂l(xi)

)
.

We use two performance measures. PI coverage probability measures the fore-
caster reliability over each region: PICP , 1

sizeTest

∑sizeTest
i=1 δi where δi = 1 if

ti ∈ [Lα(xi);Uα(xi)]; 0 otherwise. The Score, measured as the PI interval width,

captures the forecaster sharpness over the region: Score ,
(
Uα(xi)− Lα(xi)

)
.

Combining experts with ELM, the FuseELM approach: In the region,
each station is associated with an expert [2]. We let S be the set of stations
in the region and |S| its cardinality. In the region, each expert observes the
current day solar PV production and local meteorological inputs. We apply
the PI based ELM to each expert. This means that BM + BN ELMs should
need to be run for each expert. However, the information coming from each
expert should be weighted by the trust granted to this expert’s report. We
introduce a loss vector, defined in each station and in each training data as the
square of the difference between the target and the station forecaster: Ls,i ,(
ti− ŷs(xi)

)2
,∀i = 1, ..., sizeTrain,∀s ∈ S. We let: ws,i , ws,i

(
ŷs(xi), ti, ws,i−1

)
be the weight associated with the s-th expert in the region evaluated in the i-
th training data. For each station s in the region, we update the exponentially
weighted average forecaster over each training data i according to the rule: ws,i =

ws,i−1 exp(−ηLs,i)∑
s′=1,...,|S| ws′,i−1 exp(−ηLs′,i)

with η =
√

2 ln(|S|)/sizeTrain [2]. An expert is said

to be activated if its weight is large enough to guarantee its selection in the PI
estimation at the regional scale. Once the final weight vector (ws,sizeTrain)s∈S



is obtained, we order the experts according to decreasing weights and keep the
index of the experts so that the sum of the activated experts weights equals
the desired confidence level, starting with the expert having the highest weight.
Then, the regional scale PI is obtained based on the activated experts PIs.

3 Experiments

Data description: The total half hourly solar production for the year 2013
is collected from the French transmission system operator2. These values are
divided by the corresponding installed capacity to obtain a consistent PV pro-
duction ratio. An approximate center is determined by inspection for the PACA
region. The clear sky solar radiation data are collected from the SoDa service3

and the sun position in the sky is computed using the SPA algorithm, with half
hour time granularity.

Measurements of weather parameters at meteorological stations are collected
from the Météociel platform4. The collected meteorological series include mea-
surements of wind speed, wind direction, cloud cover, temperature, atmospheric
pressure, relative humidity and precipitation at 13 stations, with hourly reso-
lution for the year 2013. As many of these series have missing data for one or
many meteorological inputs, series with more than 10% of missing data are re-
moved from the database. The meteorological series left have, in average, 0.98%
of missing data.

Performance: We start by running the ELM algorithm at a short-term horizon
(e.g., one hour) taking as input the solar PV production of the current hour to
predict the solar PV production of the next hour. The hidden node parameters
are distributed according to a Gaussian density function. The PIs with nominal
confidence 90% over one week in Spring 2013 is displayed in Figure 1 (a). PICP
and Score corresponding to this reliability level are 0.940 and 0.068 respectively;
which is extremely good in terms of both reliability and sharpness. However,
performance measurements over longer term horizons (such as 24 hours) are
significantly worse. This can be partly explained by the fact that the data
contain many missing values and by the presence of outliers. Furthermore, basic
ELM fails to capture extreme events such as unexpectedly high/low solar PV
productions over such a long-term horizon.

So, we turn to the FuseELM algorithm, to which we add additional input
variables. However, there is a tradeoff to be found between adding ”informative”
input variables which will increase the forecaster overall performance and adding
data whose quality will alter the forecaster performance introducing undesirable
biases. The influence of the various meteorological inputs known as having a non
trivial impact on solar production forecasting is evaluated as a function of the
algorithm performance measurements in Table 1. The performance (PICPs and
Scores) are computed over one week in Spring 2013. In the evaluation process,

2Eco2mix http://www.rte-france.com/fr/eco2mix/eco2mix/
3SoDa http://www.soda-is.com/eng/services/services_radiation_free_eng.php
4Météociel http://meteociel.fr/obs/pays.php.

http://www.rte-france.com/fr/eco2mix/eco2mix/
http://www.soda-is.com/eng/services/services_radiation_free_eng.php
http://meteociel.fr/obs/pays.php.


Variables PICP Score Nb of Experts Experts Index
Wind Speed 0.904 0.093 8/13 4, 6, 12, 1, 11, 8, 3, 9
Wind Dir. 0.889 0.095 8/13 4, 12, 6, 1, 8, 11, 3, 9

Cloud Cover 0.910 0.094 8/13 4, 12, 6, 1, 11, 8, 3, 9
Precipitation 0.916 0.098 8/13 4, 6, 1, 12, 11, 8, 3, 9
Temperature 0.907 0.098 8/13 4, 12, 6, 1, 11, 8, 3, 9

Pressure 0.875 0.090 8/13 4, 6, 12, 1, 11, 8, 3, 9
Sun Zenith 0.886 0.091 8/13 4, 6, 12, 1, 8, 11, 3, 9

Sun Azimuth 0.913 0.097 8/13 4, 12, 6, 1, 8, 11, 3, 9

Table 1: FuseELM performance measurements depending on meteorological inputs for
a confidence level of 90% in Spring 2013.

we give a higher priority to the reliability captured by the PICPs since it is
the key feature reflecting the correctness of the constructed PIs [7]. We check
according to Table 1 that precipitation, followed by sun position and cloud cover,
is the indicator with the greatest influence.

We now run FuseELM taking as input, apart from the daily solar PV power
production, daily precipitation. The PIs with nominal confidence 90% and the
measured solar PV production in Spring 2013 obtained by the proposed FuseELM

approach are plotted in Figure 1 (b). The optimal number of hidden nodes for
the ELM is determined based on cross-validation. In Figure 1 (d), we have
represented the Root Mean Square Error (RMSE) and Mean Average Error
(MAE) as functions of the number of ELM hidden neurons. We check that
50 hidden neurons guarantee optimal learning capabilities while avoiding over-
training. In Table 1, we observe that 8 over 13 experts are activated. The indices
of the experts are listed following decreasing weights in the probability vector
(ws,sizeTrain)s∈S . The 90% confidence PIs obtained by the proposed FuseELM and
the measured solar PV production in Winter 2013 is displayed in Figure 1 (c).
The performance for Winter and Fall are worse than for Spring and Summer.
This is due to the chaotic behavior of the solar PV production for some days of
the week and the presence of extreme (unexpectedly low) production values.

Updating the experts weight by solving a constrained linear system [4] leads
to PICP= 0.914 and Score= 0.101 as performance measures, with 5/13 experts
being activated (indices 4, 8, 6, 12, 11). Therefore, it is outperformed by FuseELM.

4 Conclusion

The learning algorithm proposed in this article combines distributed ELMs and
information fusion to produce a 24 hour horizon probabilistic forecast of solar
PV power production using daily solar PV power production and local meteoro-
logical inputs. Experiments run over one region in France, Provence-Alpes-Côte
d’Azur, show that the most valuable model input, apart from the present day
solar PV production, is precipitation. An interesting perspective would be to
theoretically compare experts advice fusion with the weighted averaging tech-
niques of varying degrees of complexity already widespread in information fusion
[3].



(a) (b)

(c) (d)

Fig. 1: PIs with nominal confidence 90%: hourly forecast (a) and daily forecast over
one week in Spring (b) and Winter 2013 (c). Cross-validation test for ELM with
different number of hidden neurons (d).
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