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Abstract—In this paper, we compare “traditional” engineered
(hand-crafted) features (or descriptors) and learned features for
content-based semantic indexing of video documents. Learned (or
semantic) features are obtained by training classifiers for other
target concepts on other data. These classifiers are then applied
to the current collection. The vector of classification scores is
the new feature used for training a classifier for the current
target concepts on the current collection. If the classifiers used
on the other collection are of the Deep Convolutional Neural
Network (DCNN) type, it is possible to use as a new feature
not only the score values provided by the last layer but also the
intermediate values corresponding to the output of all the hidden
layers. We made an extensive comparison of the performance
of such features with traditional engineered ones as well as
with combinations of them. The comparison was made in the
context of the TRECVid semantic indexing task. Our results
confirm those obtained for still images: features learned from
other training data generally outperform engineered features for
concept recognition. Additionally, we found that directly training
SVM classifiers using these features does significantly better than
partially retraining the DCNN for adapting it to the new data.
We also found that, even though the learned features performed
better that the engineered ones, the fusion of both of them
perform significantly better, indicating that engineered features
are still useful, at least in this case.

I. INTRODUCTION

Deep Convolutional Neural Networks (DCNN) have re-
cently made a significant breakthrough in image classifica-
tion [1]. This has been made possible by a conjunction of
factors including: findings about how to have deep networks
effectively and efficiently converge [2], the use of convolu-
tional layers [3][4], the availability of very powerful parallel
architectures (GPUs), findings about how exactly a network
should be organized for the task [1], and the availability of
huge quantity of cleanly annotated data [5].

Not to minimize the importance of the hardware progress
and of algorithmic breakthroughs, the availability of a large
number of image examples for a very large number of concepts
was really crucial as DCNNs really needs such amount of
training data for actually being efficient. Data augmentation
(e.g. multiple crops of training samples) can further help but
also only when a huge amount of data is already available.
Such amount of training data is currently available only with
ImageNet which corresponds to a single type of application
and only for still images. For video documents for instance,
many annotated collection exist but with much smaller number
of concepts and/or much smaller number of examples. Trying
to train DCNNs on such data generally leads to results that are
less good than those obtained using “classical” engineered fea-

tures (or descriptors) combined with also “classical” machine
learning methods (typically SVMs).

Two strategies have been considered for making other
domains benefit from the success of the DCNN/ImageNet
combination. The first one consists in pre-training a DCNN on
ImageNet data and then partly retrain or fine-tune it on another
collection [6][7]. Generally, only the last layers are retrained,
the exact number of which as well as the learning parameters
being experimentally determined by cross-validation. Though
this strategy can produce much better results than when the
DCNN is trained only on the target data, it does not necessarily
compete with classical approaches and/or lead to gains that are
much less important than in the ImageNet case.

The second strategy consists in using a DCNN pre-trained
on ImageNet, applying it to a different target collection and use
the final ImageNet concept detection scores and/or the output
of the hidden layers as features for training classifiers and
making prediction on the different target collection. Razavian
et al. [8] have very successfully applied this strategy to a
number of test collections for both image indexing and image
retrieval.

In this work, we explore how these strategies perform in
the context of video indexing. We also investigate how they
can be combined with classical methods based on engineered
features and how they can be combined with other video-
specific improvement methods like temporal re-scoring [9].
Experiments have been carried out in the context of the
semantic indexing task at TRECVid [10]. In this paper we
make the following contributions:

1) We confirm the results obtained for still images in the
case of video shot indexing: features learned from
other training data generally outperform engineered
features for concept recognition.

2) We show that directly training SVM classifiers using
these features does better than partially retraining the
DCNN for adapting it to the new data.

3) We show that, even though learned features outper-
form engineered ones, fusing them perform signifi-
cantly better, indicating that engineered features are
still useful, at least in this case.

4) We show that temporal an conceptual re-scoring
methods also improve classification results obtained
with DCNN features.

II. RELATED WORK

Semantic features are not restricted to DCNN and had
already been used for multimedia classification and retrieval.



Smith et al. [11] introduced them as “model vectors”. These
provide a semantic signature for multimedia documents by
capturing the detection of concepts across a lexicon using a set
of independent binary classifiers. Ayache et al. [12] proposed
to use local visual categories detection scores on regular grids
or to use topic detection on ASR transcriptions for video shot
classification. Su et al. [13] also proposed to use semantic
attributes obtained with supervised learning either as local or
global features for image classification.

In all these works and many other similar ones, the se-
mantic features are learned on completely different collections
and generally for concepts or categories different from those
searched for on the target collection. Hamadi et al. [14] used
the approach using the same collection and the same concepts
both for the semantic feature training and for their use in a
further classification step. In this variant, called “conceptual
feedback”, a given target concept is learned both from the
“low-level” features and from the detection scores of the other
target concepts also learned from the same low-level features
(the training of the semantic features has to be done by cross-
validation within the training set so that it can be used for the
second training step both on the training and test sets).

Concerning the first DCNN transfer strategy (DCNN re-
training), Yosinski et al. [7] et al showed that the features
corresponding to the output of the hidden layers are well
transferable from one collection to another and that re-training
only the last layers is very efficient both for comparable or for
dissimilar concept types. Their experiments were conducted
only within the ImageNet collection however. Similar results
were obtained by Chatfield et al. [6] on different data.

Concerning the second DCNN transfer strategy (classical
training with features produced by DCNNs), Razavian et al. [8]
showed that it works very well too, for several test collection,
some of which are close to ImageNet and some of which are
quite different both in terms of visual contents and in terms of
target concepts. They also showed that this type of semantic
features can be successfully used both for categorization tasks
and for retrieval tasks. Finally, they showed that in addition
to the score values produced by the last layer, the values
corresponding to the output of all the hidden layers can be
used as feature vectors. The semantic level of the layers output
values increases with the layer number from low-level, close
to classical engineered features for the first layers, to fully
semantic for the last layers. Their experiments showed that
using the last but one and last but two layer outputs generally
gives the best results. This is likely because the last layers
contain more semantic information while the last one has
lost some useful information as it is tuned to different target
concepts. There is generally no equivalent to the output of the
hidden layers in classical learning methods (e.g. SVMs) and
these can only produce the final detection scores as semantic
features.

Many variants of the “classical” approach exist. Most
of them consist in a feature extraction step followed by a
classification step. In many cases, several different features can
be extracted and in some cases a few different classification
methods are also used in parallel; a fusion step has then to be
considered. Fusion is called “early” when it is performed on
extracted features, “late” when it is performed on classification
scores or “kernel” when it is performed on computed kernel

within the classification step (for kernel-based methods); many
combinations can also be considered.

A very large variety of engineered features has been
designed and used for multimedia classification. Some of
them are directly computed on the whole image (e.g. color
histograms), some of them are computed on image parts (e.g.
SIFTs) [15]. In the latter case, the locally extracted features
need to be aggregated in order to produce a single fixed-size
global feature. Many methods can be used for that, including
the “bag of visual words“ one (BoW) [16][17] or the Fisher
vector (FV) one [18] and similar ones like super vectors (SV),
and vector of locally aggregated descriptors (VLAD) [19] or
tensors (VLAT) [20]. Some of them may reach their maximum
efficiency only when they are highly dimensional, typically
the FV, VLAD and VLAT ones. Two different strategies
can be considered for dealing with them: either use linear
classifiers combined with compression techniques [18] or using
dimensionality reduction techniques combined with non-linear
classifiers [21]. In the case of video indexing, engineered
features have been proposed also for the representation of
audio and motion content.

The comparison of methods presented here has been con-
ducted in the context of the Semantic INdexing (SIN) task
TRECVid [10]. It differs from the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in many respects. In-
deed, the indexed units are video shots instead of still images.
The quality and resolution of the videos are quite low (512 and
64 kbit/s for the image and audio streams respectively). The
target concepts are different: 346 non-exclusive concepts with
generic-specific relations. Many of them are very infrequent in
both the training and test data. The way the collection has been
built is also very different. In ImageNet, a given number of
sample images have been selected and checked for each target
concept resulting in a high quality and comparable example
set size for all concepts. In TRECVid SIN, videos have
been randomly selected from the Internet Archive completely
independently of the target concepts; the target concepts have
been annotated a posteriori resulting in very variable number
of positive and negative examples for the different concepts.
Most of the concepts are very infrequent and also not very
well visible. Compared to ImageNet, the positive samples are
much less typical, much less centered, of smaller size and
with a much lower image quality. The task is therefore much
more difficult than the ILSVRC one but it may also be more
representative of indexing and retrieval tasks “in the wild”.
An active learning method was used for driving the annotation
process for trying to reduce the imbalance class effect in the
training data and also ensure a minimum number of positive
samples for each target concept [22]. The resulting annotation
is sparse (about 15% in average) and consists in 28,864,844
concept × shots judgements. All of these differences probably
explain why training DCNNs directly on TRECVid SIN data
gives much poorer results than on ImageNet data and why the
two considered adaptation strategies are needed (or perform
much better) in this case.

III. COMPARISON BETWEEN ENGINEERED FEATURES AND
SEMANTIC FEATURES

In this section, we compare the performance of engineered
features and semantic features. For the engineered features, we



use a series of features shared by the participants of the IRIM
group of the French GDR ISIS [23].

Two different classifiers have been used, one based on the
k nearest neighbors and one based on Multiple SVMs because
it handles well large class imbalances [9]. The predictions of
these two classifiers were fused producing a globally better
result [24]. We also use the approach based on dimensionality
reduction combined with non-linear classification for dealing
with high-dimensional features.

We considered the following engineered features types:

• CEALIST/bov dsiftSC 8192: bag of visual
terms [25]. Dense SIFT are extracted every 6
pixels. The codebook of size 1024 is built with K-
means. Bags are generated with soft coding and max
pooling. The final signature results from a three-level
spatial pyramid: 1024 × (1 + 2 × 2 + 3 × 1) = 8192
dimensions.

• CEALIST/bov dsiftSC 21504: bag of visual
terms [25]. Same as CEALIST/bov dsiftSC 8192
with a different spatial pyramid: 1024× (1 + 2× 2 +
4× 4) = 21504 dimensions.

• ETIS/global <feature>[<type>]x<size>: (concate-
nated) histogram features[26], where:
◦ <feature> is chosen among lab (CIE L*a*b*

colors) and qw (quaternionic wavelets, 3
scales, 3 orientations)

◦ <type> can be m1x1 (histogram computed
on the whole image), m1x3 (histogram for 3
vertical parts) or m2x2 (histogram on 4 image
parts)

◦ <size> is the dictionary size, sometimes dif-
ferent from the final feature vector dimension.

For instance, with <type>=m1x3 and <size>=32, the
final feature vector has 3 × 32 = 96 dimensions.

• ETIS/vlat <desc type> dict<dict size> <size>:
compact Vectors of Locally Aggregated Tensors
(VLAT [20]). <desc type> = low-level descriptors,
for instance hog6s8 = dense histograms of gradient
every 6 pixels, 8×8 pixels cells. <dict size> = size
of the low-level descriptors dictionary. <size> = size
of feature for one frame. Note: these features can be
truncated. These features must be normalized to be
efficient (e.g. L2 unit length).

• LIG/opp sift <method>[ unc] 1000: bag of word,
opponent sift, generated using Koen Van de Sande’s
software[27]: 1000 dimensions (384 dimensions per
detected point before clustering; clustering on 535117
points coming from 1000 randomly chosen images).
<method> method is related to the way by which
SIFT points are selected: har corresponds to a filtering
via a Harris-Laplace detector and dense corresponds
to a dense sampling; the versions with unc corre-
spond to the same with fuzziness introduced in the
histogram computation.

• LIRIS/OCLPB DS 4096: Dense sampling OCLBP
[28] bag-of-words descriptor with 4096 k-means clus-
ters. We extract orthogonal combination of local bi-
nary pattern (OCLBP) to reduce original LBP his-
togram size and at the same time preserve information

on all neighboring pixels. Instead of encoding local
patterns on 8 neighbors, encoding is performed on
two sets of 4 orthogonal neighbors, resulting in two
independent codes. Concatenating and accumulating
two codes leads to a final 32 dimensional LBP
histogram, compared with original 256 dimensions.
4096-dimensional bag-of-words descriptors are finally
generated using a pre-trained dictionary.

• LISTIC/SIFT *: Bio-inspired retinal preprocessing
strategies is applied before extracting Bag of Words
of Opponent SIFT features (details in [29]) using the
retinal model from [30]. Features extracted on dense
grids on 8 scales (initial sampling=6 pixels, initial
patch=16x16pixels), using a linear scale factor 1.2. K-
means clustering is used for producing dictionaries of
1024 or 2048 visual words. The proposed descriptors
are similar to those from [29] except that multi-
scale dense grids are used. Despite showing equivalent
mean average performance, the various pre-filtering
strategies present different complementary behaviors
that boost performances at the fusion stage [31].

Fig. 1. Performance of engineered features

Figure 1 shows the performance of several types of en-
gineered features. In several cases, the result is shown for
already a combination of variants of the same feature type, for
instance corresponding to a pyramidal image decomposition.
The performance is given as the Mean (inferred) Average
Precision on the 2013 and 2014 editions of the TRECVid SIN
task. That task was a bit harder in 2014 because the set of
evaluated concepts was different, including more difficult ones.
The last entry in the figure correspond to a late fusion of all the
IRIM features (including others less good than those shown).
We can see that the fusion of these features does significantly
better than the best of them.

We considered the following learned or semantic feature
types:

• Semantic features computed using a Fisher vector
approach [18]. Two variants were produced by Florent
Perronnin fro Xerox: a 1000-dimensional one trained
using the 1000 concepts of ILSVRC 1000, and a
10174-dimensional one trained using 10174 ImageNet
concepts.

• Semantic features computed using a DCNN following
the Krizhevsky architecture [1], using the caffe imple-
mentation [32], and pre-trained on the 1000 ISLVRC
2012 concepts. Two variants were produced by LIG



and Eurecom, corresponding respectively to the simple
and to the data augmented versions.

• Quasi-semantic features corresponding to last three
hidden layers of the same network (simple version)
whose dimensionalities are respectively 43,264, 4,096
and 4,096 for layers 5, 6 and 7.

• Concepts features corresponding to the conceptual
feedback approach [14] applied two times. These are
were originally designed for being used with engi-
neered descriptors but they acn also include other
semantic descriptors; here they have been computed
including the Xerox semantic descriptors.

Several late fusions of features of the same type were also
considered.

Figure 2 shows the performance of several types of learned
features. The first entry is the combination of all engineered
features showed as a baseline. We can immediately see that
almost all semantic features perform similarly to or better than
the baseline and therefore significantly better than any individ-
ual engineered feature. We can also observe than combinations
of semantic features perform even better. Considering the caffe
output and internal layers, the best choice is fc6 which is very
close to fc7. The final output layer is less good and fc5 is even
less good. It is interesting to notice that the performance of
the Xerox Fisher vector based semantic features is very close
to the performance of the final output of the pre-trained caffe
network while both use very similar training data (ILSVRC10
and ILSVRC12 respectively). The features corresponding to
the conceptual feedback perform better but the Xerox semantic
features were included in their production.

IV. COMPARISON BETWEEN PARTIAL DCNN RETRAINING
AND USE OF DCNN LAYER OUTPUT AS FEATURES

We made several trials for retraining the last layers of the
pre-trained caffe implementation. We tried to retrain the last
one, last two or last three layers, each time doing our best to
select the optimal training parameters in each case. The best
performance was obtained when retraining the last two layers
and it was of 0.2171 and 0.1839 respectively on SIN 2013
and 2014 which is less that using the fc6 layer for which the
KNN/MSVM classifier combination gives 0.2347 and 0.2016
respectively. While the retraining of the last two layers starts
from the same fc6 feature, it seems that these two layers are not
able to do a learning as good as the KNN/MSVM combination.
This may be because they actually implement only a two-
layer perceptron and because they have difficulties with highly
imbalanced training data.

V. TEMPORAL RE-SCORING WITH SEMANTIC FEATURES

We applied the temporal re-scoring method proposed by
Safadi et al. [9] as it is a simple way to obtain a significant
performance boost at very low computing cost. It simply
exploits the fact that if a concept appears in a video shot, it is
more likely to appear in the preceding and following shots.

Figure 3 shows the performance gain brought by the tem-
poral re-scoring for the different considered semantic features
on SIN 2014. We can observe that the gain is more important
for some features that for others. It is greater for learned

features than for engineered ones. It is greater for DCNN
output features than for Fisher vector based features. It is
also greater for semantic features than for quasi-semantic ones
(corresponding to internal layers). It also appears smaller for
conceptual feedback features but this is due to the fact that
the feedback features were computed from scores that were
already re-scored as it works better like this [14].

VI. FUSION AND OTHER IMPROVEMENT METHODS

Figure 4 shows the performance gain brought by the
successive fusion of descriptors of increasing performance.
This strategy has been selected as it has been observed that
fusion gives better results when done on sources of compa-
rable performance [33]. This strategy also ensures a dilution
and therefore a smaller contribution of those having lower
performances; it has also been observed that this is better
than simply dropping them [33]. These fusions are followed
by post-processing techniques bringing additional performance
gains. The (D LIG.14 X) labels correspond to our official
submissions at the TRECVid 2014 SIN task.

Fusion of engineered and learned features does better
than any of them separately, indicating that though they are
individually and collectively less good, engineered features
are still useful for global system performance. Though hidden
layers are individually the best ones, they do not bring further
improvement when the engineered descriptors have already
been fused with Fisher vector based features and DCNN output
features. Conceptual feedback and temporal re-scoring still im-
prove further. Finally, two other improvement techniques were
tried: conceptual re-scoring and use of an uploader model.
Conceptual re-scoring is different from conceptual feedback,
it is similar to temporal re-scoring but it exploits the semantic
similarity between concepts instead of the temporal closeness
between video shots [14]. It did not prove useful probably
because, even if based on a different method, it captures the
same type of information as the conceptual feedback done
previously. The uploader model uses the information of who
uploaded the video on the Internet archive and tries to exploit
the fact that videos uploaded by a same user tend to have the
same type of content [34]. It did not bring further improvement
after all the other improvements were performed.

VII. CONCLUSION

In this paper, we have compared “traditional” engineered
features and learned features for content-based semantic index-
ing of video documents. We made an extensive comparison of
the performance of learned features with traditional engineered
ones as well as with combinations of them. The comparison
was made in the context of the TRECVid semantic indexing
task. Our results confirm those obtained for still images:
features learned from other training data generally outper-
form engineered features for concept recognition. Additionally,
we found that directly training SVM classifiers using these
features does better than partially retraining the DCNN for
adapting it to the new data. We also found that, even though
the learned features performed better that the engineered ones,
the fusion of both of them still perform significantly better,
indicating that engineered features are still useful, at least in
this case.



Fig. 2. Performance of semantic features

Fig. 3. Performance gain from temporal re-scoring with semantic features

Fig. 4. Performance gain from fusion and other improvement methods
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