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Abstract

We give sufficient conditions for the existence of a Quillen model structure on small categories
enriched in a given monoidal model category. This yields a unified treatment for the known model
structures on simplicial, topological, dg- and spectral categories. Our proof is mainly based on a
fundamental property of cofibrant enriched categories on two objects, stated below as the Interval
Cofibrancy Theorem.

Introduction

Most categories arising naturally in mathematics are enriched in a symmetric monoidal category with
more structure than the category of sets. In those cases where the enriching category comes equipped
with an appropriate notion of homotopy, it is common to reformulate classical concepts of category
theory in a homotopically meaningful way. From this point of view, the relevant notion of equivalence
between enriched categories is that of a Dwyer–Kan equivalence [9], which was originally defined
for categories enriched in simplicial sets, often just called simplicial categories. A map of simplicial
categories is a Dwyer–Kan equivalence if it induces a weak homotopy equivalence on the simplicial
hom-sets, while on objects it is surjective ‘up to homotopy equivalence’. In general, Dwyer–Kan
equivalences do not have any kind of weak inverse, but they induce an equivalence of categories once
the simplicial hom-sets are replaced with their sets of path-components. A similar notion of Dwyer–
Kan equivalence exists for categories enriched in compactly generated spaces, in chain complexes or
in symmetric spectra, to name only a few.

The theory of Quillen model categories [10, 11, 17] provides a powerful framework to treat these ex-
amples in a systematic way. For instance, Bergner [5] shows that the category of simplicial categories
carries a Quillen model structure in which the weak equivalences are the Dwyer–Kan equivalences.
Tabuada [23, 24] proves a similar result for dg-categories as well as for categories enriched in
symmetric spectra. These and other examples naturally lead to the question under which conditions
a model structure on a symmetric monoidal category V induces a model structure on the category
V–Cat of small categories enriched in V .
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Lurie [15] proves a general result in this direction, which applies to categories V in which
monomorphisms are cofibrations and some other conditions are satisfied (see Theorem 1.9). Such
categories are in particular left proper. The aim of the present text is to prove an analogous result for
symmetric monoidal categories that satisfy conditions complementary to Lurie’s; in particular, they
are supposed to be right proper. The reader will find a precise statement in Theorem 1.10.

In those examples where both Lurie’s and our conditions are satisfied, we show that the two model
structures agree. In fact, most of the known examples of a model structure on V–Cat have a class of
trivial fibrations and a class of fibrant objects that are directly definable in terms of the corresponding
classes in V . These two classes completely determine the model structure on V–Cat, and we refer to
model structures of this kind as canonical. The class of weak equivalences of the canonical model
structure is thus uniquely determined, though not given in explicit terms. We prove that, under our
assumptions on V , the weak equivalences of the canonical model structure are precisely the Dwyer–
Kan equivalences. We actually deduce this result from the general fact that homotopy equivalences in
V-categories are coherent whenever V satisfies our conditions. In the case of topologically enriched
categories this is due to Boardman and Vogt [6, Lemma 4.16]. In particular, Dwyer–Kan equivalences
are now ‘surjective up to coherent homotopy equivalence’, a property needed to characterize the
fibrations of the canonical model structure by a right lifting property with respect to an explicit
generating set of trivial cofibrations. This generating set uses in an essential way the concept of
V-interval, which is a special kind of V-category on two objects. Much of the technical material in
this article goes into the study of these V-intervals.

The article is subdivided into three sections: Section 1 contains precise statements of our main
results after a discussion of the necessary model-theoretical background; Section 2 proves the exis-
tence of a canonical model structure on V–Cat under certain conditions on the base category V;
Section 3 establishes the cofibrancy properties of V-intervals needed for the existence of the canonical
model structure.

1. Definitions and main results

Let V be a cofibrantly generated monoidal model category (see [10, 11]). Structured objects in V ,
such as monoids, modules for a fixed monoid, etc., often carry a Quillen model structure, which is
transferred from V in the sense that the fibrations and weak equivalences between these structured
objects are detected by a forgetful functor to V (or a family of such in the multi-sorted case). These
structured objects in V can in most cases be defined as algebras over a suitable non-symmetric
coloured operad in sets. This motivates the following definition.

Definition 1.1 A monoidal model category V is called adequate if

(1) the monoidal model structure is compactly generated;
(2) for any non-symmetric coloured operad P in sets, the category of P-algebras in V carries a

transferred model structure.

Mild conditions on V imply adequacy. To give a precise definition of our concept of compact
generation, it is best to introduce the following terminology.

A class of maps in V is monoidally saturated if it is closed in V under cobase change, transfinite
composition, retract and under tensoring with arbitrary objects. The monoidal saturation of a class
of maps K is the least monoidally saturated class containing K . For brevity, let us call ⊗-cofibration
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any map in the monoidal saturation of the class of cofibrations, and ⊗-small (resp. ⊗-finite) any
object which is small (resp. finite) with respect to ⊗-cofibrations. The class of weak equivalences is
⊗-perfect if it is closed under filtered colimits along ⊗-cofibrations.

Definition 1.2 A cofibrantly generated monoidal model category is compactly generated if every
object is ⊗-small, and the class of weak equivalences is ⊗-perfect.

Any combinatorial monoidal model category with a perfect (i.e. filtered colimit closed) class
of weak equivalences is compactly generated. Our definition of compact generation was chosen so
as to include also the monoidal model category of compactly generated topological spaces whose
objects are not small, but only ⊗-small, and whose class of weak equivalences is not perfect, but only
⊗-perfect.

A topological space is compactly generated (resp. weakly Hausdorff) if its compactly closed [11,
2.4.21(2)] subsets are closed (resp. if its diagonal is compactly closed.) The ⊗-perfectness of the class
of weak equivalences holds for the monoidal model category of compactly generated spaces as well
as for the monoidal model category of compactly generated weak Hausdorff spaces. In the second
(more familiar) case one uses that ⊗-cofibrations are closed T1-inclusions and that compact spaces
are finite with respect to closed T1-inclusions; cf. Hovey [11, 2.4.1–5]. In the first (more general) case
one uses that ⊗-cofibrations are closed subspace inclusions X → Y with the additional property that
each y ∈ Y\X belongs to a closed subset of Y not intersecting X. Compact spaces are finite even
with respect to the latter class; cf. Dugger–Isaksen [7, A.3].

In general, by Hovey’s argument [11, 7.4.2], the existence of a generating set of cofibrations with
finite (resp. ⊗-finite) domain and codomain implies the perfectness (resp. ⊗-perfectness) of the class
of weak equivalences. For us, the following corollary of ⊗-perfectness will play an important role
(cf. Section 2.16):

Lemma 1.3 In a compactly generated monoidal model category the class of those weak equivalences
which are ⊗-cofibrations is closed under transfinite composition.

Proposition 1.4 A compactly generated monoidal model category is adequate if either of the
following two conditions is satisfied:

(i) V admits a monoidal fibrant replacement functor and contains a comonoidal interval object;
cf. [4];

(ii) V satisfies the monoid axiom of Schwede–Shipley; cf. Muro [16].

Recall that the monoid axiom of Schwede and Shipley [21] requires the monoidal saturation of
the class of trivial cofibrations to stay within the class of weak equivalences. If all objects of V
are cofibrant, the monoid axiom is a consequence of the pushout-product axiom. In a compactly
generated monoidal model category the monoid axiom can be rephrased in simpler terms (since
the transfinite composition part has already been taken care of by Lemma 1.3), namely tensoring a
trivial cofibration with an arbitrary object yields a couniversal weak equivalence; cf. [1]. Examples
of adequate monoidal model categories include the category of simplicial sets equipped either with
Quillen’s or Joyal’s model structure, the category of dg-modules equipped with the projective model
structure, and the category of symmetric spectra with the levelwise or stable projective model structure.
An example of an adequate, but non-combinatorial monoidal model category is the category of
compactly generated topological spaces where both criteria of Proposition 1.4 apply.
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For any set S, we denote by V–CatS the following category: the objects of V–CatS are V-enriched
categories with object set S, and the morphisms of V–CatS are V-functors which are the identity on
objects. The following proposition was shown in [4] (resp. [16, 22]) under the first (resp. second)
hypothesis of the preceding proposition. Several other authors proved it for specific choices of V . It
is an obvious consequence of the definition of adequacy since V–CatS is the category of algebras for
a non-symmetric S × S-coloured set-operad; cf. [4] and Section 3.3e.

Proposition 1.5 For any adequate monoidal model category V and any set S, the category V–CatS
admits a transferred model structure. This model structure is right (resp. left) proper if V is right
proper (resp. all objects of V are cofibrant).

For any set-mapping f : S → T , there is a Quillen pair

f! : V–CatS −→ V–CatT : f ∗

the right adjoint of which is defined by (f ∗B)(x, y) = B(f x, fy) for x, y ∈ S.
In this paper, we will address the problem when a suitable transferred model structure exists on the

category V–Cat of all small V-enriched categories, obtained by letting S vary over arbitrary (small)
sets. In fact, the known examples suggest a more precise way of formulating this problem based
on the following definitions. Recall that, for any model structure, the trivial fibrations are the maps
which are simultaneously fibrations and weak equivalences.

Definition 1.6 A V-functor f : A → B between V-categories is called a local weak equivalence
(resp. local fibration) if, for any objects x, y ∈ Ob(A), the induced map

A(x, y) −→ B(f x, fy)

is a weak equivalence (resp. fibration) in V . A V-category is called locally fibrant if the V-functor to
the terminal V-category is a local fibration.

A model structure on V–Cat is called canonical if its fibrant objects are the locally fibrant V-
categories and its trivial fibrations are the local trivial fibrations that are surjective on objects.

Recall that a Quillen model structure is completely determined by its classes of trivial fibrations
and of fibrant objects. Therefore, a canonical model structure on V–Cat is unique when it exists,
and hence we can speak of the canonical model structure on V–Cat. Our main problem can now be
reformulated as follows:

For which adequate monoidal model categories V does

the canonical model structure on V–Cat exist?

Remark 1.7 The cofibrations of the canonical model structure can be characterized as those
V-functors f : A → B for which the set mapping f : Ob(A) → Ob(B) on objects is injective, and the
induced V-functor f!A → B with fixed object set Ob(B) is a cofibration in V–CatOb(B). In particular,
the inclusion V–CatS → V–Cat preserves cofibrations for any set S.



ON THE HOMOTOPY THEORY OF ENRICHED CATEGORIES 809

Example 1.8 The canonical model structure is known to exist in the following cases:

(i) If V is the category of simplicial sets, then V–Cat is usually referred to as the category of
simplicial categories. Bergner [5] has shown that if V is equipped with the classical Quillen
model structure, the canonical model structure on V–Cat exists. She gives explicit descriptions
of the class of weak equivalences (the Dwyer–Kan equivalences [9]) and of generating sets of
cofibrations and trivial cofibrations.

(ii) If V is the category of compactly generated topological spaces, then V–Cat is the category of
topological categories. The existence of the canonical model structure on V–Cat can be proved
by the same methods as in the previous example.

(iii) If V is the category of sets, equipped with the Quillen model structure in which the weak
equivalences are the isomorphisms, then V–Cat is the category of small categories, and the
canonical model structure is the one known as the naive, or folk model structure; see, for
instance, Joyal and Tierney [12] or Rezk [19]. The fibrations of this model structure are known
as the so-called isofibrations.

(iv) If V is the category of small categories, then V–Cat is the category of small 2-categories. Lack
[13] has shown that if V is equipped with the model structure of (iii), then the canonical model
structure onV–Cat exists. In fact, it is a monoidal model category under the Gray tensor product.

(v) Let V be the category of small 2-categories with the Gray tensor product. In this case,
V-categories are a special kind of 3-categories often referred to as Gray-categories (or semi-
strict 3-categories). Lack showed in [14] that, again, if V is equipped with the model structure
of (iv), then the canonical model structure on V–Cat exists. A suitable ‘higher’ Gray tensor
product on Gray-categories (which would allow one further iteration) is however not known.

(vi) Let V be the category of chain complexes of modules over a commutative ring R, equipped
with the projective model structure. Tabuada [23] has shown that the category V–Cat of
dg-categories over R admits a canonical model structure.

(vii) Let V be the category of symmetric spectra, equipped either with the levelwise projective or
with the stable projective model structure. Tabuada [24] shows that also in these cases, V–Cat
admits a canonical model structure.

The following result of a more general nature is due to Lurie; see Proposition A.3.2.4 and
Theorem A.3.2.24 in the Appendix A of [15]. For a discussion of the notion of Dwyer–Kan equiv-
alence and of Lurie’s invertibility axiom [15, A.3.2.12], we refer the reader to Definition 2.17 and
Remark 2.19.

Theorem 1.9 Let V be a combinatorial monoidal model category such that

(i) the class of weak equivalences is closed under filtered colimits;
(ii) every monomorphism is a cofibration;

(iii) the invertibility axiom holds.

Then the canonical model structure on V–Cat exists and is left proper. The weak equivalences are
precisely the Dwyer–Kan equivalences; the fibrations between fibrant objects are the local fibrations
which induce an isofibration on path components.

Note that by (i) V is compactly generated and by (ii) all objects of V are cofibrant so that V is
adequate and moreover left proper. The main purpose of this paper is to establish the following result,
which complements Lurie’s result in some sense.
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The notion of a generating set of V-intervals will be introduced in Definition 1.11. Note that in
many concrete cases the existence of a generating set of V-intervals is automatic; see Lemma 1.12
and Corollary 1.13.

Theorem 1.10 Let V be an adequate monoidal model category such that

(i) the monoidal unit is cofibrant;
(ii) the underlying model structure is right proper;

(iii) there exists a generating set of V-intervals.

Then the canonical model structure on V–Cat exists and is right proper. The weak equivalences
are precisely the Dwyer–Kan equivalences; the fibrations are the local fibrations which have the
path-lifting property with respect to V-intervals.

Proof . The existence of the canonical model structure is Theorem 2.5. The identification of the class
of weak equivalences follows from Propositions 2.20 and 2.24. �

The category of simplicial sets fulfils the hypotheses of both theorems so that Bergner’s result [5]
can be considered as a special instance of both theorems.

Let I be the V-category on {0, 1} representing a single isomorphism: thus, I(0, 0) = I(0, 1) =
I(1, 1) = I(1, 0) = IV , the unit of V .

Definition 1.11 A V-interval is a cofibrant object in the transferred model structure on V–Cat{0,1},
weakly equivalent to the V-category I.

A set G of V-intervals is generating if each V-interval H is a retract of a trivial extension K of a
V-interval G in G, i.e. if there exists a diagram in V–Cat{0,1},

G >
∼
j

> K
r

>
<

i
H,

in which G belongs to G, j is a trivial cofibration and ri = idH.

We emphasize that conditions (i) and (ii) in our theorem are essential, but (iii) is a relatively
innocent condition of a set-theoretical nature. For instance, we have the following lemma.

Lemma 1.12 For every combinatorial monoidal model category V there exists a generating set of
V-intervals.

Proof . Since V is combinatorial, the overcategory V–Cat{0,1}/If (where If denotes a fibrant replace-
ment of I) is combinatorial, and hence has an accessible class of weak equivalences; cf. Rosicky [20]
and Raptis [18]. This implies that the class of cofibrant objects in V–Cat{0,1} equipped with a weak
equivalence to If is accessible, i.e. there exists a set G of V-intervals such that, for any V-interval H,
there is an object G in G and a map (necessarily a weak equivalence) G → H. According to Brown’s
Lemma the latter factors as a trivial cofibration j : G → K followed by a retraction r : K → H of a
trivial cofibration i : H → K. This just expresses that G is a generating set of V-intervals. �

In concrete examples, it is often possible to describe a generating set of V-intervals directly. If V is
the category of simplicial sets, the class of V-intervals with countably many simplices is generating



ON THE HOMOTOPY THEORY OF ENRICHED CATEGORIES 811

(cf. Bergner [5, Lemmas 4.2 and 4.3]) and is essentially small. We also remark that if every object
in V is fibrant (which is the case in Example 1.8(ii), (iii), (iv), (v) and (vi)), any single V-interval
is already generating; cf. Lemma 2.1. Since in the latter case V is also right proper, we obtain the
following corollary.

Corollary 1.13 If V is an adequate monoidal model category with cofibrant unit, in which every
object is fibrant, then the canonical model structure on V–Cat exists.

In those cases where Corollary 1.13 applies, the fibrations of the canonical model structure can
be characterized in a concise way, since the W -construction of [3, 4] provides an explicit gener-
ating V-interval W I for V–Cat{0,1}. The latter represents coherent homotopy equivalences (cf.
Definition 2.6) so that the fibrations of the canonical model structure are those local fibrations that
are path-lifting with respect to these coherent homotopy equivalences. This characterization is known
for the fibrations of Example 1.8(iii)–(v) (cf. Lack [13, 14]) but seems to be new for the fibrations of
topologically enriched (resp. dg)-categories; cf. 1.8(ii) and (vi).

An adjunction between symmetric monoidal categories is called monoidal if the left and right
adjoints are symmetric monoidal functors, and if the unit and counit of the adjunction are monoidal
transformations. A monoidal adjunction V � V ′ induces a family of adjunctions V–CatS � V ′–CatS
(varying naturally in S) and therefore a ‘global’adjunction V–Cat � V ′–Cat. If V and V ′ are monoidal
model categories with cofibrant unit and V → V ′ is a left Quillen functor that preserves the monoidal
unit, then the induced functor V–Cat{0,1} → V ′–Cat{0,1} takes V-intervals to V ′-intervals. Hence,
the global right adjoint V ′–Cat → V–Cat preserves the (trivial) fibrations of the canonical model
structures, and we obtain the following corollary.

Corollary 1.14 Consider a monoidal Quillen adjunction V � V ′ between monoidal model cate-
gories satisfying the hypotheses of Theorem 1.10 and such that the left adjoint preserves the monoidal
unit. Then the induced adjunction V–Cat � V ′–Cat is again a Quillen adjunction with respect to the
canonical model structures.

It is not difficult to check that the induced Quillen adjunction V–Cat � V ′–Cat is a Quillen
equivalence whenever the given Quillen adjunction V � V ′ is. In particular, Example 1.8(i) and (ii)
are related by a canonical Quillen equivalence.

The proof of Theorem 1.10 relies heavily on the following property of cofibrant V-categories on
two objects:

Theorem 1.15 (Interval Cofibrancy Theorem) Let V be an adequate monoidal model category with
cofibrant unit and let H be a cofibrant V-category on {0, 1}. Then

(i) the endomorphism monoids H(0, 0) and H(1, 1) are cofibrant monoids;
(ii) H(0, 1) is cofibrant as a left H(1, 1)-module and as a right H(0, 0)-module;

(iii) H(1, 0) is cofibrant as a left H(0, 0)-module and as a right H(1, 1)-module.

The proof (or at least, our proof) of this theorem is technically involved, and will occupy the entire
Section 3.6. If V is the category of simplicial sets, part (i) goes back to Dwyer–Kan [8] and has been
used by Bergner [5] in her proof of the canonical model structure on simplicially enriched categories.

Given two V-intervals H and K, one can amalgamate them by taking first the pushout in V–Cat
given by identifying the object 1 in H with the object 0 of K, and then restricting back to V–Cat{0,1}
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where the new objects 0, 1 are the ‘outer’objects 0 of H and 1 of K. The Interval Cofibrancy Theorem
implies the following fact concerning the amalgamation of intervals, to be proved in Section 3.10.

Lemma 1.16 (Interval Amalgamation Lemma) Let H and K be two V-intervals. Then any cofibrant
replacement (in V–Cat{0,1}) of their amalgamation H ∗ K is again a V-interval.

2. The model structure on V-categories

We establish in this section the existence of a canonical model structure on V–Cat, provided V is a
right proper, adequate monoidal model category with cofibrant unit and generating set of V-intervals.
Our proof uses the Interval Cofibrancy Theorem 1.15 and the Interval Amalgamation Lemma 1.16,
which will be established in Section 3. We also prove that the weak equivalences of the canonical
model structure coincide with the Dwyer–Kan equivalences. We first show in Proposition 2.20 that
this identification is quite obvious if a so-called coherence axiom holds. We then show in Proposi-
tion 2.24 that any adequate monoidal model category with cofibrant unit satisfies the coherence axiom.
Our proof mimicks Boardman and Vogt’s proof of the coherence axiom for enrichment in compactly
generated topological spaces; cf. [6, Lemma 4.16]. It is worthwhile noting that the coherence axiom
is an immediate consequence of Lurie’s invertibility axiom; cf. Remark 2.19.

Recall from the previous section that IV denotes the unit of the monoidal model category V ,
and that I denotes the V-category on the object set {0, 1} such that I(0, 0) = I(0, 1) = I(1, 0) =
I(1, 1) = IV with composition maps given by the canonical isomorphism IV ⊗V IV ∼= IV . Let If be
a fibrant replacement of I in V–Cat{0,1}. Then, according to Definition 1.11, a V-interval is a cofibrant

V-category H on {0, 1} which comes equipped with a weak equivalence H
∼−→ If in V–Cat{0,1}.

As usual, different choices of a fibrant replacement If of I lead to the same notion of V-interval.
Therefore, we can fix once and for all our preferred choice of If . If the unit IV of V is fibrant in V ,
then I is fibrant in V–Cat{0,1} so that we can put If = I.

Lemma 2.1 If all objects of V are fibrant, then any single V-interval is generating.

Proof . Since all objects of V are fibrant, a V-interval G consists of a factorization of the canonical
inclusion {0, 1} → I into a cofibration {0, 1} � G followed by a weak equivalence G

∼−→ I. We
take any such G as generating V-interval.

We shall now realize an arbitrary V-interval H as a retract of a trivial extension of G; cf.
Definition 1.11. Indeed, factor the weak equivalence G

∼−→ I into a trivial cofibration G
∼� G̃ fol-

lowed by a trivial fibration G̃
∼� I. Then, by the cofibrancy of H there is a lift H → G̃. Factor this

weak equivalence between cofibrant objects of V − Cat{0,1} (according to Brown’s Lemma) into a

trivial cofibration j : H → K followed by a retraction K → G̃ of a trivial cofibration G̃
∼� K. This

yields the trivial extension G
∼� G̃

∼� K while j : H → K admits a retraction r : K → H, since H

is fibrant and j a trivial cofibration. �
2.2. Fibrations and weak equivalences in V–Cat.

A V-functor F : A → B is said to be

(1) path-lifting if it has the right lifting property with respect to {i} → H, i = 0, 1, for any
V-interval H;
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(2) essentially surjective if, for any object b : {1} → B, there is an object a : {0} → A and a
V-interval H together with a commutative diagram

{0} a � A

����
H

���� ����
{1}

b
� B

F

�

in V–Cat;
(3) a fibration if it is a path-lifting local fibration;
(4) a weak equivalence if it is an essentially surjective local weak equivalence.

As usual, a trivial fibration is defined to be a V-functor which is both a fibration and a weak
equivalence. A local trivial fibration is defined to be a V-functor which is both a local fibration
and a local weak equivalence. A V-category is (locally) fibrant if the unique functor to the terminal
V-category is a (local) fibration.

Lemma 2.3 A locally fibrant V-category is fibrant.

Proof . We have to show that a local fibration with values in a terminal V-category is automatically
path-lifting; or, what amounts to the same, that any object map a : {0} → A for a locally fibrant
V-category A extends to any V-interval H. It is obvious that a extends to a V-functor ā : I → A such
that ā(0) = ā(1) = a(0). Since A is fibrant in V–Cat{0,1}, ā extends to a fibrant replacement If of I.
It suffices now to precompose this extension with the given weak equivalence H → If . �

Lemma 2.4 A V-functor is a trivial fibration if and only if it is a local trivial fibration which is
surjective on objects.

Proof . The implication from left to right follows from the observation that a path-lifting and essen-
tially surjective V-functor is surjective on objects. For the implication from right to left we have
to show that a local trivial fibration, which is surjective on objects, is essentially surjective and
path-lifting.

The essential surjectivity follows by constructing a diagram as in Definition 2.2 with H replaced by
I, and precomposing it with a cofibrant replacement of I in V–Cat{0,1}. For the path-lifting property,
given a map b : H → B and an object in A over b(0), we first use the surjectivity of the V-functor
A → B to also find an object over b(1), and then use the left lifting property of the cofibration
{0, 1} → H with respect to A → B (cf. Remark 1.7) to obtain the required lift H → A. �

In view of the preceding two lemmas, the first part of Theorem 1.10 can now be stated more
explicitly as follows:

Theorem 2.5 Let V be a right proper, adequate monoidal model category with cofibrant unit and
a generating set of V-intervals. Then V–Cat is a cofibrantly generated model category in which the
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weak equivalences are the essentially surjective local weak equivalences and the fibrations are the
path-lifting local fibrations.

Before embarking on the proof in Section 2.16, we establish some lemmas.

Definition 2.6 Two objects a0, a1 of a V-category A are equivalent if there exists a V-interval H

and a V-functor γ : H → A such that γ (0) = a0 and γ (1) = a1.
They are virtually equivalent if they become V-equivalent in some fibrant replacement Af of A

in V–CatOb(A).
They are homotopy equivalent if there exist maps α : IV → Af (a0, a1) and β : IV → Af (a1, a0)

such that βα : IV → Af (a0, a0) (resp. αβ : IV → Af (a1, a1)) is homotopic to the arrow IV →
Af (a0, a0) (resp. IV → Af (a1, a1)) given by the identity of a0 (resp. a1).

Remark 2.7 Note that virtual (resp. homotopy) equivalence of objects in A does not depend on
the choice of the fibrant replacement Af of A in V–CatOb(A). Note also that any V-functor A → B

takes (virtually, resp. homotopy) equivalent objects of A to (virtually, resp. homotopy) equivalent
objects in B.

Given a V-category A, one can define an ordinary category π0(A) having the same objects as A,
and with morphism sets defined by

π0(A)(x, y) = Ho(V)(IV , A(x, y)) = [IV , Af (x, y)],
(the latter identification with sets of homotopy classes uses the assumption that the unit of V is
cofibrant). Then x and y are homotopy equivalent in A if and only if they become isomorphic in π0(A).

Lemma 2.8 For any V-category A, equivalence and virtual equivalence are equivalence relations
on the object set of A.

Proof . Symmetry is obvious. For the reflexivity, observe that, for any object a0 of A, there is a
canonical map I → A witnessing that the identity of a0 is an isomorphism; precomposing this map
with a cofibrant replacement Ic → I in V–Cat{0,1} yields the required self-equivalence of a0. The
non-trivial part of the proof concerns transitivity which follows from the Interval Amalgamation
Lemma 1.16. �

Lemma 2.9 A local weak equivalence F : A → B reflects virtual equivalence of objects, i.e. if Fa0

and Fa1 are virtually equivalent in B, then a0 and a1 are virtually equivalent in A.

Proof . Choose first a fibrant replacement iB : B
∼−→ Bf in V–CatOb(B). Next pull back iB along

F : Ob(A) → Ob(B) to get the following diagram:

A
iA � Af

F ∗(B)

α
�

F ∗(iB)� F ∗(Bf )

α′
�

B

β
�

iB
� Bf

β ′
�
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in which the broken arrows are defined by factoring F ∗(iB)α : A → F ∗(Bf ) into a weak equivalence
followed by a fibration in V–CatOb(A). By construction, iA, α and F ∗(iB) are local weak equivalences,
hence so is α′. Since β and β ′ induce isomorphisms on hom-objects, this implies that β ′α′ : Af → Bf

is a local trivial fibration. Therefore, any virtual equivalence γ : H → Bf between Fa0 and Fa1 can
be lifted to a virtual equivalence γ̃ : H → Af between a0 and a1. �

Lemma 2.10 If V is right proper, then, for any V-category A, virtually equivalent objects of A are
equivalent.

Proof . We can assume that a0, a1 are distinct objects of A, virtually equivalent through γ : H → Af

for some fibrant replacement Af of A in V–CatOb(A). Pulling back iA : A
∼−→ Af along the object

set inclusion a : {a0, a1} → Ob(A), we get the following diagram in V–Cat{0,1}:

Lc

∼� L �� a∗
A

H
∼
α
� K

∼
�

β
�� a∗

Af

a∗iA
�

in which βα is obtained by factoring γ : H → a∗Af into a trivial cofibration followed by a fibration,
L is obtained by pullback and Lc is a cofibrant replacement of L. Since α : H → K is a trivial
cofibration, the weak equivalence H

∼→ If extends to K; since V (and hence V–Cat{0,1}) is right
proper, the vertical arrow L → K is a weak equivalence; therefore, Lc is a V-interval inducing the
required equivalence between a0 and a1. �

Lemma 2.11 In any V-category A, virtually equivalent objects are homotopy equivalent.

Proof . For any virtually equivalent objects x, y of A there exists a fibrant replacement Af of A and
a V-interval H together with a V-functor a : H → Af representing a path from x to y in Af . By
definition of a V-interval, H maps to a fibrant replacement If of I by a weak equivalence. Factor this

weak equivalence into a trivial cofibration H
∼� H′ followed by a trivial fibration H′ ∼� If , and then

extend a to a′ : H′ → Af because Af is fibrant.
Next, consider the V-category J on {0, 1} representing a single directed arrow, i.e. J(0, 0) =

J(0, 1) = J(1, 1) = IV (the monoidal unit of V), but J(1, 0) = ∅V (an initial object of V) with evident
composition law. The object-set inclusion {0, 1} → If then factors through J → I so that we get the
following commutative diagram in V–Cat{0,1}:

{0, 1} � H
′ a′

� Af

..
..

..
.

�

J

�
� If

∼��

in which the lift u : J → H′ exists since {0, 1} → J is a cofibration in V–Cat{0,1}. We therefore obtain
a V-functor a′u : J → Af , hence an arrow α : IV → Af (x, y). Interchanging the roles of 0 and 1,
we obtain an arrow β : IV → Af (y, x). By construction, the composite arrow βα : IV → Af (x, x)
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(resp. αβ : IV → Af (y, y)) factors through H′(0, 0) (resp. H′(1, 1)) and is thus homotopic to the
arrow given by the identity of x (resp. y). �

Lemma 2.12 Let a0, a1 (resp. b0, b1) be homotopy equivalent objects in a V-category A. Then
the hom-objects A(a0, b0) and A(a1, b1) are related by a zigzag of weak equivalences in V . More-
over, any V-functor F : A → B induces a functorially related zigzag of weak equivalences between
B(Fa0, Fb0) and B(Fa1, Fb1).

Proof . By definition, there exists a fibrant replacement Af of A, as well as arrows α : IV →
Af (a0, a1) and β : IV → Af (a1, a0) (resp. α′ : IV → Af (b0, b1) and β ′ : IV → Af (b1, b0)) which
are ‘mutually homotopy inverse’. It then follows that β∗(α′)∗ : Af (a0, b0) → Af (a1, b1) and
α∗(β ′)∗ : Af (a1, b1) → Af (a0, b0) are mutually inverse isomorphisms in the homotopy category
Ho(V). The well-known saturation property of the class of weak equivalences of a Quillen model
category then implies that β∗(α′)∗ and α∗(β ′)∗ are weak equivalences in V . The zigzag of weak equiv-
alences between A(a0, b0) and A(a1, b1) is obtained by concatenating with the weak equivalences
A(a0, b0)

∼−→ Af (a0, b0) and A(a1, b1)
∼−→ Af (a1, b1).

Any V-functor F : A → B extends to a commutative square

A
∼� Af

B

F
� ∼� Bf

Ff
�

in which Af (resp. Bf ) is a fibrant replacement of A (resp. B), and Ff is a local fibration; cf. the
proof of Lemma 2.9. Application of the V-functor Ff takes an arrow IV → Af (x, y) to an arrow
IV → Bf (Fx, Fy), and preserves ‘connected components’. The existence of a functorially related
zigzag of weak equivalences between B(Fa0, Fb0) and B(Fa1, Fb1) then follows easily. �

Proposition 2.13 If V is right proper, the class of weak equivalences of V-categories satisfies the
2-out-of-3 property.

Proof . Let F : A → B and G : B → C be V-functors.
(i) Assume that F and G are weak equivalences. It is then immediate that GF is a local weak

equivalence; moreover, GF is essentially surjective by Lemma 2.8, hence GF is a weak equivalence.
(ii) Assume that F and GF are weak equivalences. It is then immediate that G is essentially

surjective. In order to prove that G is a local weak equivalence, choose objects b0, b1 in B and
objects a0, a1 in A such that Fai is equivalent to bi for i = 0, 1. By Lemmas 2.11 and 2.12, the
hom-objects B(F (a0), F (a1)) and B(b0, b1) are canonically weakly equivalent in V , as are the hom-
objects C(GF(a0), GF(a1)) and C(G(b0), G(b1)). We therefore get the following commutative
diagram in V:

A(a0, a1)
Fa0,a1� B(F (a0), F (a1))

∼
B(b0, b1)

(GF)a0,a1
����

C(GF(a0), GF(a1))

GF(a0),F (a1)
� ∼

C(G(b1), G(b2))

Gb1,b2
�
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where the undirected horizontal lines stand for (functorial) zigzags of weak equivalences. By assump-
tion on F and GF , Fa0,a1 and (GF)a0,a1 are weak equivalences. Hence, so are GF(a0),F (a1) and Gb1,b2 ,
which shows that G is a local weak equivalence.

(iii) Assume that G and GF are weak equivalences. It is then immediate that F is a local weak
equivalence. Since V is right proper, Lemmas 2.9 and 2.10 imply that G reflects equivalence of
objects. It follows then from the essential surjectivity of GF that F is essentially surjective as well,
and hence a weak equivalence. �

Remark 2.14 It is unusual that the 2-out-of-3-property of the class of weak equivalences is not an
immediate consequence of its definition. Readers who feel uncomfortable with this can use, instead
of Proposition 2.13, the Propositions 2.20 and 2.24, which show (independently of the existence
of the model structure) that our weak equivalences coincide with the Dwyer–Kan equivalences (cf.
Definition 2.17). The latter class is easily seen to fulfil the 2-out-of-3-property.

There is, however, one important point for those who wish to take Dwyer–Kan equivalences as
weak equivalences from the very beginning. The innocent-looking Lemma 2.4 relies on a compatible
choice of the classes of weak equivalences and of fibrations.This was the raison d’être for our definition
of weak equivalences. If instead the Dwyer–Kan equivalences are chosen, then, in order to validate
Lemma 2.4, the fibrations should be defined as the local fibrations which induce an isofibration on
path components. The latter class is a priori different from our class of fibrations so that the existence
of a generating set of trivial cofibrations for them is non-obvious, and most naturally achieved by an
identification of the two classes of fibrations. This is the way all the authors of the cited Example 1.8
proceed. The identification of the two classes of fibrations also follows from our coherence axiom of
Definition 2.18, and hence ultimately from Proposition 2.24.

For the proof of Theorem 2.5, we need a last lemma concerning the cobase change of free co-
fibrations of V-categories. This technical lemma together with Lemma 1.3 will take care of ‘transfinite
compositions’. Recall from Section 1 that any map in the monoidal saturation of the class of cofibra-
tions of V is called a ⊗-cofibration. A V-functor F : A → B is called a local ⊗-cofibration (resp. a
free cofibration) if, for any objects x, y in A, the induced map A(x, y) → B(Fx, Fy) is a
⊗-cofibration in V (resp. if F is freely generated by a cofibration of V-graphs; cf. Section 3.3e).

Lemma 2.15 For any adequate monoidal model category V, pushouts in V–Cat along a V-functor
φ : A → A′ which is injective on objects

A
φ� A

′

B

F
�

ψ
� B

′
F ′
�

have the following property: If F is a free cofibration that is bijective on objects, then F ′ is a local
⊗-cofibration that is bijective on objects.

Proof . The pushout decomposes into two pushouts by decomposing φ : A → A′ into a V-functor
A → φ!A (where φ also denotes the object mapping ObA → ObB) followed by a V-functor
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φ!A → A′ which is bijective on objects:

A � φ!A � A
′

B

F
�

� ψ!B

F ′′
�

� B
′
F ′
�

Since F is a free cofibration that is bijective on objects, it follows that F ′′ as well is a free cofibration
that is bijective on objects. Therefore, the right-hand side pushout can be considered as a pushout in
V-categories with a fixed object set. As such, this pushout can be described as a sequential colimit in
the category of V-graphs with fixed object set. According to the Rezk and Schwede–Shipley formula
for free extensions (cf. Section 3.3e) this sequential colimit takes the free cofibration F ′′ to a local
⊗-cofibration F ′. �

2.16. Proof of Theorem 2.5

We shall check the usual axioms CM1–CM5, where the cofibrations are defined by the left lifting
property with respect to trivial fibrations.

By definition, the class of local trivial fibrations is characterized by the right lifting property with
respect to

Iloc = {Ji,j [X] → Ji,j [Y ] | X → Y a generating cofibration in V, i, j ∈ {0, 1}},

where the functor J0,1[−] : V → V–Cat{0,1} associates to an object X of V the V-category on {0, 1}
with J0,1[X](0, 0) = J0,1[X](1, 1) = IV , J0,1[X](0, 1) = X and J0,1[X](1, 0) = ∅V with the canon-
ical composition maps. For the definition of Ji,j [X] for general i, j , see Section 3.3e. Therefore,
Lemma 2.4 implies that a generating set of cofibrations is given by adjoining to Iloc the inclusion of the
initial (empty) V-category into the unit V-category (having a single object with IV as endomorphism
monoid).

Similarly, the class of local fibrations is characterized by the right lifting property with respect to

Jloc = {Ji,j [X] → Ji,j [Y ] | X → Y a generating trivial cofibration in V, i, j ∈ {0, 1}}.

Therefore, the definition of a fibration implies that a generating set of trivial cofibrations is given
by adjoining to Jloc the set of inclusions {0} → G, where G runs through a generating set G of
V-intervals.

Axiom CM1 concerning the existence of limits/colimits is clear; axiom CM2 about the class of
weak equivalences is Proposition 2.13. Axiom CM3 asks the classes of cofibrations, weak equiva-
lences and fibrations to be closed under retracts. This holds for weak equivalences since essential
surjectivity is closed under retracts. It holds for cofibrations and fibrations since both classes are
definable by a lifting property. For the factorization axioms CM4 we use Quillen’s small object
argument.

Observe first that it follows essentially from Lemma 2.15 and the explicit description of the gen-
erating cofibrations of V–Cat that their saturation (under cobase change and transfinite composition)
belongs to the class of local ⊗-cofibrations. (Lemma 2.15 treats the case of an attachment which
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is injective on objects: the general case reduces to this one by means of the free monoid functor
and Section 3.3c). An adjunction argument and the ⊗-smallness of the objects in V then imply that
those V-categories, which are free on small V-graphs, are small with respect to the saturation of the
generating cofibrations of V–Cat. Therefore, Quillen’s small object argument is indeed available and
yields the existence of cofibration/trivial fibration factorizations. Observe also that since we required
the class of ⊗-cofibrations in V to be closed under retract, each cofibration of V-categories is a local
⊗-cofibration.

For the existence of trivial cofibration/fibration factorizations we furthermore have to show that the
saturation of the set of generating trivial cofibrations is contained in the class of weak equivalences.
Since the forgetful functor from V-categories to V-graphs preserves filtered colimits, Lemma 1.3
implies that local weak equivalences which are local ⊗-cofibrations are closed under transfinite
composition. Moreover, essential surjectivity is also closed under transfinite composition. Therefore,
it suffices to show that the following two cobase changes in V–Cat yield V-functors which are both
local weak equivalences and local ⊗-cofibrations:

Ji,j [X] � A {0} � A

Ji,j [Y ]
∼

�
� B

�
G

∼
�

� B

�

For the left-hand side cobase change, this follows from Lemma 2.15 and from the existence of a
transferred model structure on V–CatOb(A) because A → B can also be constructed as a pushout in
V–CatOb(A). For the right-hand side cobase change, we consider the following decomposition into
two pushouts:

{0} � A

G0,0

φ
�

� A
′
φ′
�

G

ψ
�

� B

ψ ′
�

in which G0,0 denotes a V-category with a single object having G(0, 0) as the endomorphism monoid.
The V-functor ψ induces isomorphisms on hom-objects and is injective on objects; therefore (by the
known purely algebraic properties of pushouts in V–Cat), the V-functor ψ ′ also induces isomorphisms
on hom-objects and is injective on objects, so certainly a local ⊗-cofibration. Since ψ ′ is essentially
surjective by construction, it is a local weak equivalence as well. It remains to be shown that φ′ has the
same properties. Since φ is bijective on objects, φ′ can be constructed as a pushout in V–CatOb(A), via

{0} x� Ob(A) � A

G0,0

φ
�

� x!G0,0

�
� A

′
φ′
�
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The Interval Cofibrancy Theorem 1.15 implies that G(0, 0) is a weakly contractible, cofibrant monoid,
so that the middle vertical arrow is a trivial cofibration in V–CatOb(A). It follows that φ′ is a trivial
cofibration in V–CatOb(A), and hence a local weak equivalence and a local ⊗-cofibration, as required.

Finally, the first half of lifting axiom CM5 follows from the definition of cofibrations.A well-known
retract argument yields the second half of axiom CM5. �

The rest of this section is devoted to the identification of the weak equivalences of the canonical
model structure with the so-called Dwyer–Kan equivalences, often used in the literature; see [5, 9,
13, 14, 23, 24]. This identification establishes the second part of Theorem 1.10.

Definition 2.17 A functor A → B between V-categories is called a Dwyer–Kan equivalence if it
is a local weak equivalence with the property that the induced functor π0(f ) : π0(A) → π0(B) is an
equivalence of categories (cf. Remark 2.7 for notation).

Note that by Lemma 2.11, each weak equivalence in the sense of Theorem 2.5 is a Dwyer–Kan
equivalence. The converse implication, however, is less obvious and amounts roughly to the property
that any homotopy equivalence is coherent in the sense of Boardman and Vogt [6, 25]. This is a highly
non-trivial property and probably one of the reasons for Lurie’s invertibility axiom; cf. Remark 2.19.

Recall that maps (resp. isomorphisms) in a V-category are represented by V-functors out of the
category J (resp. I) in V–Cat{0,1} where J(i, j) = IV if i ≤ j and J(1, 0) = ∅V (resp. I(i, j) = IV
for all i, j ). A cofibration J � H into a V-interval H is called natural if it fits into a commutative
diagram of the form

J � I

H

� ∼� If

∼
�

where J → I is the obvious inclusion and If is a fibrant replacement of I.

Definition 2.18 A homotopy equivalence between two objects of a V-category A is called coherent
if the representing V-functor α : J → Af (cf. Lemma 2.11) extends along a natural cofibration into
a V-interval H, as in

J � Af

..
..

..
.

�

H

�

A monoidal model category V is said to satisfy the coherence axiom if every homotopy equivalence
in any V-category is coherent.

Remark 2.19 The invertibility axiom of Lurie can be reformulated as follows (cf. [15, A.3.2.14]):
for any homotopy equivalence α : J → Af and any natural cofibration J � H into a V-interval H,
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the right vertical map in the pushout

J
α � Af

H

�
� Af {α−1}

�

is a weak equivalence. In other words: inverting a homotopy equivalence in a homotopy invariant
way does not change the homotopy type. Lurie’s invertibility axiom in fact implies our coherence
axiom. Indeed, since J � H is a cofibration, its pushout Af → Af {α−1} is actually a trivial cofi-
bration that has a retraction Af {α−1} → Af because Af is fibrant. The existence of the composite
V-functor H → Af {α−1} → Af then shows that the homotopy equivalence α is coherent.

Proposition 2.20 Let V be a monoidal model category that is right proper and satisfies the co-
herence axiom. Then the class of essentially surjective local weak equivalences coincides with the
class of Dwyer–Kan equivalences.

Proof . Dwyer–Kan equivalences are local weak equivalences which on objects are surjective up to
homotopy equivalence. Our notion of essential surjectivity means surjective up to equivalence. In gen-
eral, equivalence implies virtual equivalence, and virtual equivalence implies homotopy equivalence
(cf. Lemma 2.11). If the coherence axiom holds, then homotopy equivalence implies virtual equiva-
lence; moreover, under right properness, virtual equivalence implies equivalence (cf. Lemma 2.10).
Therefore (under the coherence axiom and right properness) the two notions of essential surjectivity
coincide. �

In [6, Lemma 4.16], Boardman and Vogt prove that homotopy equivalences in topological cate-
gories are coherent. For their proof they use a particular topological category on two objects, namely
what we called elsewhere [3, 4] the Boardman–Vogt W -resolution of the category I representing
isomorphisms (throughout categories are considered as coloured non-symmetric operads with unary
operations only). It was shown in [3, 4] that a general Boardman–Vogt W -resolution for V-categories
exists provided V possesses a suitable interval. We will see in Lemma 2.23 that any adequate monoidal
model category V has such an interval H , so that the associated W -resolution W(H, I) of I is
a V-interval parametrizing coherent homotopy equivalences in V-categories. Boardman and Vogt’s
proof of the coherence axiom for topological categories now applies mutatis mutandis to V-categories.
The following two lemmas of a general homotopical flavour are preparatory.

Lemma 2.21 (Vogt [26]) A map w : X → Y between fibrant objects of a model category V is a
weak equivalence if and only if, for any cofibration between cofibrant objects γ : A → B and any
commutative square of unbroken arrows

A � X

φ
...

...
..�


B

γ
�

� Y

w
�

there exists a diagonal filler φ : B → X which makes the upper triangle commute and the lower
triangle commute up to homotopy.
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Proof . Assume first that w is a weak equivalence. According to Brown’s Lemma, w factors then as
a section i : X → X′ of a trivial fibration r : X′ → X followed by a trivial fibration p : X′ → Y .
Since γ is a cofibration, there is a filler ψ : B → X′. Composing the latter with r : X′ → X yields the
required filler φ : B → X making the upper triangle commute. By definition, we have wφ = wrψ =
pirψ , and it remains to be shown that this map is homotopic to pψ . It suffices thus to show that ψ and
irψ are homotopic. This holds since both maps get equal when composed with r , and composition
with a trivial fibration induces an injection [B, r] : [B, X′] → [B, X] on homotopy classes.

Assume conversely that w has the aforementioned lifting property and choose A → X (resp.
B → Y ) to be a cofibrant replacement of X (resp. Y ). Passing to the homotopy category Ho(V) shows
then that the homotopy class [φ] ∈ [B, X] is both surjective and injective, hence bijective. Therefore,
the homotopy class [w] ∈ [X, Y ] is bijective as well, so that w : X → Y is a weak equivalence. �

Lemma 2.22 Consider the following commutative diagram in V:

X

j
���� ����

w

A � A′ � Y

B

γ
�

δ
� B ′

γ ′
�

in which γ is a cofibration between cofibrant objects, γ ′ is a trivial cofibration between cofibrant
objects and w is a weak equivalence between fibrant objects. We assume moreover that the induced
map k : B ∪A A′ → B ′ is a cofibration too.

Then there exists a pair of liftings (	 : B → X, 
 : B ′ → Y ) which make the whole diagram
commute.

Proof . Since γ ′ is a trivial cofibration and Y is fibrant, there exists a lift 
̃ : B ′ → Y making the
diagram commute. Precomposing 
̃ with δ and invoking Lemma 2.21 yields a diagonal filler 	 :
B → X such that 	γ = j and such that w	 and 
̃δ are homotopic. The universal property of
pushouts yields a map B ∪A A′ → Y which is homotopic to 
̃k. The homotopy extension property
of the cofibration k permits one to replace 
̃ with a lifting 
 : B ′ → Y such that the composite map

k coincides with the given map B ∪A A′ → Y , whence 
δ = w	, as required. �

We are now ready to deduce the coherence axiom of Definition 2.18 from the existence of a suitable
W -resolution for V-categories. Recall from [3, Definition 4.1] that an interval H for a monoidal model
category V with cofibrant unit IV consists of a factorization of the folding map IV � IV −→ IV into
a cofibration followed by a weak equivalence

IV � IV
(0,1)� H

∼−→ IV ,

together with a monoid structure ∨ : H ⊗ H → H for which 0 : IV → H is neutral and 1 : IV → H

is absorbing. In set-theoretical notation, this means that 0 ∨ x = x = x ∨ 0 and 1 ∨ x = 1 = x ∨ 1.

Lemma 2.23 Any adequate monoidal model category V with cofibrant unit IV has an interval.
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Proof . Consider the following two adjoint pairs:

V
U2

� MonV
U1

� SegV ,

where MonV denotes the category of monoids in V and SegV the category of ‘segments’ (i.e. monoids
with absorbing element) in V . The right adjoint functors U1, U2 are the obvious forgetful functors. By
adequacy of V there are transferred model structures on monoids (resp. segments) so that both adjoint
pairs become Quillen pairs. Consider now the folding map IV � IV → IV as a map of segments and
factor it as a cofibration IV � IV � H followed by a weak equivalence H → IV in the transferred
model structure on segments.

The segment H would be an interval in V if the composite forgetful functor U2U1 took the
cofibration of segments IV � IV � H to a cofibration in V . Since IV � IV is a cofibrant segment,
it will be sufficient to show that U2U1 preserves cofibrations between cofibrant objects. For U2

this follows from the discussion in Section 3.3c. For U1 observe that U1 preserves pushouts and
transfinite compositions, and its left adjoint consists of adjoining an external absorbing element.
Thus, the forgetful functor U1 has the required property because the unit IV is assumed cofibrant. �

We showed in [3, Theorem 5.1] that, for any �-cofibrant symmetric operad P in a monoidal model
category V with cofibrant unit IV and interval H , there exists a canonical cofibrant replacement
W(H, P )

∼−→ P in the category of symmetric operads. As mentioned above, any V-category A can
be considered as a coloured non-symmetric operad in V with unary operations only. This point of
view is discussed in more detail in [4]. In particular, the same proof as for [3, 5.1] yields, for any
well-pointed V-category A in a monoidal model category V with cofibrant unit IV and interval H ,
a canonical cofibrant replacement W(H, A)

∼−→ A in the category of V-categories. Here, the term
well-pointed means that the reflexive V-graph underlying A is cofibrant in the category of reflexive
V-graphs; cf. Section 3.3e. Indeed, the analogue of [3, 5.1] for V-categories states in more precise
terms that the counit F∗(A) → A of the free-forgetful adjunction between reflexive V-graphs and
V-categories (with fixed object set) factors as a cofibration F∗(A) � W(H, A) followed by a weak
equivalence W(H, A)

∼−→ A.
For our purpose only the special case A = I is relevant. Observe that the reflexive V-graph under-

lying I is indeed cofibrant since the unit IV is cofibrant. In particular, the V-category W(H, I) is a
V-interval in the sense of Definition 1.11. Moreover, the inclusion J → I induces a cofibration of the
underlying reflexive V-graphs. Therefore, we get cofibrations of V-categories

J = F∗(J) � F∗(I) � W(H, I)

from which it follows that the composite map J � W(H, I) is a natural cofibration in the sense used
for the formulation of the coherence axiom of Definition 2.18.

Proposition 2.24 (cf. Lemma 4.16 of Boardman–Vogt [6]) Any adequate monoidal model cate-
gory V with cofibrant unit IV satisfies the coherence axiom.

Proof . Since, by Lemma 2.23, V possesses an interval H , it will be sufficient to show that any
homotopy equivalence α : J → Af extends along the natural cofibration J � W(H, I). For a given



824 C. BERGER AND I. MOERDIJK

interval H , the W -resolution W(H, I) of the V-category I is constructed as a sequential colimit of
reflexive V-graphs on the vertex set {0, 1}:

· · · � Wk(H, I) � Wk+1(H, I) � · · · ,

where, for each k ≥ 0, the reflexive V-graph Wk(H, I) is obtained from the reflexive V-graph
Wk−1(H, I) by attachment of two k-cubes H⊗k , one for each alternating string of length k + 1:

ε0
φ0� ε1

φ1� ε2
� · · · � εk

φk� εk+1,

where εi ∈ {0, 1} and εi �= εi+1 and φi stands for the ‘single’ element of either I(0, 1) or I(1, 0)

according to the value of (εi, εi+1). The vertex ε0 (resp. εk+1) is the domain (resp. codomain) of
the attached k-cube. The k-cube H⊗k itself can be considered as a family of ‘waiting times’ at the
k inner vertices of the corresponding string. The V-category structure on W(H, I) is induced by
concatenation of strings where waiting time 1 : IV → H is assigned to the vertex at which the two
strings are concatenated. It is therefore convenient to assign waiting time 1 : IV → H to the outer
vertices ε0 and εk+1.

The structure of Wk(H, I) is determined inductively, by saying that, for k = 0, the two objects
W0(H, I)(ε0, ε1) are the unit IV = H⊗0, while for k > 0, the two k-cubes are attached to Wk−1(H, I)

according to the following subdivided pushouts:

H⊗k
− � Wk−1(H, I)(ε0, εk+1)

H⊗k
±
�

� W+
k−1(H, I)(ε0, εk+1)

�

H⊗k

�
� Wk(H, I)(ε0, εk+1)

�

in which H⊗k
− denotes the union of the k faces of the k-cube H⊗k obtained by inserting 0 : IV → H

into each of the k tensor factors of H⊗k , while H⊗k
± denotes the whole boundary of the k-cube,

i.e. the union of the 2k faces obtained by inserting (0, 1) : IV � IV � H into each of the k tensor
factors of H⊗k . The attaching map H⊗k

− � H⊗k
− −→ Wk−1(H, I) is defined by eliminating for each

face the corresponding inner vertex from the string (this lowers the length of the string by 2), and
applying the monoid structure H ⊗ H → H to the ‘waiting times’ of the vertices surrounding the
eliminated vertex. This definition is consistent precisely because H is an interval in the sense of
[3, Definition 4.1].

Let us now consider a homotopy equivalence α : J → Af . The natural cofibration J � W(H, I)

identifies J(0, 1) with W0(H, I)(0, 1), so that α amounts to the arrow α0 : IV = W0(H, I)(0, 1) →
Af (x, y). Any arrow β0 : IV → Af (y, x) amounts to an extension of α to W0(H, I). A further
extension to W1(H, I) amounts to a pair (α1 : H → Af (x, x), β1 : H → Af (y, y)) of homotopies
relating the identity of x (resp. y) to the composite map β0α0 (resp. α0β0). Extending inductively α
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over Wk(H, I) amounts to the construction of ‘higher homotopies’{
(αk : H⊗k → Af (x, y), βk : H⊗k → Af (y, x)) if k is even,

(αk : H⊗k → Af (x, x), βk : H⊗k → Af (y, y)) if k is odd,

satisfying certain coherence relations.
We now describe the precise inductive procedure to extend α to the whole V-interval W(H, I). As

in the proof of [3, Lemma 5.4] we inductively construct maps of V-graphs Wk(H, I) → Af which are
compatible with the partial V-category structure of Wk(H, I); cf. [3, Definition 5.2]. More precisely,
the compatibility of Wk−1(H, I) → Af with the partial V-category structure of Wk−1(H, I) allows
a canonical extension along Wk−1(H, I) � W+

k−1(H, I). For the inductive step it then remains to be
shown that the induced maps{

H⊗k
± → Af (x, y), resp. H⊗k

± → Af (y, x) if k is even,

H⊗k
± → Af (x, x), resp. H⊗k

± → Af (y, y) if k is odd,

may be extended to the whole k-cube H⊗k , thus defining the higher homotopies αk (resp. βk) together
with the required extension along W+

k−1(H, I) � Wk(H, I). It turns out that in order to keep track
of the necessary coherence relations, it is best to construct the pair (αk, βk−1) in parallel, assuming
inductively that (αj , βj−1) have already been defined for j < k. We will treat the case of odd k

explicitly, and leave the similar case of even k to the reader.
We shall use Lemma 2.22 as well as a suitable decomposition of the boundary H⊗k

± of the k-cube
H⊗k . For odd k, the string corresponding to this k-cube has the following form:

0
φ� 1

ψ� 0 � · · · � 1
ψ� 0

where φ is taken to α0 : IV → Af (x, y) and ψ is taken to β0 : IV → Af (y, x). We shall denote by F

the face obtained by assigning waiting time 1 to the first inner vertex of the string. We shall denote by
L the union of the remaining 2k − 1 faces. F is a (k − 1)-cube H⊗(k−1). Its boundary ∂F = H

⊗(k−1)
±

embeds canonically into F and into L. We thus get the following commutative diagram in V:

Af (y, x)

j
���� ����

(α0)
∗

∂F � L
l� Af (x, x)

F

γ
�

δ
� H⊗k

γ ′
�

Since α : J → Af is a homotopy equivalence, precomposition with α0 acts as a weak equivalence. The
maps j and l are defined by induction hypothesis. Since H is an interval, γ is a cofibration between
cofibrant objects and γ ′ is a trivial cofibration between cofibrant objects. Moreover, (F ∪∂F L) =
H⊗k

± → H⊗k is a cofibration. We thus get, by Lemma 2.22, a pair of liftings

(βk−1 : F = H⊗(k−1) → Af (y, x), αk : H⊗k → Af (x, x))

as required for the inductive step. �
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3. Enriched categories with two objects

The goal of this section is to give complete proofs of the Interval Cofibrancy Theorem 1.15 and the
IntervalAmalgamation Lemma 1.16, which are essential ingredients for the canonical model structure
on V–Cat as we have seen.

3.1. Notation For any V-category H with object set {0, 1}, we write H(i, j) for the hom-object (in
V) of maps from i to j in H, and abbreviate H(i, i) to Hi . Moreover, we write

∂H1 = H(0, 1) ⊗H0 H(1, 0)

and
∂H0 = H(1, 0) ⊗H1 H(0, 1)

for the objects of decomposable endomorphisms. Here, we use that H(0, 1) has compatible right H0-
and left H1-actions, i.e. H(0, 1) is an H1-H0-bimodule. Symmetrically, H(1, 0) is an H0-H1-bimodule.
The tensors ⊗H0 and ⊗H1 are defined as usual by certain coequalizers involving the monoidal structure
of V . Composition in H induces maps ∂H1 → H1 and ∂H0 → H0.

Conversely, the structure of a V-category on {0, 1} can be recovered from the sixtuple
(H0, H1, H(0, 1), H(1, 0), ∂H1

c1→ H1, ∂H0
c0→ H0) consisting of two monoids H0, H1, an H1-H0-

bimodule H(0, 1), an H0-H1-bimodule H(1, 0), and two maps of bimodules c1 and c0 which satisfy
the following compatibility relations:

H(0, 1) ⊗H0 ∂H0

∼=� ∂H1 ⊗H1 H(0, 1) H(1, 0) ⊗H1 ∂H1

∼=� ∂H0 ⊗H0 H(1, 0)

H(0, 1) ⊗H0 H0

id ⊗ c0
�

∼=
� H1 ⊗H1 H(0, 1)

c1 ⊗ id
�

H(1, 0) ⊗H1 H1

id ⊗ c1
�

∼=
� H0 ⊗H0 H(1, 0)

c0 ⊗ id
�

The following slightly more elaborate version of Theorem 1.15 will be established by a transfinite
induction in which part (iii) plays an essential role.

Theorem 3.2 Assume that V is an adequate monoidal model category with cofibrant unit. Let H be
a cofibrant V-category in V–Cat{0,1}. Then

(i) H0 and H1 are cofibrant monoids;
(ii) H(0, 1) is cofibrant as a right H0-module and as a left H1-module;

H(1, 0) is cofibrant as a right H1-module and as a left H0-module;
(iii) the maps ∂H0 → H0 and ∂H1 → H1 are cofibrations between cofibrant objects in V .

Special cases of this theorem are known. For instance, if V is the category of simplicial sets, then (i)
was proved by Dwyer–Kan [8], and used by Bergner [5] in her proof of the canonical model structure
on simplicially enriched categories. It is natural to ask whether our methods extend, to prove a more
general theorem for V-categories on an arbitrary fixed object set S. We have not investigated this.

3.3. Some excellent Quillen pairs

We assume throughout that V is an adequate monoidal model category with cofibrant unit. As men-
tioned in the introduction, adequacy implies the existence of a transferred Quillen model structure on
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‘structured objects’ in V . Some instances of this are important for the proof of Theorem 3.2 and we
discuss them now. It turns out that the corresponding Quillen pairs (formed by the free and forgetful
functors) have the property that the right adjoint not only preserves and reflects weak equivalences
and fibrations (as in any transfer) but also preserves cofibrant objects. Any Quillen pair with such a
right adjoint will be called excellent. It follows immediately from this definition that excellent Quillen
pairs compose. Note that in establishing that the Quillen pairs below are excellent, it is essential that
the unit IV is cofibrant in V .

(a) Let R be a monoid in V and assume that R is well-pointed (i.e. the unit IV → R is a cofibration
in V). Then the categories RMod and ModR of left and right R-modules both admit a transferred
model structure and the forgetful functors are part of excellent Quillen pairs.

(b) For well-pointed monoids R and S, the category RModS of R–S-bimodules admits a transferred
model structure. The forgetful functor is again part of an excellent Quillen pair. This follows from
the previous example by considering the monoid R ⊗ Sop.

(c) The category MonV of monoids in V admits a transferred model structure and the free-forgetful
adjunction T : V � MonV : U is an excellent Quillen pair. The preservation of cofibrant objects and
cofibrations between cofibrant objects under the forgetful functor follows either from [2, Corollary
5.5] or, more directly, from the explicit construction of free monoid extensions as described by
Rezk and Schwede–Shipley [21]. We review their construction in some detail here since similar
constructions will be used repeatedly in the proof of Theorem 3.2.

Let R be a monoid in V and let u : Y0 → Y1 be a map in V equipped with a map Y0 → U(R). The
free monoid extension R[u] generated by u is defined by the following pushout in monoids:

T (Y0) � R

T (Y1)
�

� R[u]
�

in which the upper horizontal arrow is adjoint to the given Y0 → U(R). The crucial observation of
Rezk and Schwede–Shipley [21] is that this pushout in monoids can be realized as a sequential colimit
of pushouts in the category RModR of R-bimodules.

If FR : V → RModR denotes the free R-bimodule functor, then the construction goes as follows.
Let R[u](0) = R and define inductively R[u](n) by the following pushout in R-bimodules:

Y
(n)
− � R[u](n−1)

Y (n)

�
� R[u](n)

�

where

Y (n) =
n︷ ︸︸ ︷

FR(Y1) ⊗R · · · ⊗R FR(Y1) = R ⊗
n︷ ︸︸ ︷

Y1 ⊗ R ⊗ · · · ⊗ Y1 ⊗ R

and Y
(n)
− is the colimit of a diagram over a punctured n-cube {0, 1}n − {(1, . . . , 1)} in which the vertex

(i1, . . . , in) takes the value FR(Yi1) ⊗R · · · ⊗R FR(Yin) and the edge maps are induced by FR(u). The
map Y

(n)
− → Y (n) is the comparison map from the colimit of this diagram to the value at (1, . . . , 1) of



828 C. BERGER AND I. MOERDIJK

the extended diagram on the whole n-cube. The map Y
(n)
− → R[u](n−1) is defined inductively, using

the fact that the construction of R[u](n−1) involves n − 1 tensor factors FR(Y1) only.
Since the tensor − ⊗R − commutes with pushouts in both variables, there are canonical maps of

R-bimodules R[u](p) ⊗R R[u](q) → R[u](p+q). Since the tensor − ⊗R − commutes with countable
sequential colimits in both variables, these maps induce the structure of a monoid on the colimit
R[u] = limn R[u](n). It is straightforward to check that this monoid has indeed the required universal
property.

Now, any cofibrant monoid is constructed out of the initial monoid IV by transfinite composition
of free monoid extensions along T (u) where u is a generating cofibration in V , and taking retracts
thereof. Assuming inductively that R has an underlying cofibrant object (which we can, since IV is
cofibrant in V), the pushout-product axiom implies that Y (n)

− → Y (n), and hence R[u](n−1) → R[u](n)

are cofibrations in V . It follows that R → R[u] is a cofibration in V so that (by induction) any cofibrant
monoid has an underlying cofibrant object. Note that a similar argument shows that the forgetful
functor takes any cofibration between cofibrant monoids to a cofibration between cofibrant objects
in V .

(d) For a monoid R in V let AlgR be the category of monoids in V under R. This category inherits a
model structure as an undercategory of the preceding example. There is an obvious forgetful functor
UR : AlgR → RModR whose left adjoint TR : RModR → AlgR is given by

TR(N) =
∐
n≥0

n︷ ︸︸ ︷
N ⊗R · · · ⊗R N

and this adjoint pair is a Quillen pair. The model structure on AlgR coincides with the one obtained
by transfer along this adjoint pair from the transferred model structure on R-bimodules. As in the
preceding example, TR-free extensions in AlgR can be computed as sequential colimits of pushouts in
RModR . Note that (TR, UR) is an excellent Quillen pair if and only if R is cofibrant as an R-bimodule.

(e) Let S be a fixed set of objects. Then the category V–CatS of V-categories with fixed object set
S admits a transferred model structure with generating (trivial) cofibrations of the form

Js,t [X] → Js,t [Y ],

where X → Y is a generating (trivial) cofibration in V , and s, t ∈ S. The V-category Js,t [X] is
characterized by the universal property that maps Js,t [X] → A into any V-category A on S are
in bijective correspondence with maps X → A(s, t) in V . If s �= t , then Js,t [X] has X as hom-
object from s to t , and only identity arrows elsewhere; if s = t , Js,t [X] has the free monoid on
X as endo-hom-object of s and identity arrows elsewhere. For each s ∈ S there is a forgetful
functor

(−)s : V–CatS → MonV

mapping A to the endomorphism monoid As . For each pair s, t of elements of S, there is a forgetful
functor

(−)(s, t) : V–CatS → At
ModAs

mapping A to the At -As-bimodule A(s, t). Both functors are right Quillen functors.
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These right adjoints, when composed with the appropriate forgetful functors to V , preserve
cofibrant objects. More precisely, the adjoint pair

catS : V–GrphS � V–CatS : US

is an excellent Quillen pair, where a V-graph A on S is by definition a doubly indexed family
(A(s, t))(s,t)∈S2 of objects of V . The model structure on V–GrphS is the one induced from V through the
isomorphism V–GrphS

∼= VS2
. The forgetful functor US takes a V-category to the obvious underlying

V-graph. It is well known that this forgetful functor preserves filtered colimits, and that V-categories
on S can be identified with monoids in V–GrphS with respect to the following circle product:

(B ◦ A)(r, t) =
∐
s∈S

B(s, t) ⊗ A(r, s).

This circle product is not symmetric, but satisfies all formal properties needed to construct free
◦-monoid extensions as sequential colimits in V–GrphS , exactly like in the one object case treated in
Section 3.3c; cf. Schwede and Shipley [22, Section 6.2]. In particular, an induction on the construc-
tion of cofibrant objects in V–CatS shows that the forgetful functor US preserves cofibrant objects.
Theorem 3.2 considerably refines this preservation property of US in the case S = {0, 1}.

The following two lemmas are preparatory for the proof of Theorem 3.2.

Lemma 3.4 Let R be a well-pointed monoid in a monoidal model category V with cofibrant
unit, and let M (resp. N ) be a cofibrant right (resp. left) R-module. Then the functors M ⊗R − :
RMod → V and − ⊗R N : ModR → V are left Quillen functors. In particular, the object M ⊗R N

is cofibrant in V .

Proof . The second assertion follows from the first. For the first, note that the underlying objects of M

and N are cofibrant (cf. Section 3.3a) so that the right adjoints of M ⊗R − and of − ⊗R N preserve
fibrations and trivial fibrations by the adjoint form of the pushout-product axiom. �

Lemma 3.5 For any V-category H with object set {0, 1} and any morphism of monoids H0 → K0,

the following pushout in H1-bimodules

H(0, 1) ⊗H0 H0 ⊗H0 H(1, 0) � H1

H(0, 1) ⊗H0 K0 ⊗H0 H(1, 0)
�

� K1

�

endows K1 with a canonical structure of monoid under H1.

Proof . The unit of K1 is the composite IV → H1 → K1, the multiplication K1 ⊗H1 K1 → K1 is
induced by pasting together the left and right H1-module structures of H(0, 1) ⊗H0 K0 ⊗H0 H(1, 0),
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the monoid structure of H1 and the following map:

(H(0, 1) ⊗H0 K0 ⊗H0 H(1, 0)) ⊗H1 (H(1, 0) ⊗H0 K0 ⊗H0 H(0, 1))

H(0, 1) ⊗H0 K0 ⊗H0 ∂H0 ⊗H0 K0 ⊗H0 H(0, 1)

∼=
�

H(0, 1) ⊗H0 K0 ⊗H0 H0 ⊗H0 K0 ⊗H0 H(0, 1)
�

H(0, 1) ⊗H0 K0 ⊗H0 H(0, 1)
�

�

3.6. Proof of Theorem 3.2

As usual, the cofibrant objects of V–Cat{0,1} are built up from the initial object by taking (possibly
transfinite) compositions of pushouts along generating cofibrations, and retracts thereof. We will
prove the theorem by induction on the construction of H. We will be careful to establish the necessary
properties for transfinite composition in the inductive step.

Note that the initial V-category on {0, 1} has the properties stated in the theorem since the unit IV
is supposed to be cofibrant in V . Let us begin by checking that the properties stated in the theorem
are preserved under retract. If

i : H � K : r

makes H a retract of K, then the monoids H0 and H1 are retracts of the monoids K0 and K1. Moreover,
i and r give maps of monoids i0 : H0 � K0 : r0 and maps

α : H(0, 1) → i∗0 K(0, 1) and β : K(0, 1) → r∗
0 H(0, 1),

of right H0-modules (respectively, K0-modules), the transposed maps of which,

ᾱ : i0!H(0, 1) → K(0, 1) and β̄ : r0!K(0, 1) → H(0, 1)

make H(0, 1) into a retract of r0!K(0, 1) as right H0-modules, as in

H(0, 1) � r0!i0!H(0, 1)

β̄ ����
r0!K(0, 1)

r0!ᾱ
�

The other cases in the statement of the theorem are treated similarly.
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It thus remains to be shown that in a pushout square

Ji,j [X] � H

Ji,j [Y ]
Ji,j [u]

�
� K

�
(1)

in V–Cat{0,1}, if the properties stated in the theorem hold for H, then they hold for K. Moreover, to
be able to analyse the transfinite composition, we need to show that, for each generating cofibration
u : X → Y , the map H → K in such a pushout square induces cofibrations between the different
underlying structures mentioned in the theorem. For instance, H1 → K1 has to be a cofibration of
monoids and K1 ⊗H1 H(0, 1) → K(0, 1) a cofibration of left K1-modules. We will treat separately
the two cases i = 0, j = 1 and i = 0 = j . The other two cases i = 1, j = 0 and i = 1 = j can be
dealt with symmetrically (or follow by replacing H with its opposite category). We warn the reader
that the proof is quite involved in each case, since we are going to construct the relevant pushouts
explicitly.

3.7. Explicit construction of the pushout (1) in case i = 0, j = 1.
We first give a formal definition of (K0, K1, K(0, 1), K(1, 0)), then add a more informal ‘set-

theoretical’ explanation of this definition and finally verify that the resulting V-category K has the
properties stated in the theorem.

Construction of K0 and K1. Consider the cofibration of H0-bimodules

H(1, 0) ⊗ u ⊗ H0 : H(1, 0) ⊗ X ⊗ H0 → H(1, 0) ⊗ Y ⊗ H0,

and apply the free monoid functor TH0 of Section 3.3(d) to it, to obtain a cofibration of monoids
under H0,

TH0(H(1, 0) ⊗ X ⊗ H0) → TH0(H(1, 0) ⊗ Y ⊗ H0). (2)

The given map X → H(0, 1) together with the composition operation in H induces a canonical map
TH0(H(1, 0) ⊗ X ⊗ H0) → H0, and K0 is the pushout of monoids:

TH0(H(1, 0) ⊗ X ⊗ H0) � H0

TH0(H(1, 0) ⊗ Y ⊗ H0)
�

� K0

�
(3)

The construction of K1 is symmetric, and is the pushout of monoids:

TH1(H1 ⊗ X ⊗ H(1, 0)) � H1

TH1(H1 ⊗ Y ⊗ H(1, 0))
�

� K1

�
(4)

Both maps of monoids H0 → K0 and H1 → K1 are thus cofibrations of monoids.
Construction of K(0, 1) and K(1, 0). For a generating cofibration X → Y the pushout-product

axiom yields cofibrations (H1 ⊗ X) ∪ (∂H1 ⊗ Y ) → H1 ⊗ Y and (X ⊗ H0) ∪ (Y ⊗ ∂H0) → Y ⊗ H0.
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Tensoring the first (resp. second) with K0 (resp. K1) from the right (resp. left) gives rise to the following
two pushouts, of right K0-modules, resp. left K1-modules (these are calculated in V)

(H1 ⊗ X ⊗ K0) ∪ (∂H1 ⊗ Y ⊗ K0) � H(0, 1) ⊗H0 K0

H1 ⊗ Y ⊗ K0

�
� P

�
(5)

(K1 ⊗ X ⊗ H0) ∪ (K1 ⊗ Y ⊗ ∂H0) � K1 ⊗H1 H(0, 1)

K1 ⊗ Y ⊗ H0

�
� Q

�
(6)

in which the upper vertical arrows are induced from the given map X → H(0, 1) and the definitions
of K0 and K1, respectively. We claim that P and Q are in fact isomorphic, and in particular carry a
K1-K0-bimodule structure; moreover, this object P ∼= Q defines K(0, 1). To see this isomorphism,
note that there are canonical maps P → Q and Q → P definable on the upper right and lower left
corners of the pushouts. It can be checked that the two maps are mutually inverse.

Finally, the two tensor products

K0 ⊗H0 H(1, 0) and H(1, 0) ⊗H1 K1 (7)

are isomorphic, and define K(1, 0).
Category structure. Clearly, K0 and K1 are monoids and K(0, 1), K(1, 0) are bimodules. This

takes care of most of the category structure of K, except the compositions

K(1, 0) ⊗K1 K(0, 1) → K0 and K(0, 1) ⊗K0 K(1, 0) → K1.

The first of these is most easily described as the ‘obvious’ map

(H(1, 0) ⊗H1 K1) ⊗K1 Q → K0

and the second as
P ⊗K0 (K0 ⊗H0 H(1, 0)) → K1.

One can now check that K is a well-defined V-category, having the universal property of the pushout
(1) for i = 0 and j = 1.

Informal description. Set-theoretically, an element of K0 is represented by a string (with n ≥ 0)

0 	h1 1 	y1 0 	h2 1 	y2 0 · · · · · · 0 	hn 1 	yn 0 	f
0,

where f ∈ H0, hi ∈ H(1, 0) and yi ∈ Y . If one of the yi lies in the ‘smaller’ object X, this string is
identified with the shorter one obtained by composing hi and hi+1 with the image of yi in H(0, 1).
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Observe that this kind of identification corresponds precisely to analysing a pushout of monoids
like (3). The set-theoretical description of (4) is similar and uses strings of the form

1 	g
1 	y1 0 	h1 1 	y2 0 	h2 1 · · · · · · 1 	yn 0 	hn 1.

An arrow in K(0, 1) is either of the form

1 	ξ
1 	y

0 	h
0 (ξ ∈ K1, y ∈ Y, h ∈ H0)

or of the form

1 	ξ
1 	h

0 (ξ ∈ K1, h ∈ H(0, 1)).

If in the first presentation h is decomposable or y ∈ X, then it can be written as in the second form. This

is the meaning of pushout (5). Note that if in the second form ξ is decomposable, then 1
ξ←− 1

h←− 0
can be written either as

1 	ξ ′
1 	y

0 	h′
1 	h

0

or as

1 	ξ ′
1 	h′′

0 	h′
1 	h

0.

The first one belongs to the image of K1 ⊗ Y ⊗ ∂H0; the second one is equated with 1
ξ ′←− 1

h′′h′h←− 0
because the tensor is over H1.

Let us try to see set-theoretically why the pushouts P and Q (in the definition of K(0, 1)) are
isomorphic. We shall describe the map Q → P . The description of its inverse is symmetric. The
map Q → P is defined on both corners of the pushout (6) as follows. An element of K1 ⊗ Y ⊗ H0

looks like

(1 	g
1 	y1 0 	h1 1 · · · 1 	yn 0 	hn 1) ⊗ (1 	y 0) ⊗ (0 	h 0).

For n > 0, it could equally well be ‘parsed’ as

(1 	g
1) ⊗ (1 	y1 0) ⊗ (0 	h1 1 	y2 0 · · · 0 	hn 1 	y

0 	h
0),

which is a typical element of H1 ⊗ Y ⊗ K0 (of course one has to check that this is well-defined and
corresponds to the diagrammatic definition).

If n = 0, we have an element of H1 ⊗ Y ⊗ H0,

(1 	g
1) ⊗ (1 	z 0) ⊗ (0 	h 0),

which can be viewed as an element of H1 ⊗ Y ⊗ K0. This describes the map K1 ⊗ Y ⊗ H0 → P .
The map K1 ⊗H1 H(0, 1) → P can be described as follows: a typical element of K1 ⊗H1 H(0, 1)
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looks like

(1 	g
1 	y1 0 	h1 1 · · · 1 	yn 0 	hn 1) ⊗ (1 	f 0)

and could be rewritten as

(1 	g
1) ⊗ (1 	y1 0) ⊗ (0 	h1 1 	y2 0 · · · 0 	hn 1 	f

0)

in H1 ⊗ Y ⊗ K0, if n > 0, and as 1
gf←− 0 in H(0, 1), hence in H(0, 1) ⊗H0 K0, if n = 0. Together,

these give the map Q → P .

Finally, an element of K(1, 0) = K0 ⊗H0 H(1, 0) looks like 0
ξ←− 0

h←− 1 where ξ ∈ K0 and
h ∈ H(1, 0), or more explicitly

(0 	h1 1 	y1 0 · · · 0 	hn 1 	yn 0 	y
0) ⊗ (0 	h 1),

where in fact we can always assume y = 1 because the tensor is over H0, and so really

(0 	h1 1 	y1 0 · · · 0 	hn 1 	yn 0) ⊗ (0 	h 1),

which, for n > 0, can be rewritten as

(0 	h1 1) ⊗ (1 	y1 0 · · · 0 	hn 1 	yn 0 	h
1)

a typical element of H(1, 0) ⊗H1 K1. For n = 0, we get just an element of H(0, 1) on both sides
of (7).

In terms of these set-theoretical string diagrams, the category structure of K is given by
concatenation of strings.

Verification of the properties stated in the theorem. The monoids K0 and K1 are cofibrant by
construction; cf. the pushouts (3) and (4). Note that, in addition, the maps H0 → K0 and H1 → K1

are cofibrations of monoids, a property needed for analysing transfinite compositions of such pushouts.
Next, since tensoring along a cofibration of monoids is a left Quillen functor, the two descriptions

of K(1, 0) in (7) imply that K(1, 0) is cofibrant, both as a left K0- and as a right K1-module. Similarly,
it follows from the two descriptions of K(0, 1) in (5) and (6) that K(0, 1) is cofibrant, both as a left
K0- and as a right K1-module. Note again that the canonical map K1 ⊗H1 H(0, 1) → K(0, 1) (resp.
H(0, 1) ⊗H0 K0 → K(0, 1)) is a cofibration of left K1- (resp. right K0-) modules as required for
analysing transfinite compositions of such pushouts.

Finally, we will check that ∂K0 → K0 is a cofibration between cofibrant objects in V . A similar
proof applies to ∂K1 → K1. The cofibrant monoid K0 is cofibrant as an object of V , since the
forgetful functor U : MonV → V preserves cofibrant objects; cf. Section 3.3(a). Moreover, ∂K0 =
K(1, 0) ⊗K1 K(0, 1) is also cofibrant in V , by Lemma 3.4, since K(1, 0) and K(0, 1) are cofibrant as
K1-modules.

To see that ∂K0 → K0 is a cofibration, we filter K0 as follows. Put

T p = (H(1, 0) ⊗ Y )⊗p ⊗ H0

and let T
p
− be the colimit of similar objects with at least one Y replaced by an X. The generating

cofibration X → Y induces a canonical map T
p
− → T p, which can be obtained by iterated application
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of the pushout-product axiom followed by a tensor with H0, hence the map T
p
− → T p is a cofibration

of right H0-modules. Now let K
(0)
0 = H0 and, for p > 0, define K

(p)

0 by the pushout

T
p
− � K

(p−1)

0

T p
�

� K
(p)

0

�

The pushout in monoids (3) defining K0 can also be constructed as a sequential colimit in V of
these pushouts K

(p)

0 ; cf. Sections 3.3(c)–(e). In a similar way, the object ∂K0 can be constructed as a
sequential colimit in V , except that one starts with (∂K0)

(0) = ∂H0 and continues with pushouts

T
p
− � (∂K0)

(p−1)

T p
�

� (∂K0)
(p)

�

for p > 0. Thus, we have a pushout square of cofibrations between cofibrant objects

(∂K0)
(p−1) � K

(p−1)

0

(∂K0)
(p)

�
� K

(p)

0

�

for each p > 0. Therefore, the colimit ∂K0 → K0 is a cofibration between cofibrant objects as well.
Since this ladder of pushouts starts with ∂H0 → H0 and yields in the colimit ∂K0 → K0, we actually
get the following more precise result. The square

∂H0
� H0

∂K0

�
� K0

�

is a pushout square in V (indeed, in the category of H0-bimodules). This property is needed to analyse
transfinite compositions of pushouts of the form (1).

3.8. Explicit construction of the pushout (1) in case i = 0 = j .
Again we begin by giving explicit descriptions of the hom-objects K0, K1, K(0, 1), K(1, 0). These

are easier than in the case i = 0, j = 1; however, the verification of the properties as stated in the
theorem will be more involved.
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Construction of K0 and K1. The monoid K0 is defined as a pushout in the category of monoids in
V (where T denotes the free monoid functor),

T (X) � H0

T (Y )
�

� K0

�
(8)

while K1 is defined as a pushout in the category of H1-bimodules

H(0, 1) ⊗H0 H0 ⊗H0 H(1, 0) � H1

H(0, 1) ⊗H0 K0 ⊗H0 H(1, 0)
�

� K1

�
(9)

Construction of K(0, 1) and K(1, 0). These are defined by

K(0, 1) = H(0, 1) ⊗H0 K0 and K(1, 0) = K0 ⊗H0 H(1, 0). (10)

Category structure. First note that K1 is indeed a monoid under H1 by Lemma 3.5. Next, K(0, 1)

is a right K0-module by construction; it is a left K1-module by ‘amalgamation’ of the left H1-action
on H(0, 1) ⊗H0 K0 and the left H(0, 1) ⊗H0 K0 ⊗H0 H(1, 0)-action on H(0, 1) ⊗H0 K0 (given by
composition in H and multiplication in K0). Similarly, K(1, 0) has the structure of a left K0- and
right K1-module. Finally, there are canonical maps

K(1, 0) ⊗ K(0, 1) −→ K0 ⊗ ∂H0 ⊗ K0 −→ K0

and
K(0, 1) ⊗ K(1, 0) −→ H(0, 1) ⊗H0 K0 ⊗H0 H(1, 0) −→ K1

defining the remaining compositions in K. One now checks that these maps all together define a
category structure on K, and that K thus constructed has the universal property of the pushout (1) for
i = 0 = j .

Verification of the properties stated in the theorem. Assuming that H has these properties and that
X → Y is a cofibration in V , we now check that K has these properties as well, again making sure that
transfinite composition of such pushouts is possible. Some of these properties are obvious, that is

(a) K0 is a cofibrant monoid (indeed, H0 → K0 is a cofibration of monoids);
(b) K(0, 1) (resp. K(1, 0)) is a cofibrant right (resp. left) K0-module;
(c) ∂K1 → K1 is a cofibration between cofibrant objects.

Indeed, ∂K1 = K(0, 1) ⊗K0 K(1, 0) = H(0, 1) ⊗H0 K0 ⊗H0 H(1, 0), so that pushout (9) can be
rewritten as

∂H1
� H1

∂K1

�
� K1

�

from which (c) immediately follows. It thus remains to be proved that
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(d) K1 is a cofibrant monoid (indeed, H1 → K1 is a cofibration of monoids);
(e) K(0, 1) (resp. K(1, 0)) is a cofibrant left (resp. right) K1-module;
(f) ∂K0 → K0 is a cofibration between cofibrant objects.

Proof of (d). We use that ∂H0 → H0 is a cofibration and define the following filtration on K1; cf.
Sections 3.3(c)–(e). Put for p > 0:

Y (p) = H(0, 1) ⊗ Y ⊗ H0 ⊗ · · · ⊗ H0 ⊗ Y ⊗ H(1, 0),

with p occurrences of Y and p − 1 occurrences of H0. Let Y
(p)
− be the canonical colimit of objects

like Y (p) where at least one of the Y s is replaced by an X. By the pushout-product axiom and the fact
that H0, H(0, 1), H(1, 0) are cofibrant in V , the map

Y
(p)
− → Y (p)

is a cofibration in V . This cofibration is of the form

H(0, 1) ⊗ A ⊗ H(1, 0) → H(0, 1) ⊗ B ⊗ H(1, 0)

for a cofibration A → B in V , which implies that it is a cofibration of H1-bimodules, because of the
cofibrancy of H(0, 1) and H(1, 0) as H1-modules. The filtration on K1 is defined by

K
(0)
1 = H1

and the pushouts

Y
(p)
− � K

(p−1)

1

Y (p)

�
� K

(p)

1

�

along the maps Y
(p)
− −→ Y (p−1) −→ K

(p−1)

1 induced by X → H0 for p > 0. Note that this filtration

K
(0)
1 −→ K

(1)
1 −→ K

(2)
1 −→ · · ·

is not a filtration by monoids, although it is a filtration by H1-bimodules. The multiplication on K1

restricts to
K

(p)

1 ⊗H1 K
(q)

1 −→ K
(p+q)

1 . (11)

If M is any monoid and H1 → M is a map of monoids (making M into an H1-bimodule), then we
shall call a map φ : K1 → M multiplicative if it is a map of H1-bimodules which makes the diagram

K
(p)

1 ⊗H1 K
(q)

1
φ ⊗ φ� M ⊗H1 M

K
(n)
1

�
φ � M

�

commute for any two p, q > 0 with p + q = n.A compatible sequence φ(n) : K
(n)
1 → M (compatible

in the sense that φ(n) precomposed with K
(n−1)
1 → K

(n)
1 is φ(n−1)) of multiplicative maps will define

a map of monoids K1 → M .
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Consider again the object Y (p), for p > 1, so that there is at least one occurrence of H0. Let Y
(p)

∂

be the colimit of all similar objects where at least one occurrence of H0 is replaced by ∂H0. Then the
cofibration ∂H0 → H0 induces a map Y

(p)

∂ → Y (p), which is again a cofibration of H1-bimodules by
the pushout-product axiom, just as for Y

(p)
− → Y (p) above. The inclusions of the different filtration

stages of K1 can be refined as in

· · · −→ K
(p−1)

1 −→ K
(p)

1,∂ −→ K
(p)

1 −→ · · · ,

where K
(p)

1,∂ fits into pushouts

Y
(p)
− � Y

(p)
− ∪ Y

(p)

∂
� Y (p)

K
(p−1)

1

�
� K

(p)

1,∂

�
� K

(p)

1

�

in which all horizontal maps are cofibrations of H1-bimodules. Moreover, the multiplication (11) for
p, q > 0 with p + q = n factors through K

(n)
1,∂ → K

(n)
1 . Thus, a map of H1-bimodules K

(n)
1 → M is

multiplicative if and only if its restriction to K
(n)
1,∂ is; in particular, it makes sense to say that the map

K
(n)
1,∂ → M that it is multiplicative. In fact, any multiplicative map K

(n−1)
1 −→ M extends uniquely

to a multiplicative map K
(n)
1,∂ −→ M because, by definition, K

(n)
1,∂ is the colimit of the diagram over

K
(n)
1 given by all the maps (11) with p, q > 0, p + q = n.
With this notation, it is now easy to prove that H1 → K1 is a cofibration of monoids. Indeed,

suppose that we are given a commutative square

H1
φ� M

K1

� ψ� N
�

of monoids where M −→ N is a trivial fibration in the transferred model structure. The map H1 → M

makes M → N into a map of H1-bimodules, which is again a trivial fibration in the appropriate
transferred model structure. We now construct a compatible sequence of multiplicative lifts

φ(n) : K
(n)
1 → M

making the appropriate diagrams commute, as follows. For n = 0, we take φ(0) to be φ. Next we
extend it to φ(1) by lifting in the diagram of H1-bimodules

K
(0)
1

� M

..
..

..
.

�

K
(1)
1

�
� N

�

which is possible since the left vertical map is a cofibration of H1-bimodules. For n > 1, we first
extend φ(n−1) : K

(n−1)
1 → M , already found, uniquely to a multiplicative map φ

(n)
∂ : K

(n)
1,∂ → M . Next
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we use that K
(n)
1,∂ → K

(n)
1 is a cofibration of H1-bimodules, and extend φ

(n)
∂ to φ(n) : K

(n)
1 → M . This

map of H1-bimodules is automatically multiplicative, as noted above. The sequence φ(n) thus found
gives the required diagonal K1 → M . This completes the proof that H1 → K1 is a cofibration of
monoids, and hence proves (d).

Proof of (e). We will show that K(1, 0) is a cofibrant right K1-module. In fact, our proof will
show that the canonical map H(1, 0) ⊗H1 K1 → K(1, 0) is a cofibration of right K1-modules. This
stronger property is needed for analysing transfinite compositions of pushouts (1). The proof that
K(0, 1) is a cofibrant left K1-module and, in fact, that K1 ⊗H1 H(0, 1) → K(0, 1) is a cofibration of
left K1-modules, is similar.

Recall that K0 is constructed from H0 by the pushout of monoids (8) for a generating cofibration
X → Y . Thus, K0 is naturally filtered as follows. Let

W(p) = H0 ⊗ Y ⊗ H0 ⊗ · · · ⊗ Y ⊗ H0 (p > 0)

with p occurrences of Y , and let W
(p)
− be the colimit of similar objects where at least one of the Y s

is replaced by an X, so that we have canonical cofibrations W
(p)
− → W(p) as given by the pushout-

product axiom. Let K(0) = H0 and, for p > 0, let K
(p)

0 be defined by the pushout

W
(p)
− � K

(p−1)

0

W(p)

�
� K

(p)

0

�
(12)

Then K0 is the colimit of cofibrations

K
(0)
0 −→ K

(1)
0 −→ K

(2)
0 −→ · · · .

Since by definition K(1, 0) = K0 ⊗H0 H(1, 0), the hom-object K(1, 0) has a similar filtration starting
with K(1, 0)(0) = H(1, 0) and defined by successive pushouts

W
(p)
− ⊗H0 H(1, 0) � K(1, 0)(p−1)

W (p) ⊗H0 H(1, 0)

�
� K(1, 0)(p)

�
(13)

This is a filtration by right H1-modules (not by K1-modules). Note that the filtration of K1 used in the
proof of (d) has been constructed in an analogous way, starting with K

(0)
1 = H1 and using pushouts with

left vertical maps of the form H(0, 1) ⊗H0 W
(p)
− ⊗H0 H(1, 0) −→ H(0, 1) ⊗H0 W(p) ⊗H0 H(1, 0),

denoted as Y
(p)
− −→ Y (p). In particular, this yields canonical filtered action maps

K(1, 0)(p) ⊗H1 K
(q)

1 → K(1, 0)(p+q)

which in the colimit define the right K1-action on K(1, 0).
To prove that K(1, 0) is a cofibrant right K1-module, consider a trivial fibration of right K1-modules

M → N , and a map K(1, 0) → N . We will construct a lift K(1, 0) → M by successively lifting
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K(1, 0)(p) → K(1, 0) → N to K(1, 0)(p) → M as right H1-module maps. To make sure that the
resulting lift is a map of right K1-modules, we need the φ(n) to be multiplicative, in the sense that
each square

K(1, 0)(p) ⊗H1 K
(q)

1
φ(p) ⊗ id� M ⊗H1 K

(q)

1

K(1, 0)(p+q)

�
φ(p+q)

� M
�

commutes for p + q ≤ n. For n = 0, we find φ(0) : K(0, 1)(0) = H(1, 0) → M because H(1, 0) is
cofibrant as a right H1-module. In order to extend φ(n−1) to φ(n), it suffices to show that⋃

p+q=n,p<n

K(1, 0)(p) ⊗H1 K
(q)

1 −→ K(1, 0)(n) (14)

is a cofibration of right H1-modules. For n > 0 fixed, we write A for the domain of (14) and represent
A as a union K(1, 0)(n−1) ∪ A′ where

A′ =
⋃

0≤k<n

(H0 ⊗ Y )⊗k ⊗ ∂H0 ⊗ (Y ⊗ H0)
⊗n−k−1 ⊗ Y ⊗ H(1, 0).

By definition, A′ = U ⊗ H(1, 0) and K(1, 0)(n) = K(1, 0)(n−1) ∪ (V ⊗ H(1, 0)) for

U =
⋃

0≤k<n

(H0 ⊗ Y )⊗k ⊗ ∂H0 ⊗ (Y ⊗ H0)
⊗n−k−1 ⊗ Y

and
V = (H0 ⊗ Y )⊗n,

both with n factors Y . Now let U− → U be the cofibration given by the pushout-product axiom
where U− is the union of objects like U , but with at least one of the Y s replaced by an X, and
similarly for V − → V . Then U ∪U− V − −→ V is also a cofibration by the pushout-product axiom.
The map A → K(1, 0)(n) considered in (14) is a map between pushouts as described by the following
commutative cube:

V − ⊗ H(1, 0) � K(1, 0)(n−1)

����
����

U− ⊗ H(1, 0) � K(1, 0)(n−1)

V ⊗ H(1, 0)
�

� K(1, 0)(n)

�

����
����

U ⊗ H(1, 0)
�

� A
�
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in which the front and back squares are pushouts. It then follows from an easy diagram chase
(cf. [4, Lemma 6.9]) that the induced square

(U ∪U− V −) ⊗ H(1, 0) −→ A ∪K(1,0)(n−1) K(1, 0)(n−1)

V ⊗ H(1, 0)
�

� K(1, 0)(n)

�

is a pushout square. Therefore, since the left vertical map is a cofibration of right H1-modules, the
right vertical map (i.e. the map A → K(1, 0)(n)) is as well, which is precisely what had to be shown.

Note that the same argument in fact shows that H(1, 0) ⊗H1 K1 → K(1, 0) is a cofibration of right
K1-modules. Indeed, given a commutative square of right K1-modules

H(1, 0) ⊗H1 K1
χ� M

K(1, 0)
�

� N
�

write φ(0) for the map K(1, 0)(0) = H(1, 0) → M of H1-modules corresponding to χ by adjunction,
and proceed as above.

Proof of (f). We used in the proof of (e) that K0 carries a natural filtration · · · → K
(p−1)

0 →
K

(p)

0 → · · · starting with K
(0)
0 = H0. We will first prove that ∂K0 is similarly filtered by objects

(∂K0)
(p) which fit into a ladder

∂H0 =(∂K0)
(0) � (∂K0)

(1) � (∂K0)
(2) � · · ·

H0

�
= K

(0)
0

�
� K

(1)
0

�
� K

(2)
0

�
� · · ·

in which all the maps are cofibrations, as are the comparison maps from the inscribed pushouts

(∂K0)
(p) ∪(∂K0)(p−1) K

(p−1)

0 −→ K
(p)

0 .

This will imply that the map ∂K0 → K0 in the colimit is a cofibration, and in fact that the canonical
map H0 ∪∂H0 ∂K0 → K0 is a cofibration.

Similar to the cofibrations W
(p)
− → W(p) used to construct the filtration of K0 (cf. diagram (12))

one can construct cofibrations using the pushout-product axiom,

V (p) → W(p)

where
V (p) =

⋃
0≤k≤p

(H0 ⊗ Y )⊗k ⊗ ∂H0 ⊗ (Y ⊗ H0)
⊗p−k

is the colimit over all objects like W(p), but with at least one occurrence of H0 replaced by ∂H0. Let
V

(p)
− be the colimit of similar objects, where in addition at least one of the Y s is replaced by an X.
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So the maps X → Y and ∂H0 → H0 induce a commutative square

V
(p)
− � V (p)

W
(p)
−
�

� W(p)

�
(15)

in which (again by the pushout-product axiom) all maps are cofibrations, as is the comparison map

W
(p)
− ∪

V
(p)
−

V (p) −→ W(p) (16)

from the inscribed pushout in (15) to the lower right corner. Now construct a sequence of cofibrations

D(0) −→ D(1) −→ D(2) −→ · · ·

by setting D(0) = ∂H0, and constructing D(p) from D(p−1) as a pushout

V
(p)
− � D(p−1)

V (p)

�
� D(p)

�
(17)

for p > 0. Let D be the colimit D = lim−→p
D(p). Thus, D is filtered by the D(p) and one can now

construct maps D(p) → K
(p)

0 starting with ∂H0 → H0 for p = 0, and continuing from p − 1 to p by
completing the cube below in which the left and right squares are the pushouts (17) and (12).

D(p−1) � K
(p−1)

0

����
����

V
(p)
− � W

(p)
−

D(p)

�
............. ...........� K

(p)

0

�

����
����

V (p)

�
� W(p)

�

Since the comparison map (16) of the front square of the cube is a cofibration, the comparison map
D(p) ∪D(p−1) K

(p−1)

0 → K
(p)

0 of the back square is a cofibration as well; cf. [4, Lemma 6.9]. It thus
suffices to show that D → K0 is isomorphic to ∂K0 → K0. By definition, ∂K0 is the coequalizer of
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the following diagram:

(K0 ⊗H0 H(1, 0)) ⊗H1 K1 ⊗H1 (H(0, 1) ⊗H0 K0)

(K0 ⊗H0 H(1, 0)) ⊗H1 (H(0, 1) ⊗H0 K0)

α
�

β
�

∂K0

π
�

(18)

Now, first of all, each constituent H0 ⊗ · · · ⊗ Y ⊗ ∂H0 ⊗ Y ⊗ · · · ⊗ H0 of V (p) maps naturally to
∂K0 since it can be rewritten as

(H0 ⊗ · · · ⊗ Y ⊗ H(1, 0)) ⊗H1 (H(0, 1) ⊗ Y ⊗ · · · ⊗ H0)

which maps canonically to the middle object of the coequalizer (18). When composed with π , these
together give a well-defined map D(p) → ∂K0 for each p, and in the colimit we obtain a map
D → ∂K0.

In the other direction, the filtrations of K0, K1 and K0 by K
(p)

0 , K
(r)
1 and K

(q)

0 , respectively, induce
a filtration by three degrees (p, r, q) on the top object of (18), by two degrees (p, q) on the middle
object, and by one degree n on the coequalizer ∂K0. The maps α, β, π take the (p, r, q)-part to the
(p + r, q)-part (respectively, the (p, r + q)-part) and the (p, q)-part to the (p + q)-part. Now the
filtration part

(K
(p)

0 ⊗H0 H(1, 0)) ⊗H1 (H(0, 1) ⊗H0 K
(q)

0 )

maps to D(p+q) in the obvious way, and this map factors through π to give a natural map (∂K0)
(p+q) →

D(p+q). Together, these define a map ∂K0 → D. It is now a straightforward diagram chase to check
that the two maps thus constructed, D → ∂K0 and ∂K0 → D, are mutually inverse. �

For the remaining proof of Lemma 1.16, we need the following complement to Lemma 3.4, where
an object of a monoidal model category is called weakly contractible if there is a zigzag of weak
equivalences relating it to the monoidal unit.

Lemma 3.9 Let R be a weakly contractible, well-pointed monoid in V, and let M (resp. N) be
a weakly contractible, cofibrant right (resp. left) R-module. Then the tensor product M ⊗R N is a
weakly contractible, cofibrant object of V .

Proof . By virtue of Lemma 3.4, it remains to be shown that M ⊗R N is weakly contractible in V .
Observe that in any Quillen model category a zigzag of weak equivalences between two cofibrant
objects can be replaced by a zigzag of weak equivalences between the same objects, which passes
through cofibrant objects only. Therefore, the weakly contractible, cofibrant left R-module N can
be related to the monoidal unit R by a zigzag of weak equivalences passing through cofibrant left
R-modules only. After application of the left Quillen functor M ⊗R −, we thus get a zigzag of weak
equivalences in V relating M ⊗R N and M . Now M itself is a weakly contractible, right R-module,
hence there is a zig of weak equivalences between M and R. Finally, the unit IV → R is a weak
equivalence by assumption so that we get a zigzag of weak equivalences between M ⊗R N and IV ,
as required. �
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3.10. Proof of the Interval Amalgamation Lemma 1.16

Let ∂i : {0, 1} → {0, 1, 2} denote the order-preserving inclusion which omits i. The amalgamation
H ∗ K of the V-intervals H and K can then be defined by

H ∗ K = ∂∗
1 (∂2!K � ∂0!H)

where the coproduct is taken in V–Cat{0,1,2}. We write L = ∂2!K � ∂0!H, hence H ∗ K = ∂∗
1 L in

V–Cat{0,1}. It remains to be shown that H ∗ K is weakly equivalent to I. Since H and K are V-intervals,

there are weak equivalences H
∼−→ If and K

∼−→ If inducing a V-functor H ∗ K → If ∗ If . Note
that If can be chosen to be a V-interval itself; moreover, it is readily verified that I ∗ I ∼= I. It is
therefore sufficient to show that, for any V-intervals H and K, the amalgamation H ∗ K has weakly
contractible hom-objects. This will follow from the Interval Cofibrancy Theorem 3.2 together with
the following explicit description of the hom-objects L(i, j), where as usual L(i, i) is abbreviated
to Li :

(i) L1 = H1 ∗ K0 (the coproduct of monoids);
(ii) L(0, 1) = L1 ⊗H1 H(0, 1);

(iii) L(1, 0) = H(1, 0) ⊗H1 L1;
(iv) L(1, 2) = K(0, 1) ⊗K0 L1;
(v) L(2, 1) = L1 ⊗K0 K(1, 0);

(vi) L(0, 2) = L(1, 2) ⊗L1 L(0, 1);
(vii) L(2, 0) = L(1, 0) ⊗L1 L(2, 1).

The endomorphism monoid L1 is cofibrant as a coproduct of two cofibrant monoids. Moreover, since
H1 and K0 are weakly contractible monoids, their coproduct L1 is a weakly contractible monoid
as well. By construction, L(0, 1) is obtained by applying the left Quillen functor L1 ⊗H1 − to the
cofibrant left H1-module H(0, 1), hence L(0, 1) is a cofibrant left L1-module. By hypothesis, H(0, 1)

is a weakly contractible in V and H1 is a weakly contractible monoid. In particular, H(0, 1) is a weakly
contractible left H1-module so that L(0, 1) is a weakly contractible left L1-module.

Similarly, L(2, 1) is a weakly contractible, cofibrant left L1-module, and L(1, 0) and L(1, 2) are
weakly contractible, cofibrant right L1-modules. Lemma 3.9 thus implies that L(0, 2) and L(2, 0)

are weakly contractible, cofibrant objects of V .
The endomorphism monoids of L at 0 and 2 are given by the following pushouts, of H0-bimodules

and K1-bimodules, respectively (cf. the proof of Lemma 3.5):

H(1, 0) ⊗H1 H(0, 1) � H0 K(0, 1) ⊗K1 K(1, 0) � K1

L(1, 0) ⊗L1 L(0, 1)
�

� L0

�
L(1, 2) ⊗L1 L(2, 1)

�
� L2

�

Since (by virtue of Theorem 3.2(ii) and Lemma 3.9) the left vertical maps of both squares are weak
equivalences between weakly contractible, cofibrant objects of V , and (in virtue of Theorem 3.2(iii))
the upper horizontal maps are cofibrations in V , the right vertical maps H0 → L0 and K1 → L2 are
weak equivalences as well, and hence L0 and L2 are weakly contractible monoids, as required. �



ON THE HOMOTOPY THEORY OF ENRICHED CATEGORIES 845

Acknowledgements

We are grateful to Boris Chorny, Fernando Muro and Giovanni Caviglia for helpful discussions and
useful comments.

Funding

The first author benefitted from support from the French National Agency for Research (ANR grants
HODAG and HOGT), while visits by the second author to France were partially supported by a
Descartes-Huygens Prize of the Académie des Sciences.

References

1. M. A. Batanin and C. Berger, Homotopy theory for algebras over polynomial monads,
arXiv:1305.0086.

2. C. Berger and I. Moerdijk, Axiomatic homotopy theory for operads, Comment. Math. Helv. 78
(2003), 805–831.

3. C. Berger and I. Moerdijk, The Boardman–Vogt resolution of operads in monoidal model
categories, Topology 45 (2006), 807–849.

4. C. Berger and I. Moerdijk, Resolution of coloured operads and rectification of homotopy algebras,
Contemp. Math. 431 (2007), 31–58.

5. J. E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer.
Math. Soc. 359 (2007), 2043–2058.

6. J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces,
Lect. Notes Math. 347 (1973), x + 257 pp.

7. D. Dugger and D. C. Isaksen, Topological hypercovers and A1-realizations, Math. Z. 246 (2004),
667–689.

8. W. G. Dwyer and D. M. Kan, Simplicial localizations of categories, J. Pure Appl. Alg. 17 (1980),
267–284.

9. W. G. Dwyer and D. M. Kan, Function complexes in homotopical algebra, Topology 19 (1980),
427–440.

10. P. Hirschhorn, Model Categories and Their Localizations, Mathematical Surveys and Mono-
graphs 99, American Mathematical Society, Providence, RI, 2003.

11. M. Hovey, Model Categories, Mathematical Surveys and Monographs 63, American Mathemati-
cal Society, Providence, RI, 1999.

12. A. Joyal and M. Tierney, Strong stacks and classifying spaces, Lect. Notes Math. 1488 (1991),
213–236.

13. S. Lack, A Quillen model structure for bicategories, K-Theory 33 (2004), 185–197.
14. S. Lack, A Quillen model structure for Gray-categories, J. K-theory 8 (2011), 183–221.
15. J. Lurie, Higher Topos Theory, Annals of Mathematics Studies 170, Princeton University Press,

Princeton, NJ, 2009.
16. F. Muro, Homotopy theory of nonsymmetric operads, Algebr. Geom. Topol. 11 (2011),

1541–1599.
17. D. G. Quillen, Homotopical Algebra, Lecture Notes in Mathematics 43, Springer, New York,

1967.
18. G. Raptis, On a conjecture by J.H. Smith, Theory Appl. Categ. 24 (2010), 114–116.



846 C. BERGER AND I. MOERDIJK

19. C. Rezk, A model category for categories, available at www.math.uiuc.edu/∼rezk.
20. J. Rosicky, On combinatorial model categories, Appl. Categ. Structures 17 (2009), 303–316.
21. S. Schwede and B. Shipley, Algebras and modules in monoidal model categories, Proc. London

Math. Soc. 80 (2000), 491–511.
22. S. Schwede and B. Shipley, Equivalences of monoidal model categories, Algebr. Geom. Topol. 3

(2003), 287–334.
23. G. Tabuada, Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories,

C. R. Math. Acad. Sci. Paris 340 (2005), 15–19.
24. G. Tabuada, Homotopy theory of spectral categories, Adv. Math. 221 (2009), 1122–1143.
25. R. M. Vogt, A note on homotopy equivalences, Proc. Amer. Math. Soc. 32 (1972), 627–629.
26. R. M. Vogt, The HELP-lemma and its converse in Quillen model categories, J. Homotopy Relat.

Struct. 6 (2011), 115–118.


