
HAL Id: hal-01145598
https://hal.science/hal-01145598

Submitted on 24 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ordered Tree-Pushdown Systems
Lorenzo Clemente, Pawel Parys, Sylvain Salvati, Igor Walukiewicz

To cite this version:
Lorenzo Clemente, Pawel Parys, Sylvain Salvati, Igor Walukiewicz. Ordered Tree-Pushdown Systems.
FSTTCS 2015, Dec 2015, Bangalore, India. �hal-01145598�

https://hal.science/hal-01145598
https://hal.archives-ouvertes.fr

Ordered Tree-Pushdown Systems

Lorenzo Clemente1, Sylvain Salvati2, and Igor Walukiewicz2

1 University of Warsaw, Poland
2 CNRS, Université de Bordeaux, INRIA, France

Abstract. We define a new class of pushdown systems where the push-
down is a tree instead of a word. We allow a limited form of lookahead
on the pushdown conforming to a certain ordering restriction, and we
show that the resulting class enjoys a decidable reachability problem.
This follows from a preservation of recognizability result for the backward
reachability relation of such systems. As an application, we show that
our simple model can encode several formalisms generalizing pushdown
systems, such as ordered multi-pushdown systems, annotated higher-order
pushdown systems, the Krivine machine, and ordered annotated multi-
pushdown systems. In each case, our procedure yields tight complexity.

1 Introduction

Context. Modeling complex systems requires to strike the right balance between
the accuracy of the model, and the complexity of its analysis. A particularly
successful example is given by pushdown systems, which are a popular class of
infinite-state systems arising in diverse contexts, such as language processing,
data-flow analysis, security, computational biology, and program verification.
Many interesting analyses reduce to checking reachability in pushdown systems,
which can be decided in PTIME using, e.g., the popular saturation technique [?,?]
(cf. also the recent survey [?]). Pushdown systems have been generalized in several
directions. In [?] tree-pushdown systems are introduced, where the pushdown is
a tree instead of a linear word. It is observed that, unlike ordinary pushdown
systems, non-destructive lookahead on the pushdown cannot be introduced
without leading to undecidability. It is proved that, when seen as automata, the
pushdown can be linearized without changing the expressiveness of the model
w.r.t. the class of recognized tree languages.

A seemingly unrelated generalization is ordered multi-pushdown systems [?,?],
where several linear pushdowns are available instead of just one. Since already
two unrestricted linear pushdowns can simulate a Turing machine, an ordering
restriction is put on popping transitions, requiring that all pushdowns smaller
than the popped one are empty. Reachability in this model is 2-EXPTIMEc [?].

Higher-order pushdown systems generalize ordinary pushdown systems by
allowing pushdowns to be nested inside other pushdowns [?,?]. Collapsible push-
down systems [?,?] additionally enrich pushdown symbols with collapse links
to inner sub-pushdowns. This allows the automaton to push a new symbol and
to save, at the same time, the current context in which the symbol is pushed,

2 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

and to later return to this context via a collapse operation. Annotated pushdown
systems [?] provide a simplification of collapsible pushdown systems by replacing
collapse links with arbitrary pushdown annotations3. The Krivine machine [?] is
a related model which evaluates terms in simply-typed λY -calculus. Reachability
in all these models is pn´ 1q-EXPTIMEc [?,?], and one exponential higher in the
presence of alternation. The more general ordered annotated multi-pushdown sys-
tems [?] have several annotated pushdown systems under an ordering restriction
similar to [?] in the first-order case. They subsume both ordered multi-pushdown
systems and annotated pushdown systems. The saturation method (cf. [?]) has
been adapted to most of these models, and it is the basis of the prominent
MOPED tool [?] for the analysis of pushdown systems, as well as the C-SHORe
model-checker for annotated pushdown systems [?].

Contributions. Motivated by a unification of the results above, we introduce
ordered tree-pushdown systems. This is a natural model extending tree-pushdown
systems by allowing a limited form of partially destructive lookahead on the
pushdown. We introduce an order between pushdown symbols, and we require
that, whenever a sub-pushdown is read, all sub-pushdowns of smaller order must
be discarded. The obtained model is expressive enough to simulate all systems
mentioned above, and still not Turing-powerful thanks to the ordering condition.
Our contributions are: i) A general preservation of recognizability result for
ordered tree-pushdown systems. ii) Direct encoding of several popular exten-
sions of pushdown systems, such as ordered multi-pushdown systems, annotated
pushdown systems, the Krivine machine, and ordered annotated multi-pushdown
systems. iii) A conceptually simple saturation algorithm working on finite tree
automata representing sets of configurations, subsuming and unifying previous
constructions. iv) A complete complexity characterization of reachability in or-
dered tree-pushdown systems and natural subclasses thereof. v) A short and
simple correctness proof, simplifying substantially the previous literature.

Related work. Apart from the results mentioned above, we should note a satura-
tion method for recursive program schemes [?]. Since schemes and λY -calculus are
equi-expressive, our method can also be adapted to schemes. Concerning multi-
pushdown systems, apart from the restriction based on the pushdown order there
are other restrictions making their analysis decidable. Indeed, in [?] decidability
is proved for annotated multi-pushdowns with phase-bounded and scope-bounded
restrictions. It is not clear how to treat these restrictions in the simple frame-
work presented here. For standard multi-pushdown systems split-width has been
proposed as a unifying restriction [?]. It is not known how to extend this method
to annotated multi-pushdown systems, or to our tree-pushdown systems.

3 Collapsible and annotated systems generate the same configuration graphs when
started from the same initial configuration, since new annotations can only be created
to sub-pushdowns of the current pushdown. However, annotated pushdown systems
have a richer backward reachability set which includes non-constructible pushdowns.

Ordered Tree-Pushdown Systems 3

Outline. In Sec. 2 we introduce common notions. In Sec. 3 we define our model
and we present our saturation-based algorithm to decide reachability. In Sec. 4
we show that ordered systems can optimally encode several popular formalisms.
In Sec. 5 we conclude with some perspectives on open problems.

2 Preliminaries

We will work with rewriting systems on ranked trees, and with alternating tree
automata. The novelty is that every letter of the ranked alphabet will have an
order. A tree will have the order determined by the letter in the root. The order
will be used later to constrain rewriting rules.

An alternating transition system is a tuple S “ xC,Ñy, where C is the set of
configurations and ÑĎ C ˆ 2C is the alternating transition relation. We lift the
relation Ñ to sets of configurations A,B Ď C by defining A Ñ B iff, for every
c P A, there exists C Ď B s.t. c Ñ C, and we denote by Ñ˚ its reflexive and
transitive closure. The set of predecessors of a set C Ď C of configurations is
Pre˚pCq “ tc | tcu Ñ˚ Cu.

Ordered trees. Let N be the set of non-negative integers, and let Ną0 be the set of
strictly positive integers. A node is an element u P N˚ą0. A node u is a predecessor
of a node v iff u is a prefix of v, i.e., there exists w P N˚ą0 s.t. v “ uw, and
similarly for the notion of successor. A tree domain is a non-empty prefix-closed
set of nodes D Ď N˚ą0 s.t., if u ¨ pi`1q P D, then u ¨ i P D for every i P Ną0. A leaf
is a node u in D without successors. A ranked alphabet is a pair pΣ, rankq of a set
of symbols Σ together with a ranking function rank : Σ Ñ N. An ordered alphabet
is a triple pΣ, rank, ordq where pΣ, rankq is a ranked alphabet and ord : Σ Ñ Ną0.
For a ranked/ordered alphabet pΣ, rank, ordq and a finite tree domain D, a finite
Σ-tree (or just tree) is a function t : D Ñ Σ that assigns to each node u in D
with n successors a label a “ tpuq in Σ s.t. rankpaq “ n. The size of t is |t| :“ |D|.
For a Σ-tree t : D Ñ Σ and label a P Σ, let t´1paq “ tu P D | tpuq “ au be the
set of nodes labelled with a. We denote by T pΣq the set of Σ-trees. The order
of a tree t is ordptq :“ ordptpεqq.

Rewriting. For each order n P N, let Vn be a countably infinite set of variables s.t.
V0,V1, . . . are pairwise disjoint, and let V “

Ť

n Vn. We consider the extended
ordered alphabet pΣ Y V, rank, ordq where a variable x P Vn has rankpxq “ 0 and
ordpxq “ n. Let T pΣ,Vq be the set of pΣ Y Vq-trees. Fix a pΣ Y Vq-tree t, and
let Vptq be the set of variables appearing in it. t is linear if each variable in Vptq
appears exactly once in t. For a pΣYVq-tree u, t is u-ground if VptqXVpuq “ H.
A tree t “ apt1, . . . , tnq is u-shallow if each ti is either u-ground, or just a variable
(possibly appearing in u). A substitution is a finite mapping σ : V Ñ T pΣ Y Vq
s.t. ordpσpxqq “ ordpxq. Given a pΣ Y Vq-tree t and a substitution σ, tσ is the
pΣ Y Vq-tree obtained by replacing each variable x in t in the domain of σ with
σpxq. A rewrite rule over Σ is a pair l Ñ r of pΣ Y Vq-trees l and r. A rewrite
rule lÑ r is left-linear if l is linear, and it is shallow if l is r-shallow.

4 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

Alternating tree automata. An alternating tree automaton (or just tree automaton)
is a tuple B “ xΣ,Q,∆y where Σ is a finite ranked alphabet, Q is a finite set
of states, and ∆ Ď QˆΣ ˆ p2Qq˚ is a set of alternating transitions of the form
p

a
ÝÑ P1 ¨ ¨ ¨Pn, with a of rank n. We say that B is non-deterministic if, for every

transition as above, all Pj ’s are just singletons, and we omit the braces in this

case. An automaton is ordered if, for every state p and symbols a, b s.t. p
a
ÝÑ ¨ ¨ ¨

and p
b
ÝÑ ¨ ¨ ¨ , we have ordpaq “ ordpbq. We assume w.l.o.g. that automata are

ordered, and we denote by ordppq the order of state p. The transition relation is
extended to a set of states P Ď Q by defining P

a
ÝÑ P1 ¨ ¨ ¨Pn iff, for every p P P ,

there exists a transition p
a
ÝÑ P p1 ¨ ¨ ¨P

p
n , and Pj “

Ť

pPP P
p
j for every 1 ď j ď n.

It will be useful later in the definition of the saturation procedure to define run
trees not just on ground trees, but also on trees possibly containing variables. A
variable of order k is treated like a leaf symbol which is accepted by all states
of the same order. Let P Ď Q be a set of states, and let t : D Ñ pΣ Y Vq be an
input tree. A run tree from P on t is a 2Q-tree4 s : D Ñ 2Q over the same tree
domain D s.t. spεq “ P , and: i) if tpuq “ a is not a variable and of rank n, then
spuq

a
ÝÑ spu ¨ 1q ¨ ¨ ¨ spu ¨nq, and ii if tpuq “ x then @p P spuq, ordppq “ ordpxq. The

language recognized by a set of states P Ď Q, denoted by LpP q, is the set of
Σ-trees t s.t. there exists a run tree from P on t.

3 Ordered tree-pushdown systems

We introduce a generalization pushdown systems, where the pushdown is a tree
instead of a linear word. An alternating ordered tree-pushdown system of order
n P Ną0 is a tuple S “ xn,Σ, P,Ry where Σ is an ordered alphabet containing
symbols of order at most n, P is a finite set of control locations, and R is a set of
rules of the form p, lÑ S, r s.t. p P P and S Ď P . Moreover, lÑ r is a left-linear
rewrite rule over Σ with l :“ apu1, . . . , umq such that at most one uı̂ is neither
r-ground nor a variable, and if such an uı̂ exists then

(1) uı̂ “ bpv1, . . . , vnq with b P Σ and all vj ’s either r-ground or a variable, and

(2) for every j P t1, . . . ,mu, j ­“ ı̂: if ordpujq ď ordpbq then uj is r-ground.

We refer to p2q as the ordering condition. A rule is called deep if uı̂ exists, otherwise
it is shallow ; let Rd be the set of deep rules. For example, apx, yq Ñ cpapx, yq, xq
is shallow, but apbpxq, yq Ñ cpx, yq is deep; here necessarily ordpyq ą ordpbq. In
Sec. 4 we provide more examples of such rewrite rules by encoding many popular
formalisms. Note that r can be non-linear, thus sub-trees can be duplicated. The
size of S is |S| :“ |Σ|` |P |` |R|, where |R| :“

ř

p,lÑS,rPRp1`|l|` |S|` |r|q. We
say that S is non-deterministic if S is a singleton for every rule p, lÑ S, r P R,
and shallow if every rule is shallow. Rewrite rules induce an alternating transition
system xC,ÑSy, where the set of configurations C consists of pairs pp, tq with

4 Strictly speaking 2Q does not have a rank/order. It is easy to duplicate each subset
at every rank/order to obtain an ordered alphabet, which we avoid for simplicity.

Ordered Tree-Pushdown Systems 5

p P P and t P T pΣq, and, for every configuration pp, tq, S Ď P , and tree u,
pp, tq ÑS S ˆ tuu if, and only if, there exists a rule pp, lq Ñ pS, rq P R and a
substitution σ s.t. t “ lσ and u “ rσ.

Let A “ xΣ,Q,∆y be a tree automaton s.t. P Ď Q. The language of configu-
rations recognized by A from P is LpA, P q :“ tpp, tq P C | p P P and t P Lppqu.
Given an initial configuration pp0, t0q P C and a tree automaton A recognizing a
regular set of target configurations LpA, P q Ď C, the reachability problem for S
amounts to determine whether pp0, t0q P Pre˚pLpA, P qq.

3.1 Reachability analysis

We present a saturation-based procedure to decide reachability in ordered tree-
pushdown systems. This follows from a general preservation of recognizability
result for the backward reachability relation.

Theorem 1 (Preservation of recognizability). Let S be an order-n tree-
pushdown system and let C be regular set of configurations. Then, Pre˚pCq
is effectively regular, and an automaton recognizing it can be built in n-fold
exponential time.

Let S “ xn,Σ, P,Ry be a tree-pushdown system. The target set C is given as
a tree automaton A s.t. LpA, P q “ C. We construct a tree automaton B “

xΣ,Q1, ∆1y recognizing Pre˚pLpA, P qq. Q1 is obtained by adding states to Q,
and ∆1 by adding transitions to ∆ according to a saturation procedure. For
every rule p, l Ñ S, r P R and for every v which is a r-ground subtree of l we
create a new state pv of order ordpvq recognizing all ground trees that can be
obtained by replacing variables in v by arbitrary trees, i.e., Lppvq “ tvσ | σ :
V Ñ T pΣq ¨ vσ is groundu. Let Q0 be the set of such pv’s and let ∆0 the required
transitions. Notice that |Q0| ď |R|.

In order to deal with with deep rules we add new states in the following
stratified way: Let Q1n “ Q Y Q0, and, for every order 1 ď i ă n, let Q1i “

Q1i`1 Y
Ť

gPRd
tgu ˆ

´

2Q
1
i`1

¯rankpgq´1

, where rankpg “ p, l Ñ S, rq is the rank

of the root symbol in l. We define the set of states in B to be Q1 :“ Q11. We
add transitions to B in an iterative process until no more transitions can be
added. During the saturation process, we maintain the following invariant: For
1 ď k ă n, states in Q1kzQ

1
k`1 recognize only trees of order k. Therefore, B is also

an ordered tree automaton. Formally, ∆1 is the least set containing ∆Y∆0 and
closed under adding transitions according to the following condition: For every
rule g “ p, lÑ S, r P R with l “ apu1, . . . , umq, and for every run tree t from S
on r in B, we add a transition

p
a
ÝÑ P1 ¨ ¨ ¨Pm (∆1-shallow)

s.t., for every 1 ď i ď m, i) if ui “ x is a variable, then Pi :“
Ť

tpr´1pxqq,
ii) if ui is not a variable but is r-ground, then Pi :“ tpuiu, and iii) if g is a
deep rule, then for the unique uı̂ “ bpv1, . . . , vnq we let Pı̂ :“ tpı̂u where pı̂ :“

6 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

pg, P1, . . . , Pı̂´1, Pı̂`1, . . . , Pmq. Thanks to the ordering condition, if ordpbq “ k,
then P1, . . . , Pı̂´1, Pı̂`1, . . . , Pm Ď Q1k`1, and thus pı̂ is indeed a state of order k
in Q1kzQ

1
k`1. Then, we add the transition

pg, P1, . . . , Pı̂´1, Pı̂`1, . . . , Pmq
b
ÝÑ S1 ¨ ¨ ¨Sn (∆1-deep)

s.t., for every 1 ď j ď n, iii.1) if vj “ x is a variable, then Sj :“
Ť

tpr´1pxqq, and
iii.2) if vj is not a variable (and therefore necessarily r-ground), then Sj :“ tpvju.

Lemma 1. For A and B be as above, LpB, P q “ Pre˚pLpA, P qq.

The correctness proof, even though short, is presented in the appendix. The right-
to-left direction is by straightforward induction on the number of rewrite steps to
reach LpA, P q. The left-to-right direction is more subtle, but with an appropriate
invariant of the saturation process it also follows by a direct inspection.

3.2 Complexity

For an initial configuration pp0, t0q P C and an automaton A recognizing a regular
set of target configurations LpA, P q, we can decide the reachability problem by
constructing B as in the previous section, and then testing pp0, t0q P LpB, P q. In
the following, let m ą 1 be the maximal rank of any symbol in Σ. Using the
notation from the previous subsection we have that |Q1n| ď |Q| ` |R|, and, for

every 1 ď i ă n, |Q1i| ď
ˇ

ˇQ1i`1

ˇ

ˇ`|R| ¨ 2pm´1q¨|Q1i`1| ď O
´

|R| ¨ 2pm´1q¨|Q1i`1|
¯

, and

thus |Q1| ď expn´1pOppm´ 1q ¨ p|Q| ` |R|qqq, where exp0pxq “ x and, for i ě 0,

expi`1pxq “ 2expipxq. Similarly, we derive |∆1| ď expnpOppm´ 1q ¨ p|Q| ` |R|qqq.
Theorem 2. Reachability in order n tree-pushdown systems is n-EXPTIMEc.

We identify three subclasses of ordered tree-pushdown systems, for which the
reachability problem is of decreasing complexity. First we consider the class of
linear non-deterministic systems. Assume that A is non-deterministic. When
S is linear, i.e., variables in the r.h.s. of rules in R appear exactly once, all
Pi’s in (∆1-shallow) are singletons, and thus also B is also non-deterministic.
Consequently, the construction of Q1i can be simplified to avoid the exponen-

tial blow-up at each order: Q1i “ Q1i`1 Y
Ť

gPRd
tgu ˆ

`

Q1i`1

˘rankpgq´1
, yielding

|Q1| ď Opp|Q| ` |R|qpm´1qn
q and |∆1| ď Op|R| ¨ |Q1|mq. Therefore, B is doubly

exponential in n.

Theorem 3. Reachability in linear non-deterministic ordered tree-pushdown
systems is 2-EXPTIMEc.

If the system is shallow, then we do not need to add states recursively (Q1 :“
QYQ0), and we thus avoid the multiple exponential blow-up. The same happens
if the system is unary, i.e., m “ 1.

Theorem 4. Reachability in shallow/unary ordered tree-pushdown systems is
EXPTIMEc, and in PTIME for the non-deterministic variant.

All lower-bounds follow from the reductions presented in Sec. 4.

Ordered Tree-Pushdown Systems 7

4 Applications

In this section, we give examples of systems that can be encoded as ordered
tree-pushdown systems. Ordinary alternating pushdown systems (and even prefix-
rewrite systems) can be easily encoded as alternating ordered tree-pushdown
systems by viewing a word as a linear tree; the ordering condition is trivial since
symbols have arity ď 1. This yields an EXPTIME reachability procedure, by
Theorem 4. Tree-pushdown systems [?] can be seen as ordered tree-pushdown
systems where every rule is shallow. By Theorem 4, reachability in alternating
tree-pushdown systems is in EXPTIME. Both complexities above reduce to PTIME
for non-alternating systems. In the rest of the section, we show how to encode
four more sophisticated classes of systems, namely ordered multi-pushdown sys-
tems (Sec. 4.1), annotated high-order pushdown systems (Sec. 4.2), the Krivine
machine with states (Sec. 4.3), and ordered annotated multi-pushdown systems
(Sec. 4.4), and we show that reachability for these models can be decided with
tight complexity bounds using our saturation procedure.

4.1 Ordered multi-pushdown systems

In an ordered multi-pushdown systems there are n pushdowns. Symbols can be
pushed on any pushdown, but only the first non-empty pushdown can be popped
[?]. This is equivalent to say that to pop a symbol from the k-th pushdown, the
contents of the previous pushdowns 1, . . . , k ´ 1 should be discarded. Formally,
an alternating ordered multi-pushdown system is a tuple O “ xn, Γ,Q,∆y, where
n P Ną0 is the order of the system (i.e., the number of pushdowns), Γ is a finite
pushdown alphabet, Q is a finite set of control locations, and ∆ Ď QˆOnˆ2Q is a
set of rules of the form pp, o, P q with p P Q, P Ď Q, and o a pushdown operation in
On :“ tpushkpaq, popkpaq | 1 ď k ď n, a P Γ u. We say that O is non-deterministic
when P is a singleton for every rule. A multi-pushdown system induces an
alternating transition system xC,ÑOy where the set of configurations is C “
Qˆ pΓ˚qn, and transitions are defined as follows: for every pp, pushkpaq, P q P ∆
there exists a transition pp, w1, . . . , wnq ÑO Pˆtpw1, . . . , a¨wk, . . . , wnqu, and for
every pp, popkpaq, P q P ∆ there exists a transition pp, w1, . . . , a ¨ wk, . . . , wnq ÑO
P ˆtpε, . . . , ε, wk, ¨ ¨ ¨ , wnqu. For tp0u, T Ď Q, the reachability problem for O asks
whether pp0, ε, . . . , εq P Pre˚pT ˆ pΓ˚qnq.

Encoding. We show that an ordered multi-pushdown system can be simulated
by an ordered tree-pushdown system. The idea is to encode the k-th pushdown
as a linear tree of order k, and to encode a multi-pushdown as a tree of linear
pushdowns. Let K and ‚ be two new symbols not in Γ , let ΓK “ Γ Y tKu,
and let Σ “

Ť

1ďiďn ΓK ˆ tiu Y t‚u be an ordered alphabet, where a symbol
pa, iq P ΓK ˆ tiu has order i, rank 1 if a P Γ and rank 0 if a “ K. More-
over, ‚ has rank n and order 1. For simplicity, we write ai instead of pa, iq. A
multi-pushdown w1, . . . , wn, where each wj “ aj,1 . . . aj,nj

is encoded as the
tree encpw1, . . . , wnq :“ ‚pa11,1pa

1
1,2p. . .K

1qq, . . . , ann,1pa
n
n,2p. . .K

nqqq. For an or-
dered multi-pushdown system O “ xn, Γ,Q,∆y we define an equivalent ordered

8 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

tree-pushdown system S “ xn,Σ,Q,Ry with Σ defined as above, and set of
rules R defined as follows (we use the convention that variable xk has order
k): For every push rule pp, pushkpaq, P q P ∆, we have a rule p, ‚px1, . . . , xnq Ñ
P, ‚px1, . . . , a

kpxkq, . . . , xnq P R, and for every pop rule pp, popkpaq, P q P ∆,
we have p, ‚px1, . . . , a

kpxkq, . . . , xnq Ñ P, ‚pK1, . . . ,Kk´1, xk, xk`1, . . . , xnq P R.
Both kind of rules above are linear, and the latter one satisfies the ordering con-
dition since lower-order variables x1, . . . , xk´1 are discarded. It is easy to see that
pp, w1, . . . , wnq ÑO P ˆ tpw11, . . . , w

1
nqu if, and only if, pp, encpw1, . . . , wnqq ÑS

P ˆ tencpw11, . . . , w
1
nqu. Thus, the encoding preserves reachability properties. By

Theorem 2, we obtain a n-EXPTIME upper-bound for reachability in alternating
multi-pushdown systems of order n. Moreover, since S is linear, and since S is
non-deterministic when O is non-deterministic, by Theorem 3 we recover the
optimal 2-EXPTIMEc complexity of [?].

Theorem 5 ([?]). Reachability in alternating ordered multi-pushdown systems
is in n-EXPTIME. Reachability in non-deterministic ordered multi-pushdown
systems is 2-EXPTIMEc.

4.2 Annotated higher-order pushdown systems

Let Γ be a finite pushdown alphabet. In the following, we fix an order n ě 1,
and we let 1 ď k ď n range over orders. For our purpose, it is convenient to
expose the topmost pushdown at every order recursively5. We define Γk, the
set of pushdowns of order k, simultaneously for all 1 ď k ď n, as the least set
containing the empty pushdown x y, and, whenever u1 P Γ1, . . . , uk P Γk, vj P Γj
for some 1 ď j ď n, then xavj , u1, . . . , uky P Γk. Pushdown operations are as
follows. The operation pushbk pushes a symbol b P Γ on the top of the topmost
order-1 stack and annotates it with the topmost order-k stack, pushk duplicates
the topmost order-pk ´ 1q stack, popk removes the topmost order-pk ´ 1q stack,
and collapsek replaces the topmost order-k stack with the topmost order-k stack
annotating the topmost symbol:

pushbkpxa
u, u1, . . . , unyq “ xb

xau,u1,...,uky, xau, u1y, u2, . . . , uny

pushkpxa
u, u1, . . . , unyq “ xa

u, u1, . . . , uk´1, xa
u, u1, . . . , uky, uk`1, . . . , uny

popkpxa
u, v1, . . . , vk´1, xb

v, u1, . . . , uky, uk`1, . . . , unyq “ xb
v, u1, . . . , uny

collapsekpxa
xbv,v1,...,vky, u1, . . . , unyq “ xb

v, v1, . . . , vk, uk`1, . . . , uny

Let On “
Ťn
k“1tpush

b
k, pushk, popk, collapsek | b P Γ u be the set of stack op-

erations. An alternating order-n annotated pushdown automaton is a tuple
P “ xn, Γ,Q,∆y, where Γ is a finite stack alphabet, Q is a finite set of control
locations, and ∆ Ď Qˆ Γ ˆOn ˆ 2Q is a set of rules. An annotated pushdown
automaton induces a transition system xC,ÑPy, where C “ Q ˆ Γn, and the
transition relation is defined as pp, wq ÑP P ˆ tw1u whenever pp, a, o, P q P ∆
with w “ xau, ¨ ¨ ¨y and w1 “ opwq. Given tp0u, T Ď Q, the reachability problem
for P asks whether pp0, x yq P Pre˚pT ˆ Γnq.

5 Our definition is equivalent to [?].

Ordered Tree-Pushdown Systems 9

Encoding. We represent annotated pushdowns as trees. Let Σ be the ordered
alphabet containing, for each 1 ď k ď n, an end-of-stack symbol Kk P Σ of rank
0 and order k. Moreover, for each a P Γ and order 1 ď k ď n, there is a symbol
xa, ky P Σ of order k and rank k`1 representing the root of a tree encoding a stack
of order k. An order-k stack is encoded as a tree recursively by enckpx yq “ K

k and
enckpxa

u, u1, . . . , ukyq “ xa, kypenc1pu1q, . . . , enckpukq, encipuqq, where i is the
order of u. Let P “ xn, Γ,Q,∆y be an annotated pushdown system. We define an
equivalent ordered tree-pushdown system S “ xn,Σ,Q,Ry, where Σ is as defined
above, and R contains a rule p, l Ñ P, r for each rule in pp, a, o, P q P ∆, where
lÑ r is as follows (cf. also Fig. 1 in the appendix for a pictorial representation).
We use the convention that a variable subscripted by i has order i, and we write
xi..j for pxi, . . . , xjq, and similarly for zi..j :

xa, nypx1..n, yq Ñ xb, nypxa, 1ypx1, yq, x2..n, xa, kypx1..k, yq if o “ pushbk
xa, nypx1..n, yq Ñ xa, nypx1..k´1, xa, kypx1..k, yq, xk`1..n, yq if o “ pushk
xa, nypz1..k´1, xb, kypx1..k, yq, xk`1..n, zq Ñ xb, nypx1..n, yq if o “ popk
xa, nypz1..k, xk`1..n, xb, kypx1..k, yqq Ñ xb, nypx1..n, yq if o “ collapsek

The last two rules satisfy the ordering condition of tree-pushdown systems since
only higher-order variables xk`1, . . . , xn are not discarded. It is easy to see that
pp, wq ÑP Pˆtw1u if, and only if, pp, encnpwqq ÑS Pˆtencnpw

1qu. Consequently,
the encoding preserves reachability properties. Since an annotated pushdown
system of order n is simulated by a tree-pushdown system of the same order, the
following complexity result is an immediate consequence of Theorem 2.

Theorem 6 ([?]). Reachability in alternating annotated pushdown systems of
order n is n-EXPTIMEc.

4.3 Krivine machine with states

We show that the Krivine machine evaluating on simply-typed λY -terms can be
encoded as an ordered tree-pushdown system. This provides the first saturation
algorithm for the Krivine machine, yielding an optimal reachability procedure.

A type is either the basic type 0 or α Ñ β for types α, β. The level of a
type is levelp0q “ 1 and levelpαÑ βq “ maxplevelpαq`1, levelpβqq. We abbreviate
αÑ ¨ ¨ ¨ Ñ αÑ β as αk Ñ β. Let V “ txα1

1 , xα2
2 , . . . u be a countably infinite set

of typed variables, and let Γ be a ranked alphabet. A term is either (i) a constant

f0
k
Ñ0 P Γ , (ii) a variable xα P V, (iii) an abstraction pλxα ¨MβqαÑβ , (iv) an

application pMαÑβNαqβ , or (v) a fixpoint pYMαÑαqα. For a given term M , its
set of free variables is defined as usual. A term M is closed if it does not have any
free variable. We denote by ΛpMq be the set of sub-terms of M . An environment
ρ is a finite type-preserving function assigning closures to variables, and a closure
Cα is a pair consisting of a term of type α and an environment, as expressed by the
following mutually recursive grammar: ρ ::“ H | ρrxα ÞÑ Cαs and Cα ::“ pMα, ρq.
In a closure pMα, ρq, Mα is called the skeleton, and it determines the type and
level of the closure. Let ClαpMq be the set of closures of type α with skeleton

10 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

in ΛpMq. A alternating Krivine machine6 with states of level l P Ną0 is a tuple
M “ xl, Γ,Q,M0, ∆y, where xΓ,Q,∆y is an alternating tree automaton, and M0

is a closed term of type 0 s.t. the level of any sub-term in ΛpM0q is at most l.
In the following, let τ “ τ1 Ñ ¨ ¨ ¨ Ñ τk Ñ 0. The Krivine machine M induces a
transition system xC,ÑMy, where in a configuration pp, Cτ , Cτ11 , . . . , C

τk
k q P C, p P

Q, Cτ P Clτ pM0q is the head closure, and Cτ11 P Clτ1pM0q, . . . , Cτkk P ClτkpM0q

are the argument closures. The transition relation ÑM depends on the structure
of the skeleton of the head closure. It is deterministic except when the head is a
constant in Γ , in which case ∆ controls how the state changes:

pp, pxτ , ρq, Cτ11 , . . . , C
τk
k q ÑM tpp, ρpxqτ , Cτ11 , . . . , C

τk
k qu

pp, pMτNτ1 , ρq, Cτ22 , . . . , C
τk
k q ÑM tpp, pMτ , ρq, pNτ1 , ρq, Cτ22 , . . . , C

τk
k qu

pp, pYMτÑτ , ρq, Cτ11 , . . . , C
τk
k q ÑM tpp, pMτÑτ , ρq, ppYMqτ , ρq, Cτ11 , . . . , C

τk
k qu

pp, pλxτ0 ¨Mτ , ρq, Cτ00 , . . . , C
τk
k q ÑM tpp, pMτ , ρrxτ0 ÞÑ Cτ00 sq, C

τ1
1 , . . . , C

τk
k qu

pp, pa0
k
Ñ0, ρq, C0

1 , . . . , C
0
kq ÑM P1 ˆ tC

0
1u Y ¨ ¨ ¨ Y Pk ˆ tC

0
ku

for every p
a
ÝÑ P1 ¨ ¨ ¨Pk P ∆

Given tp0u, T Ď Q, the reachability problem for M asks whether pp0,M
0q P

Pre˚pT ˆ p
Ť

τ“τ1Ñ¨¨¨ÑτkÑ0 Cl
τ pM0q ˆ Clτ1pM0q ˆ ¨ ¨ ¨ ˆ ClτkpM0qqq.

Encoding. Following [?], we encode closures and configurations of the Krivine
machine as trees. Fix a Krivine machine M “ xl, Γ,Q,M0, ∆y of level l. We
assume a total order on all variables xxα1

1 , . . . , xαn
n y appearing in M0. For a

type τ , we define ordpτq “ l ´ levelpτq. We construct an ordered tree-pushdown
system S “ xl, Σ,Q1,Ry of order l as follows. The ordered alphabet is Σ “

tNτ , rNτ s | Nτ P ΛpM0qu Y tKu. Here, Nτ is a symbol of rankpNτ q “ n and
ordpNτ q “ ordpτq. Moreover, if τ “ τ1 Ñ ¨ ¨ ¨ Ñ τk Ñ 0 for some k ě 0, then rNτ s

is a symbol of rankprNτ sq “ n ` k and ordprNτ sq “ ordpτq. Finally, K is a leaf
of order 1. The set of states is Q1 “ QY

Ť

p
a
ÝÑP1¨¨¨PkP∆

tp1, P1q, . . . , pk, Pkqu. A

closure pNτ , ρq is encoded recursively as encpNτ , ρq “ Nτ pt1, . . . , tnq, where, for
every 1 ď i ď n, i) if xi P FVpN

τ q then ti “ encpρpxiqq, and ii) ti “ K otherwise.
A configuration c “ pp, pNτ , ρq, Cτ11 , . . . , C

τk
k q is encoded as the tree encpcq “

rNτ spt1, . . . , tn, encpC
τ1
1 q, . . . , encpC

τk
k qq, where the first n subtrees encode the

closure pNτ , ρq, i.e., encpNτ , ρq “ Nτ pt1, . . . , tnq. The encoding is extended point-
wise to sets of configurations. Below, we assume that τ “ τ1 Ñ ¨ ¨ ¨ Ñ τk Ñ 0,
that variable yj has order ordpτjq for every 1 ď j ď k, and that variables xi and x1i
have order ordpαiq for every 1 ď i ď n. Notice that ordpτq ă ordpτ1q, . . . , ordpτkq.
Moreover, we write x “ xx1, . . . , xny, z “ xz1, . . . , zny, and y “ xy1, . . . , yky. R
contains the following rules:

p, rxτi spz1, . . . ,M
τ pxq, . . . , zn, yq Ñtpu, rM

τ spx, yq

p, rMτNτ1spx, y2, . . . , ykq Ñtpu, rM
τ spx, Nτ1pxq, y2, . . . , ykq

p, rYMτÑτ spx, yq Ñtpu, rMτÑτ spx, Y Mpxq, yq

p, rλxτ0i ¨M
τ spx, y0, yq Ñtpu, rM

τ spx1, . . . , xi´1, y0, xi`1, . . . , xn, yq

6 Cf. also [?] for a definition of the Krivine machine in a different context.

Ordered Tree-Pushdown Systems 11

p, ra0
k
Ñ0spx, yq Ñ tp1, P1q, . . . , pk, Pkqu, ra

0kÑ0spx, yq @pp
a
ÝÑ P1 ¨ ¨ ¨Pk P ∆q

pi, Piq, ra
0kÑ0spz, y1, . . . ,M

0
i pxq, . . . , ykq Ñ Pi, rM

0
i spxq

The first rule satisfies the ordering condition since the shared variables yi’s are of
order strictly higher than Mτ . A direct inspection of the rules shows that, for a
configuration c and a set of configurations D, where tcu YD does not contain an
intermediate configuration of the form ppi, Piq, ¨ ¨ ¨ q, we have cÑ˚

M D if, and only
if, encpcq Ñ˚

S encpDq. Therefore, the encoding preserves reachability properties.
Since a Krivine machine of level n is simulated by a tree-pushdown system of
order n, the following is an immediate consequence of Theorem 2.

Theorem 7 ([?]). Reachability in alternating Krivine machines with states of
level n is n-EXPTIMEc.

4.4 Ordered annotated multi-pushdown systems

Ordered annotated multi-pushdown systems are the common generalization of
ordered multi-pushdown systems and annotated pushdown systems [?]. Such a
system is comprised of m ą 0 annotated higher-order pushdowns arranged from
left to right, where each pushdown is of order n ą 0. While push operations are
unrestricted, pop and collapse operations implicitly destroy all pushdowns to
the left of the pushdown being manipulated, in the spirit of [?]. [?] has shown
that reachability in this model can be decided in mn-fold exponential time, by
using a saturation-based construction leveraging on the previous analysis for the
first-order case [?]. In Sec. B in the appendix we provide a simple encoding of an
annotated multi-pushdown system with parameters pm,nq into a tree-pushdown
system of order mn. It is essentially obtained by taking together our previous
encodings of ordered (cf. Sec.4.1) and annotated systems (cf. Sec. 4.2). The
following complexity result is a direct consequence of Theorem 2.

Theorem 8 ([?]). Reachability in alternating ordered annotated multi-pushdown
systems of parameters pm,nq is in pmnq-EXPTIME.

5 Conclusions

We have introduced a novel extension of pushdown automata which is able to
capture several sophisticated models thanks to a simple ordering condition on the
tree-pushdown. As future research it would be interesting to study other restric-
tions, such as phase-bounding [?] or scope-bounding [?]. Our general saturation
algorithm can be used to verify reachability properties. We plan to extend it to
the more general parity properties, in the spirit of [?,?]. We leave as future work
implementing our saturation algorithm, leveraging on subsumption techniques to
keep the search space small.

Acknowledgments. We kindly acknowledge stimulating discussions with Irène
Durand, Géraud Sénizergues, and Jean-Marc Talbot.

12 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

A Proof of Lemma 1

Let A be the automaton recognizing the target set of configurations, and let B
be the automaton obtained at the end of the saturation procedure (cf. page 5).

Lemma 1. For A and B be as above, LpB, P q “ Pre˚pLpA, P qq.

We prove the two inclusions of the lemma separately.

Lemma 2 (Completeness). For A and B as above, Pre˚pLpA, P qq Ď LpB, P q.

Proof. Let pp, tq be a configuration in Pre˚pLpA, P qq with p P P and t “
apt1, . . . , tmq. We show pp, tq P LpB, P q by induction on the length d ě 0 of
the shortest sequence of rewrite steps from pp, tq to LpA, P q. If d “ 0, then
pp, tq P LpA, P q. Since the saturation procedure only adds states and transitions
to A, we directly have pp, tq P LpB, P q. Inductively, assume that the property
holds for all configurations reaching LpA, P q in at most d ě 0 steps, and let
configuration pp, tq be at distance d ` 1 ą 0 from LpA, P q. There exists a rule
p, lÑ S, r P R with l “ apu1, . . . , umq and a substitution σ s.t. t “ lσ and

pp, tq ÑS S ˆ trσu Ď Pre˚pLpA, P qq

By induction hypothesis, S ˆ trσu Ď LpB, P q. By definition of ∆1, automa-
ton B contains a transition p

a
ÝÑ P1 ¨ ¨ ¨Pm. It thus suffices to show that

t1 P LpP1q, . . . , tm P LpPmq. If ui “ x is a variable, then by definition Pi “
Ť

tpr´1pxqq. Since S ˆ trσu Ď LpB, P q, ti “ σpxq P LpPiq. If ui is not a variable
and r-ground, then Pi “ tp

uiu and ti P Lppuiq by construction. Finally, if ui
is not r-ground, then ui “ bpv1, . . . , vnq, ti “ bps1, . . . , snq, and B contains a

transition pg, P1, . . . , Pi´1, Pi`1, . . . , Pmq
b
ÝÑ S1 ¨ ¨ ¨Sn. Thus, it suffices to show

s1 P LpS1q, . . . , sn P LpSnq, which is done as above.

Lemma 3 (Soundness). For A and B as above, LpB, P q Ď Pre˚pLpA, P qq.

The soundness proof requires several steps. We assume w.l.o.g that in the au-
tomaton A initial states in P have no incoming transitions. Notice that this
property is preserved during the saturation procedure, therefore also in B there
are no transitions entering initial states in P . We also assume that in deep rules
p, apu1, . . . , umq Ñ S, r, the unique ui “ bp¨ ¨ ¨ q which is not r-ground actually
occurs in the first position, i.e, i “ 1. This is w.l.o.g. since we can always add
shallow rules that just reshuffle subtrees. First, we assign a semantics JpK Ď T pΣq
to all states p in B. For a set of states S Ď Q1, JSK :“

Ş

pPSJpK, where JpK is
defined as follows:

JpK :“

$

’

’

’

’

’

&

’

’

’

’

’

%

tt | pp, tq P Pre˚pLpA, P qqu if p P P

Lppq if p P QzP or p “ pv P Q0

"

t1 |
@pt2 P JP2K, . . . , tm P JPmKq¨

pq, apt1, . . . , tmqq P Pre˚pLpA, P qq

* if p P Q1izQ
1
i`1 for some 1 ď i ă n

with p “ pg, P2, . . . , Pmq,
and g “ pq, ap¨ ¨ ¨ q Ñ ¨ ¨ ¨ q

Ordered Tree-Pushdown Systems 13

In the second case, Lppq refers to the language of p in the automaton B. In the last
case, JpK is defined in terms of JP2K, . . . , JPmK, which is well-defined by induction
on the order since P2, . . . , Pm Ď Q1i`1. Second, we define sound transitions as

those respecting the semantics: Formally, a transition P
a
ÝÑ P1 ¨ ¨ ¨Pm is sound

iff whenever @pt1 P JP1K, . . . , tm P JPmKq, apt1, . . . , tmq P JP K.

Proposition 1. If all transitions are sound, then Lppq Ď JpK for every p P Q1.

Proof. Let t P Lppq. We proceed by complete induction on the height of t. If
t “ a is a leaf, then there exists a sound transition p

a
ÝÑ, and thus a P JpK

by definition of sound transition. For the inductive step, let t “ apt1, . . . , tmq.
There exists a sound transition p

a
ÝÑ P1 ¨ ¨ ¨Pm s.t. t1 P LpP1q, . . . , tm P LpPmq.

By induction hypothesis, t1 P JP1K, . . . , tm P JPmK, and thus by the definition of
sound transition, apt1, . . . , tmq P JpK.

Proposition 2. Transitions in ∆Y∆0 are sound.

Proof. Let p
a
ÝÑ P1 ¨ ¨ ¨Pm P ∆ Y ∆0, and let t1 P JP1K, . . . , tm P JPmK. Since

we assume that there are no transitions back to the initial states in P , we have
P1, . . . , Pm Ď QzP , and thus t1 P LpP1q, . . . , tm P LpPmq by the definition of
the semantics. Consequently, t :“ apt1, . . . , tmq P Lppq. If p R P we are done,
since JpK “ Lppq in this case. Otherwise, if p P P then pp, tq P LpA, P q, which is
included in Pre˚pLpA, P qq, and thus we have t P JpK by definition.

Proposition 3. The saturation procedure adds only sound transitions.

Proof. Let g “ p, l Ñ S, r with l “ apu1, . . . , umq, and let t be a sound run
tree in B from S on r. We show that the transition p

a
ÝÑ P1 ¨ ¨ ¨Pm as added

by rule (∆1-shallow) is sound. To this end, let t1 P JP1K, . . . , tm P JPmK, and
we show t1 :“ apt1, . . . , tmq P JpK. Since p P P , this amounts to showing that
pp, t1q P Pre˚pLpA, P qq. We apply the rewrite rule g above to configuration pp, t1q:

pp, t1q Ñ S ˆ trσu,

where σ is the unique substitution s.t. t1 “ lσ. (σ is unique since l is linear.) It thus
suffices to show Sˆtrσu Ď Pre˚pLpA, P qq. First, assume that g is shallow. Every
variable x appearing in r is labelled by t by the set of states Pi “

Ť

tpr´1pxqq,
for some i. Since t uses only sound transitions and t1 P JP1K, . . . , tm P JPmK, by
induction on its height we have rσ P JSK, which implies Sˆtrσu Ď Pre˚pLpA, P qq
by the definition of the semantics since S Ď P . If g is not shallow, then P1 “

tpg, P2, . . . , Pmqu. In this case, since t1 P JP1K, by the definition of the semantics,
we deduce directly pp, t1q P Pre˚pLpA, P qq.

When g is not shallow, the transition pg, P2, . . . , Pmq
b
ÝÑ S1 ¨ ¨ ¨Sn is addi-

tionally added by rule (∆1-deep), and we have to show that this transition is
sound too. Let w1 P JS1K, . . . , wn P JSnK, and we show t1 :“ bpw1, . . . , wnq P
Jpg, P2, . . . , PmqK. To this end, let t2 P JP2K, . . . , tm P JPmK, and we show

14 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

pp, apt1, . . . , tmqq P Pre˚pLpA, P qq. The proof is as above, noticing that t la-
bels a variable x in r by either Pi for some 2 ď i ď m, or Sj for some 1 ď j ď n,
and we can again conclude rσ P JSK by induction on the height of t.

Proof (of Lemma 3). By Proposition 2, the initial transitions in ∆ Y ∆0 are
sound, and by Proposition 3, all transitions in ∆1 are sound. Let pp, tq P LpB, P q.
Thus, t P Lppq. By Proposition 1, t P JpK. Since p P P , by the definition of the
semantics, pp, tq P Pre˚pLpA, P qq.

B Ordered annotated multi-pushdown systems

We encode ordered annotated multi-pushdown systems [?] into tree-pushdown
systems. Formally, an alternating ordered annotated multi-pushdown system is
a tuple R “ xm,n, Γ,Q,∆y, where m P Ną0 is the the number of higher-order
pushdowns, n P Ną0 is the order of each of the m higher-order pushdowns, Γ is a
finite pushdown alphabet, Q is a finite set of control locations, and ∆ Ď QˆΓmK ˆ

Oˆ2Q is a set of rules. Let O “
Ťm
l“1

Ťn
k“1tluˆtpush

b
k, pushk, popk, collapsek | b P

Γ u. Pop and collapse operations are called consuming. An alternating ordered
annotated multi-pushdown system R induces an alternating transition system
xC,ÑRy, C “ QˆΓmn , and pp, w1, . . . , wmq ÑR Pˆtpw11, . . . , w

1
mqu if, and only if,

there exists a rule pp, pa1, . . . , amq, pl, oq, P q P ∆ s.t. 1) w1 “ xa
u1
1 , ¨ ¨ ¨y, . . . , wm “

xaum
m , ¨ ¨ ¨y, 2) if o is consuming, then w11 “ ¨ ¨ ¨ “ w1l´1 “ x y, 3) if o is not

consuming, then w11 “ w1, . . . , w
1
l´1 “ wl´1, 4) w1l “ opwlq, and 5) w1l`1 “

wl`1, . . . , w
1
m “ wm. For tp0u, T Ď Q, the reachability problem for R asks

whether pp0, x y, . . . , x yq P Pre˚pT ˆ Γmn q.

Encoding. Let Σ be an ordered alphabet containing, for every a P ΓK, pushdown
index 1 ď l ď m, and order 1 ď k ď n a symbol pl, k, aq of order pl ´ 1q ¨ n` k
and rank k ` 1. Moreover, Σ also contains, for every tuple pa1, . . . , amq P Γ

m
K , a

symbol pa1, . . . , amq of order 1 and rank m ¨ pn` 1q. Thus Σ has order mn. Fix
a pushdown index l. An order-k pushdown is encoded as the tree

encl,kpxa
û, u1, . . . , ukyq “

pl, k, aq

encl,1pu1q ¨ ¨ ¨ encl,kpukq encl,ipûq

,

where i is the order of û, and a m-tuple of order-n pushdowns

w “ xaû1
1 , u1,1, . . . , u1,ny, . . . , wm “ xa

ûm
m , . . . , um,ny

is encoded as the as a the following tree encnpwq

pa1, . . . , amq

enc1,1pu1,1q ¨ ¨ ¨ enc1,npu1,nq enc1,i1pû1q ¨ ¨ ¨ encm,impûmq

Ordered Tree-Pushdown Systems 15

where i1 is the order of û1, . . . , im is the order of ûm.
Let xm,n, Γ,Q,∆y be an ordered annotated multi-pushdown system. We

define an equivalent ordered tree-pushdown system S “ xmn,Σ,Q,Ry of order
mn, where Σ and Q are as defined above, and R contains a rule for each rule
in ∆, as follows. We use the convention that a variable subscripted by pl, kq has
order pl ´ 1q ¨ n ` k, and we write xi..jl (with i ď j) for the tuple of variables

pxl,i, . . . , xl,jq. If pp, pa1, . . . , amq, pl, push
b
kq, P q P ∆, then there is the following

shallow rule in R:

p,
pa1, . . . , amq

x1..n1
y1 ¨ ¨ ¨ x1..nm

ym

ÝÑ P,
pa1, . . . , b, . . . , amq

¨ ¨ ¨ pl, 1, alq

xl,1 yl

x2..nl pl, k, alq

x1..kl
yl

¨ ¨ ¨

If pp, pa1, . . . , amq, pl, pushkq, P q P ∆, then there is the following shallow rule in
R:

p,
pa1, . . . , amq

x1..n1
y1 ¨ ¨ ¨ x1..nm

ym

ÝÑ P,
pa1, . . . , amq

¨ ¨ ¨ xl,k´1 pl, k, alq

x1..kl
yl

xl,k`1 ¨ ¨ ¨

If pp, pa1, . . . , amq, pl, popkq, P q P ∆, then there is the following deep rule in R:

p,
pa1, . . . , amq

¨ ¨ ¨ zl,k´1 pl, k, bq

x1..kl
yl

xl,k`1 ¨ ¨ ¨

ÝÑ P,
pa1, . . . , b, . . . , amq

K ¨ ¨ ¨ K x1..nl
yl ¨ ¨ ¨

Finally, if pp, pa1, . . . , amq, pl, collapsekq, P q P ∆, then there is the following deep
rule in R:

p,
pa1, . . . , amq

¨ ¨ ¨ z1..kl xk`1..n
l

pl, k, bq

x1..kl
yl

¨ ¨ ¨

ÝÑ P,
pa1, . . . , b, . . . , amq

K ¨ ¨ ¨ K x1..nl
yl ¨ ¨ ¨

The two deep rules above satisfy the ordering condition since pl, k, bq has order
pl´1q¨n`k, and all other variables xk`1..n

l , x1..nl`1 , yl`1, . . . , x1..nm , ym have strictly
higher order.

Lemma 4 (Simulation). We have that pp, wq ÑR P ˆ tw1u if, and only if,
pp, encnpwqq ÑS Pˆtencnpw

1qu. Thus, the reachability problem for R is equivalent
to the reachability problem for S.

16 Lorenzo Clemente, Sylvain Salvati, and Igor Walukiewicz

C The translation for annotated pushdown systems

We present graphically the rewrite rules of the resulting ordered tree transition
system. The rules in Figure 1 are the same as in the main text. We hope that
the graphical presentation better conveys the intuition behind them.

p,
xa, ny

x1..n y

ÝÑ P,
pb, nq

xa, 1y

x1 y

x2..n xa, ky

x1..k y

if o “ pushbk

p,
xa, ny

x1..n y

ÝÑ P,
xa, ny

x1..k´1 xa, ky

x1..k y

xk`1..n y

if o “ pushk

p,
xa, ny

z1..k´1 xb, ky

x1..k y

xk`1..n z

ÝÑ P,
xb, ny

x1..n y

if o “ popk

p,
xa, ny

z1..k xk`1..n xb, ky

x1..k y

ÝÑ P,
xb, ny

x1..n y

if o “ collapsek

Fig. 1: Translation from annotated pushdowns to ordered tree-pushdown systems.

Ordered Tree-Pushdown Systems 17

D The translation for Krivine machines

We present graphically the rewrite rules of the resulting ordered tree transition
system. The rules in Figure 2 are the same as in the main text. We hope that
the graphical presentation better conveys the intuition behind them.

p,
rxτi s

z1 ¨ ¨ ¨ Mτ

x

¨ ¨ ¨ zn y

ÝÑ tpu,
rMτ

s

x y

(var)

p,
rMτNτ1 s

x y2 ¨ ¨ ¨ yk

ÝÑ tpu,
rMτ

s

x Nτ1

x

y2 ¨ ¨ ¨ yk

(app)

p,
rYMτÑτ

s

x y

ÝÑ tpu,
rMτÑτ

s

x YM

x

y

(fix)

p,
rλxτ0i ¨M

τ
s

x y0 y

ÝÑ tpu,
rMτ

s

x1 ¨ ¨ ¨ xi´1 y0 xi`1 ¨ ¨ ¨ xn y

(abs)

p,
ra0

kÑ0
s

x y

ÝÑ tp1, P1q, . . . , pk, Pkqu,
ra0

kÑ0
s

x y

@pp
a
ÝÑ P1 ¨ ¨ ¨Pk P ∆q (const1)

pi, Piq,
ra0

kÑ0
s

x z1 ¨ ¨ ¨ M0
i

y

¨ ¨ ¨ zk

ÝÑ Pi,
M0
i

x

(const2)

Fig. 2: Translation from the Krivine machine to ordered tree-pushdown systems.

	Ordered Tree-Pushdown Systems

