Lorenzo Clemente

Sylvain Salvati

Igor Walukiewicz

Ordered Tree-Pushdown Systems

We define a new class of pushdown systems where the pushdown is a tree instead of a word. We allow a limited form of lookahead on the pushdown conforming to a certain ordering restriction, and we show that the resulting class enjoys a decidable reachability problem. This follows from a preservation of recognizability result for the backward reachability relation of such systems. As an application, we show that our simple model can encode several formalisms generalizing pushdown systems, such as ordered multi-pushdown systems, annotated higher-order pushdown systems, the Krivine machine, and ordered annotated multipushdown systems. In each case, our procedure yields tight complexity.

Introduction

Context. Modeling complex systems requires to strike the right balance between the accuracy of the model, and the complexity of its analysis. A particularly successful example is given by pushdown systems, which are a popular class of infinite-state systems arising in diverse contexts, such as language processing, data-flow analysis, security, computational biology, and program verification. Many interesting analyses reduce to checking reachability in pushdown systems, which can be decided in PTIME using, e.g., the popular saturation technique [?,?] (cf. also the recent survey [?]). Pushdown systems have been generalized in several directions. In [?] tree-pushdown systems are introduced, where the pushdown is a tree instead of a linear word. It is observed that, unlike ordinary pushdown systems, non-destructive lookahead on the pushdown cannot be introduced without leading to undecidability. It is proved that, when seen as automata, the pushdown can be linearized without changing the expressiveness of the model w.r.t. the class of recognized tree languages.

A seemingly unrelated generalization is ordered multi-pushdown systems [?,?], where several linear pushdowns are available instead of just one. Since already two unrestricted linear pushdowns can simulate a Turing machine, an ordering restriction is put on popping transitions, requiring that all pushdowns smaller than the popped one are empty. Reachability in this model is 2-EXPTIMEc [?].

Higher-order pushdown systems generalize ordinary pushdown systems by allowing pushdowns to be nested inside other pushdowns [?,?]. Collapsible pushdown systems [?,?] additionally enrich pushdown symbols with collapse links to inner sub-pushdowns. This allows the automaton to push a new symbol and to save, at the same time, the current context in which the symbol is pushed, and to later return to this context via a collapse operation. Annotated pushdown systems [?] provide a simplification of collapsible pushdown systems by replacing collapse links with arbitrary pushdown annotations3 . The Krivine machine [?] is a related model which evaluates terms in simply-typed λY -calculus. Reachability in all these models is pn ´1q-EXPTIMEc [?,?], and one exponential higher in the presence of alternation. The more general ordered annotated multi-pushdown systems [?] have several annotated pushdown systems under an ordering restriction similar to [?] in the first-order case. They subsume both ordered multi-pushdown systems and annotated pushdown systems. The saturation method (cf. [?]) has been adapted to most of these models, and it is the basis of the prominent MOPED tool [?] for the analysis of pushdown systems, as well as the C-SHORe model-checker for annotated pushdown systems [?].

Contributions. Motivated by a unification of the results above, we introduce ordered tree-pushdown systems. This is a natural model extending tree-pushdown systems by allowing a limited form of partially destructive lookahead on the pushdown. We introduce an order between pushdown symbols, and we require that, whenever a sub-pushdown is read, all sub-pushdowns of smaller order must be discarded. The obtained model is expressive enough to simulate all systems mentioned above, and still not Turing-powerful thanks to the ordering condition. Our contributions are: i) A general preservation of recognizability result for ordered tree-pushdown systems. ii) Direct encoding of several popular extensions of pushdown systems, such as ordered multi-pushdown systems, annotated pushdown systems, the Krivine machine, and ordered annotated multi-pushdown systems. iii) A conceptually simple saturation algorithm working on finite tree automata representing sets of configurations, subsuming and unifying previous constructions. iv) A complete complexity characterization of reachability in ordered tree-pushdown systems and natural subclasses thereof. v) A short and simple correctness proof, simplifying substantially the previous literature.

Related work. Apart from the results mentioned above, we should note a saturation method for recursive program schemes [?]. Since schemes and λY -calculus are equi-expressive, our method can also be adapted to schemes. Concerning multipushdown systems, apart from the restriction based on the pushdown order there are other restrictions making their analysis decidable. Indeed, in [?] decidability is proved for annotated multi-pushdowns with phase-bounded and scope-bounded restrictions. It is not clear how to treat these restrictions in the simple framework presented here. For standard multi-pushdown systems split-width has been proposed as a unifying restriction [?]. It is not known how to extend this method to annotated multi-pushdown systems, or to our tree-pushdown systems.

Outline. In Sec. 2 we introduce common notions. In Sec. 3 we define our model and we present our saturation-based algorithm to decide reachability. In Sec. 4 we show that ordered systems can optimally encode several popular formalisms. In Sec. 5 we conclude with some perspectives on open problems.

Preliminaries

We will work with rewriting systems on ranked trees, and with alternating tree automata. The novelty is that every letter of the ranked alphabet will have an order. A tree will have the order determined by the letter in the root. The order will be used later to constrain rewriting rules.

An alternating transition system is a tuple S " xC, Ñy, where C is the set of configurations and ÑĎ C ˆ2C is the alternating transition relation. We lift the relation Ñ to sets of configurations A, B Ď C by defining A Ñ B iff, for every c P A, there exists C Ď B s.t. c Ñ C, and we denote by Ñ ˚its reflexive and transitive closure. The set of predecessors of a set C Ď C of configurations is Pre ˚pC q " tc | tcu Ñ ˚C u.

Ordered trees. Let N be the set of non-negative integers, and let N ą0 be the set of strictly positive integers. A node is an element u P N ą0 . A node u is a predecessor of a node v iff u is a prefix of v, i.e., there exists w P N ą0 s.t. v " uw, and similarly for the notion of successor. A tree domain is a non-empty prefix-closed set of nodes D Ď N ą0 s.t., if u ¨pi `1q P D, then u ¨i P D for every i P N ą0 . A leaf is a node u in D without successors. A ranked alphabet is a pair pΣ, rankq of a set of symbols Σ together with a ranking function rank : Σ Ñ N. An ordered alphabet is a triple pΣ, rank, ordq where pΣ, rankq is a ranked alphabet and ord : Σ Ñ N ą0 . For a ranked/ordered alphabet pΣ, rank, ordq and a finite tree domain D, a finite Σ-tree (or just tree) is a function t : D Ñ Σ that assigns to each node u in D with n successors a label a " tpuq in Σ s.t. rankpaq " n. The size of t is |t| :" |D|. For a Σ-tree t : D Ñ Σ and label a P Σ, let t ´1paq " tu P D | tpuq " au be the set of nodes labelled with a. We denote by T pΣq the set of Σ-trees. The order of a tree t is ordptq :" ordptpεqq.

Rewriting. For each order n P N, let V n be a countably infinite set of variables s.t. V 0 , V 1 , . . . are pairwise disjoint, and let V " Ť n V n . We consider the extended ordered alphabet pΣ Y V, rank, ordq where a variable x P V n has rankpxq " 0 and ordpxq " n. Let T pΣ, Vq be the set of pΣ Y Vq-trees. Fix a pΣ Y Vq-tree t, and let Vptq be the set of variables appearing in it. t is linear if each variable in Vptq appears exactly once in t. For a pΣ Y Vq-tree u, t is u-ground if Vptq X Vpuq " H. A tree t " apt 1 , . . . , t n q is u-shallow if each t i is either u-ground, or just a variable (possibly appearing in u). A substitution is a finite mapping σ : V Ñ T pΣ Y Vq s.t. ordpσpxqq " ordpxq. Given a pΣ Y Vq-tree t and a substitution σ, tσ is the pΣ Y Vq-tree obtained by replacing each variable x in t in the domain of σ with σpxq. A rewrite rule over Σ is a pair l Ñ r of pΣ Y Vq-trees l and r. A rewrite rule l Ñ r is left-linear if l is linear, and it is shallow if l is r-shallow.

Alternating tree automata. An alternating tree automaton (or just tree automaton) is a tuple B " xΣ, Q, ∆y where Σ is a finite ranked alphabet, Q is a finite set of states, and ∆ Ď Q ˆΣ ˆp2 Q q ˚is a set of alternating transitions of the form p a ÝÑ P 1 ¨¨¨P n , with a of rank n. We say that B is non-deterministic if, for every transition as above, all P j 's are just singletons, and we omit the braces in this case. An automaton is ordered if, for every state p and symbols a, b s.t. p a ÝÑ ¨¨ä nd p b ÝÑ ¨¨¨, we have ordpaq " ordpbq. We assume w.l.o.g. that automata are ordered, and we denote by ordppq the order of state p. The transition relation is extended to a set of states P Ď Q by defining P a ÝÑ P 1 ¨¨¨P n iff, for every p P P , there exists a transition p a ÝÑ P p 1 ¨¨¨P p n , and P j " Ť pPP P p j for every 1 ď j ď n. It will be useful later in the definition of the saturation procedure to define run trees not just on ground trees, but also on trees possibly containing variables. A variable of order k is treated like a leaf symbol which is accepted by all states of the same order. Let P Ď Q be a set of states, and let t : D Ñ pΣ Y Vq be an input tree. A run tree from P on t is a 2 Q -tree4 s : D Ñ 2 Q over the same tree domain D s.t. spεq " P , and: i) if tpuq " a is not a variable and of rank n, then spuq a ÝÑ spu ¨1q ¨¨¨spu ¨nq, and ii if tpuq " x then @p P spuq, ordppq " ordpxq. The language recognized by a set of states P Ď Q, denoted by LpP q, is the set of Σ-trees t s.t. there exists a run tree from P on t.

Ordered tree-pushdown systems

We introduce a generalization pushdown systems, where the pushdown is a tree instead of a linear word. An alternating ordered tree-pushdown system of order n P N ą0 is a tuple S " xn, Σ, P, Ry where Σ is an ordered alphabet containing symbols of order at most n, P is a finite set of control locations, and R is a set of rules of the form p, l Ñ S, r s.t. p P P and S Ď P . Moreover, l Ñ r is a left-linear rewrite rule over Σ with l :" apu 1 , . . . , u m q such that at most one u î is neither r-ground nor a variable, and if such an u î exists then (1) u î " bpv 1 , . . . , v n q with b P Σ and all v j 's either r-ground or a variable, and

(2) for every j P t1, . . . , mu, j " î: if ordpu j q ď ordpbq then u j is r-ground.

We refer to p2q as the ordering condition. A rule is called deep if u î exists, otherwise it is shallow ; let R d be the set of deep rules. For example, apx, yq Ñ cpapx, yq, xq is shallow, but apbpxq, yq Ñ cpx, yq is deep; here necessarily ordpyq ą ordpbq. In Sec. 4 we provide more examples of such rewrite rules by encoding many popular formalisms. Note that r can be non-linear, thus sub-trees can be duplicated. The

size of S is |S| :" |Σ| `|P | `|R|, where |R| :" ř p,lÑS,rPR p1 `|l| `|S| `|r|q.
We say that S is non-deterministic if S is a singleton for every rule p, l Ñ S, r P R, and shallow if every rule is shallow. Rewrite rules induce an alternating transition system xC, Ñ S y, where the set of configurations C consists of pairs pp, tq with p P P and t P T pΣq, and, for every configuration pp, tq, S Ď P , and tree u, pp, tq Ñ S S ˆtuu if, and only if, there exists a rule pp, lq Ñ pS, rq P R and a substitution σ s.t. t " lσ and u " rσ.

Let A " xΣ, Q, ∆y be a tree automaton s.t. P Ď Q. The language of configurations recognized by A from P is LpA, P q :" tpp, tq P C | p P P and t P Lppqu. Given an initial configuration pp 0 , t 0 q P C and a tree automaton A recognizing a regular set of target configurations LpA, P q Ď C, the reachability problem for S amounts to determine whether pp 0 , t 0 q P Pre ˚pLpA, P qq.

Reachability analysis

We present a saturation-based procedure to decide reachability in ordered treepushdown systems. This follows from a general preservation of recognizability result for the backward reachability relation.

Theorem 1 (Preservation of recognizability). Let S be an order-n treepushdown system and let C be regular set of configurations. Then, Pre ˚pC q is effectively regular, and an automaton recognizing it can be built in n-fold exponential time.

Let S " xn, Σ, P, Ry be a tree-pushdown system. The target set C is given as a tree automaton A s.t. LpA, P q " C. We construct a tree automaton B " xΣ, Q 1 , ∆ 1 y recognizing Pre ˚pLpA, P qq. Q 1 is obtained by adding states to Q, and ∆ 1 by adding transitions to ∆ according to a saturation procedure. For every rule p, l Ñ S, r P R and for every v which is a r-ground subtree of l we create a new state p v of order ordpvq recognizing all ground trees that can be obtained by replacing variables in v by arbitrary trees, i.e., Lpp v q " tvσ | σ : V Ñ T pΣq ¨vσ is groundu. Let Q 0 be the set of such p v 's and let ∆ 0 the required transitions. Notice that |Q 0 | ď |R|.

In order to deal with with deep rules we add new states in the following stratified way: Let Q 1 n " Q Y Q 0 , and, for every order 1 ď i ă n, let

Q 1 i " Q 1 i`1 Y Ť gPR d tgu ˆ´2 Q 1 i`1 ¯rankpgq´1
, where rankpg " p, l Ñ S, rq is the rank of the root symbol in l. We define the set of states in B to be Q 1 :" Q 1 1 . We add transitions to B in an iterative process until no more transitions can be added. During the saturation process, we maintain the following invariant: For 1 ď k ă n, states in Q 1 k zQ 1 k`1 recognize only trees of order k. Therefore, B is also an ordered tree automaton. Formally, ∆ 1 is the least set containing ∆ Y ∆ 0 and closed under adding transitions according to the following condition: For every rule g " p, l Ñ S, r P R with l " apu 1 , . . . , u m q, and for every run tree t from S on r in B, we add a transition

p a ÝÑ P 1 ¨¨¨P m (∆ 1 -shallow) s.t., for every 1 ď i ď m, i) if u i "
x is a variable, then P i :" Ť tpr ´1pxqq, ii) if u i is not a variable but is r-ground, then P i :" tp ui u, and iii) if g is a deep rule, then for the unique u î " bpv 1 , . . . , v n q we let P î :" tp îu where p î :" pg, P 1 , . . . , P î´1 , P î`1 , . . . , P m q. Thanks to the ordering condition, if ordpbq " k, then P 1 , . . . , P î´1 , P î`1 , . . . , P m Ď Q 1 k`1 , and thus p î is indeed a state of order k in Q 1 k zQ 1 k`1 . Then, we add the transition pg, P 1 , . . . , P î´1 , P î`1 , . . . , P m q b ÝÑ S 1 ¨¨¨S n (∆ 1 -deep) s.t., for every 1 ď j ď n, iii.1) if v j " x is a variable, then S j :" Ť tpr ´1pxqq, and iii.2) if v j is not a variable (and therefore necessarily r-ground), then S j :" tp vj u.

Lemma 1. For A and B be as above, LpB, P q " Pre ˚pLpA, P qq.

The correctness proof, even though short, is presented in the appendix. The rightto-left direction is by straightforward induction on the number of rewrite steps to reach LpA, P q. The left-to-right direction is more subtle, but with an appropriate invariant of the saturation process it also follows by a direct inspection.

Complexity

For an initial configuration pp 0 , t 0 q P C and an automaton A recognizing a regular set of target configurations LpA, P q, we can decide the reachability problem by constructing B as in the previous section, and then testing pp 0 , t 0 q P LpB, P q. In the following, let m ą 1 be the maximal rank of any symbol in Σ. Using the notation from the previous subsection we have that |Q 1 n | ď |Q| `|R|, and, for every

1 ď i ă n, |Q 1 i | ď ˇˇQ 1 i`1 ˇˇ`|R| ¨2pm´1q¨|Q 1 i`1 | ď O ´|R| ¨2pm´1q¨|Q 1 i`1
| ¯, and thus |Q 1 | ď exp n´1 pOppm ´1q ¨p|Q| `|R|qqq, where exp 0 pxq " x and, for i ě 0, exp i`1 pxq " 2 exp i pxq . Similarly, we derive |∆ 1 | ď exp n pOppm ´1q ¨p|Q| `|R|qqq.

Theorem 2. Reachability in order n tree-pushdown systems is n-EXPTIMEc.

We identify three subclasses of ordered tree-pushdown systems, for which the reachability problem is of decreasing complexity. First we consider the class of linear non-deterministic systems. Assume that A is non-deterministic. When S is linear, i.e., variables in the r.h.s. of rules in R appear exactly once, all P i 's in (∆ 1 -shallow) are singletons, and thus also B is also non-deterministic. Consequently, the construction of Q 1 i can be simplified to avoid the exponential blow-up at each order:

Q 1 i " Q 1 i`1 Y Ť gPR d tgu ˆ`Q 1 i`1 ˘rankpgq´1 , yielding |Q 1 | ď Opp|Q| `|R|q pm´1q n q and |∆ 1 | ď Op|R| ¨|Q 1 | m q. Therefore, B is doubly exponential in n.
Theorem 3. Reachability in linear non-deterministic ordered tree-pushdown systems is 2-EXPTIMEc.

If the system is shallow, then we do not need to add states recursively (Q 1 :" Q Y Q 0), and we thus avoid the multiple exponential blow-up. The same happens if the system is unary, i.e., m " 1.

Theorem 4. Reachability in shallow/unary ordered tree-pushdown systems is EXPTIMEc, and in PTIME for the non-deterministic variant.

All lower-bounds follow from the reductions presented in Sec. 4.

Applications

In this section, we give examples of systems that can be encoded as ordered tree-pushdown systems. Ordinary alternating pushdown systems (and even prefixrewrite systems) can be easily encoded as alternating ordered tree-pushdown systems by viewing a word as a linear tree; the ordering condition is trivial since symbols have arity ď 1. This yields an EXPTIME reachability procedure, by Theorem 4. Tree-pushdown systems [?] can be seen as ordered tree-pushdown systems where every rule is shallow. By Theorem 4, reachability in alternating tree-pushdown systems is in EXPTIME. Both complexities above reduce to PTIME for non-alternating systems. In the rest of the section, we show how to encode four more sophisticated classes of systems, namely ordered multi-pushdown systems (Sec. 4.1), annotated high-order pushdown systems (Sec. 4.2), the Krivine machine with states (Sec. 4.3), and ordered annotated multi-pushdown systems (Sec. 4.4), and we show that reachability for these models can be decided with tight complexity bounds using our saturation procedure.

Ordered multi-pushdown systems

In an ordered multi-pushdown systems there are n pushdowns. Symbols can be pushed on any pushdown, but only the first non-empty pushdown can be popped [?]. This is equivalent to say that to pop a symbol from the k-th pushdown, the contents of the previous pushdowns 1, . . . , k ´1 should be discarded. Formally, an alternating ordered multi-pushdown system is a tuple O " xn, Γ, Q, ∆y, where n P N ą0 is the order of the system (i.e., the number of pushdowns), Γ is a finite pushdown alphabet, Q is a finite set of control locations, and ∆ Ď QˆO n ˆ2Q is a set of rules of the form pp, o, P q with p P Q, P Ď Q, and o a pushdown operation in O n :" tpush k paq, pop k paq | 1 ď k ď n, a P Γ u. We say that O is non-deterministic when P is a singleton for every rule. A multi-pushdown system induces an alternating transition system xC, Ñ O y where the set of configurations is C " Q ˆpΓ ˚qn , and transitions are defined as follows: for every pp, push k paq, P q P ∆ there exists a transition pp, w 1 , . . . , w n q Ñ O P ˆtpw 1 , . . . , a¨w k , . . . , w n qu, and for every pp, pop k paq, P q P ∆ there exists a transition pp, w 1 , . . . , a ¨wk , . . . , w n q Ñ O P ˆtpε, . . . , ε, w k , ¨¨¨, w n qu. For tp 0 u, T Ď Q, the reachability problem for O asks whether pp 0 , ε, . . . , εq P Pre ˚pT ˆpΓ ˚qn q.

Encoding. We show that an ordered multi-pushdown system can be simulated by an ordered tree-pushdown system. The idea is to encode the k-th pushdown as a linear tree of order k, and to encode a multi-pushdown as a tree of linear pushdowns. Let K and ' be two new symbols not in Γ , let Γ K " Γ Y tKu, and let Σ " Ť 1ďiďn Γ K ˆtiu Y t'u be an ordered alphabet, where a symbol pa, iq P Γ K ˆtiu has order i, rank 1 if a P Γ and rank 0 if a " K. Moreover, ' has rank n and order 1. For simplicity, we write a i instead of pa, iq. A multi-pushdown w 1 , . . . , w n , where each w j " a j,1 . . . a j,nj is encoded as the tree encpw 1 , . . . , w n q :" 'pa 1 1,1 pa 1 1,2 p. . . K 1 qq, . . . , a n n,1 pa n n,2 p. . . K n qqq. For an ordered multi-pushdown system O " xn, Γ, Q, ∆y we define an equivalent ordered tree-pushdown system S " xn, Σ, Q, Ry with Σ defined as above, and set of rules R defined as follows (we use the convention that variable x k has order k): For every push rule pp, push k paq, P q P ∆, we have a rule p, 'px 1 , . . . , x n q Ñ P, 'px 1 , . . . , a k px k q, . . . , x n q P R, and for every pop rule pp, pop k paq, P q P ∆, we have p, 'px 1 , . . . , a k px k q, . . . , x n q Ñ P, 'pK 1 , . . . , K k´1 , x k , x k`1 , . . . , x n q P R. Both kind of rules above are linear, and the latter one satisfies the ordering condition since lower-order variables x 1 , . . . , x k´1 are discarded. It is easy to see that pp, w 1 , . . . , w n q Ñ O P ˆtpw 1 1 , . . . , w 1 n qu if, and only if, pp, encpw 1 , . . . , w n qq Ñ S P ˆtencpw 1 1 , . . . , w 1 n qu. Thus, the encoding preserves reachability properties. By Theorem 2, we a n-EXPTIME upper-bound for reachability in alternating multi-pushdown systems of order n. Moreover, since S is linear, and since S is non-deterministic when O is non-deterministic, by Theorem 3 we recover the optimal 2-EXPTIMEc complexity of [?].

Theorem 5 ([?]). Reachability in alternating ordered multi-pushdown systems is in n-EXPTIME. Reachability in non-deterministic ordered multi-pushdown systems is 2-EXPTIMEc.

Annotated higher-order pushdown systems

Let Γ be a finite pushdown alphabet. In the following, we fix an order n ě 1, and we let 1 ď k ď n range over orders. For our purpose, it is convenient to expose the topmost pushdown at every order recursively5 . We define Γ k , the set of pushdowns of order k, simultaneously for all 1 ď k ď n, as the least set containing the empty pushdown x y, and, whenever u 1 P Γ 1 , . . . , u k P Γ k , v j P Γ j for some 1 ď j ď n, then xa vj , u 1 , . . . , u k y P Γ k . Pushdown operations are as follows. The operation push b k pushes a symbol b P Γ on the top of the topmost order-1 stack and annotates it with the topmost order-k stack, push k duplicates the topmost order-pk ´1q stack, pop k removes the topmost order-pk ´1q stack, and collapse k replaces the topmost order-k stack with the topmost order-k stack annotating the topmost symbol: push b k pxa u , u 1 , . . . , u n yq " xb xa u ,u1,...,u k y , xa u , u 1 y, u 2 , . . . , u n y push k pxa u , u 1 , . . . , u n yq " xa u , u 1 , . . . , u k´1 , xa u , u 1 , . . . , u k y, u k`1 , . . . , u n y

pop k pxa u , v 1 , . . . , v k´1 , xb v , u 1 , . . . , u k y, u k`1 , . . . , u n yq " xb v , u 1 , . . . , u n y collapse k pxa xb v ,v1,...,v k y , u 1 , . . . , u n yq " xb v , v 1 , . . . , v k , u k`1 , . . . , u n y Let O n " Ť n k"1 tpush b k , push k , pop k , collapse k | b P Γ
u be the set of stack operations. An alternating order-n annotated pushdown automaton is a tuple P " xn, Γ, Q, ∆y, where Γ is a finite stack alphabet, Q is a finite set of control locations, and ∆ Ď Q ˆΓ ˆOn ˆ2Q is a set of rules. An annotated pushdown automaton induces a transition system xC, Ñ P y, where C " Q ˆΓn , and the transition relation is defined as pp, wq Ñ P P ˆtw 1 u whenever pp, a, o, P q P ∆ with w " xa u , ¨¨¨y and w 1 " opwq. Given tp 0 u, T Ď Q, the reachability problem for P asks whether pp 0 , x yq P Pre ˚pT ˆΓn q.

Encoding. We represent annotated pushdowns as trees. Let Σ be the ordered alphabet containing, for each 1 ď k ď n, an end-of-stack symbol K k P Σ of rank 0 and order k. Moreover, for each a P Γ and order 1 ď k ď n, there is a symbol xa, ky P Σ of order k and rank k`1 representing the root of a tree encoding a stack of order k. An order-k stack is encoded as a tree recursively by enc k px yq " K k and enc k pxa u , u 1 , . . . , u k yq " xa, kypenc 1 pu 1 q, . . . , enc k pu k q, enc i puqq, where i is the order of u. Let P " xn, Γ, Q, ∆y be an annotated pushdown system. We define an equivalent ordered tree-pushdown system S " xn, Σ, Q, Ry, where Σ is as defined above, and R contains a rule p, l Ñ P, r for each rule in pp, a, o, P q P ∆, where l Ñ r is as follows (cf. also Fig. 1 in the appendix for a pictorial representation). We use the convention that a variable subscripted by i has order i, and we write x i..j for px i , . . . , x j q, and similarly for z i..j :

xa, nypx 1..n , yq Ñ xb, nypxa, 1ypx 1 , yq, x 2..n , xa, kypx 1..k , yq if o " push b k xa, nypx 1..n , yq Ñ xa, nypx 1..k´1 , xa, kypx 1..k , yq, x k`1..n , yq if o " push k xa, nypz 1..k´1 , xb, kypx 1..k , yq, x k`1..n , zq Ñ xb, nypx 1..n , yq if o " pop k xa, nypz 1..k , x k`1..n , xb, kypx 1..k , yqq Ñ xb, nypx 1..n , yq if o " collapse k
The last two rules satisfy the ordering condition of tree-pushdown systems since only higher-order variables x k`1 , . . . , x n are not discarded. It is easy to see that pp, wq Ñ P P ˆtw 1 u if, and only if, pp, enc n pwqq Ñ S P ˆtenc n pw 1 qu. Consequently, the encoding preserves reachability properties. Since an annotated pushdown system of order n is simulated by a tree-pushdown system of the same order, the following complexity result is an immediate consequence of Theorem 2.

Theorem 6 ([?]). Reachability in alternating annotated pushdown systems of order n is n-EXPTIMEc.

Krivine machine with states

We show that the Krivine machine evaluating on simply-typed λY -terms can be encoded as an ordered tree-pushdown system. This provides the first saturation algorithm for the Krivine machine, yielding an optimal reachability procedure.

A type is either the basic type 0 or α Ñ β for types α, β. The level of a type is levelp0q " 1 and levelpα Ñ βq " maxplevelpαq `1, levelpβqq. We abbreviate α Ñ ¨¨¨Ñ α Ñ β as α k Ñ β. Let V " tx α1 1 , x α2 2 , . . . u be a countably infinite set of typed variables, and let Γ be a ranked alphabet. A term is either (i) a constant f 0 k Ñ0 P Γ , (ii) a variable x α P V, (iii) an abstraction pλx α ¨M β q αÑβ , (iv) an application pM αÑβ N α q β , or (v) a fixpoint pY M αÑα q α . For a given term M , its set of free variables is defined as usual. A term M is closed if it does not have any free variable. We denote by ΛpM q be the set of sub-terms of M . An environment ρ is a finite type-preserving function assigning closures to variables, and a closure C α is a pair consisting of a term of type α and an environment, as expressed by the following mutually recursive grammar: ρ ::" H | ρrx α Þ Ñ C α s and C α ::" pM α , ρq. In a closure pM α , ρq, M α is called the skeleton, and it determines the type and level of the closure. Let Cl α pM q be the set of closures of type α with skeleton in ΛpM q. A alternating Krivine machine 6 with states of level l P N ą0 is a tuple M " xl, Γ, Q, M 0 , ∆y, where xΓ, Q, ∆y is an alternating tree automaton, and M 0 is a closed term of type 0 s.t. the level of any sub-term in ΛpM 0 q is at most l. In the following, let τ " τ 1 Ñ ¨¨¨Ñ τ k Ñ 0. The Krivine machine M induces a transition system xC, Ñ M y, where in a configuration pp, C τ , C τ1 1 , . . . , C τ k k q P C, p P Q, C τ P Cl τ pM 0 q is the head closure, and C τ1 1 P Cl τ1 pM 0 q, . . . , C τ k k P Cl τ k pM 0 q are the argument closures. The transition relation Ñ M depends on the structure of the skeleton of the head closure. It is deterministic except when the head is a constant in Γ , in which case ∆ controls how the state changes:

pp, px τ , ρq, C τ1 1 , . . . , C τ k k q Ñ M tpp, ρpxq τ , C τ1 1 , . . . , C τ k k qu pp, pM τ N τ1 , ρq, C τ2 2 , . . . , C τ k k q Ñ M tpp, pM τ , ρq, pN τ1 , ρq, C τ2 2 , . . . , C τ k k qu pp, pY M τ Ñτ , ρq, C τ1 1 , . . . , C τ k k q Ñ M tpp, pM τ Ñτ , ρq, ppY M q τ , ρq, C τ1 1 , . . . , C τ k k qu pp, pλx τ0 ¨M τ , ρq, C τ0 0 , . . . , C τ k k q Ñ M tpp, pM τ , ρrx τ0 Þ Ñ C τ0 0 sq, C τ1 1 , . . . , C τ k k qu pp, pa 0 k Ñ0 , ρq, C 0 1 , . . . , C 0 k q Ñ M P 1 ˆtC 0 1 u Y ¨¨¨Y P k ˆtC 0 k u for every p a ÝÑ P 1 ¨¨¨P k P ∆
Given tp 0 u, T Ď Q, the reachability problem for M asks whether pp 0 , M 0 q P Pre ˚pT ˆpŤ τ "τ1Ѩ¨¨Ñτ k Ñ0 Cl τ pM 0 q ˆCl τ1 pM 0 q ˆ¨¨¨ˆCl τ k pM 0 qqq.

Encoding. Following [?], we encode closures and configurations of the Krivine machine as trees. Fix a Krivine machine M " xl, Γ, Q, M 0 , ∆y of level l. We assume a total order on all variables xx α1 1 , . . . , x αn n y appearing in M 0 . For a type τ , we define ordpτ q " l ´levelpτ q. We construct an ordered tree-pushdown system S " xl, Σ, Q 1 , Ry of order l as follows. The ordered alphabet is Σ " tN τ , rN τ s | N τ P ΛpM 0 qu Y tKu. Here, N τ is a symbol of rankpN τ q " n and ordpN τ q " ordpτ q. Moreover, if τ " τ 1 Ñ ¨¨¨Ñ τ k Ñ 0 for some k ě 0, then rN τ s is a symbol of rankprN τ sq " n `k and ordprN τ sq " ordpτ q. Finally, K is a leaf of order 1. The set of states is

Q 1 " Q Y Ť p a ÝÑP1¨¨¨P
k P∆ tp1, P 1 q, . . . , pk, P k qu. A closure pN τ , ρq is encoded recursively as encpN τ , ρq " N τ pt 1 , . . . , t n q, where, for every 1 ď i ď n, i) if x i P FVpN τ q then t i " encpρpx i qq, and ii) t i " K otherwise. A configuration c " pp, pN τ , ρq, C τ1 1 , . . . , C τ k k q is encoded as the tree encpcq " rN τ spt 1 , . . . , t n , encpC τ1 1 q, . . . , encpC τ k k qq, where the first n subtrees encode the closure pN τ , ρq, i.e., encpN τ , ρq " N τ pt 1 , . . . , t n q. The encoding is extended pointwise to sets of configurations. Below, we assume that τ " τ 1 Ñ ¨¨¨Ñ τ k Ñ 0, that variable y j has order ordpτ j q for every 1 ď j ď k, and that variables x i and x 1 i have order ordpα i q for every 1 ď i ď n. Notice that ordpτ q ă ordpτ 1 q, . . . , ordpτ k q. Moreover, we write x " xx 1 , . . . , x n y, z " xz 1 , . . . , z n y, and y " xy 1 , . . . , y k y. R contains the following rules: p, rx τ i spz 1 , . . . , M τ pxq, . . . , z n , yq Ñtpu, rM τ spx, yq p, rM τ N τ1 spx, y 2 , . . . , y k q Ñtpu, rM τ spx, N τ1 pxq, y 2 , . . . , y k q p, rY M τ Ñτ spx, yq Ñtpu, rM τ Ñτ spx, Y M pxq, yq p, rλx τ0 i ¨M τ spx, y 0 , yq Ñtpu, rM τ spx 1 , . . . , x i´1 , y 0 , x i`1 , . . . , x n , yq 6 Cf. also [?] for a definition of the Krivine machine in a different context.

p, ra 0 k Ñ0 spx, yq Ñ tp1, P 1 q, . . . , pk, P k qu, ra 0 k Ñ0 spx, yq @pp a ÝÑ P 1 ¨¨¨P k P ∆q pi, P i q, ra 0 k Ñ0 spz, y 1 , . . . , M 0 i pxq, . . . , y k q Ñ P i , rM 0 i spxq

The first rule satisfies the ordering condition since the shared variables y i 's are of order strictly higher than M τ . A direct inspection of the rules shows that, for a configuration c and a set of configurations D, where tcu Y D does not contain an intermediate configuration of the form ppi, P i q, ¨¨¨q, we have c Ñ M D if, and only if, encpcq Ñ S encpDq. Therefore, the encoding preserves reachability properties. Since a Krivine machine of level n is simulated by a tree-pushdown system of order n, the following is an immediate consequence of Theorem 2.

Theorem 7 ([?]). Reachability in alternating Krivine machines with states of level n is n-EXPTIMEc.

Ordered annotated multi-pushdown systems

Ordered annotated multi-pushdown systems are the common generalization of ordered multi-pushdown systems and annotated pushdown systems [?]. Such a system is comprised of m ą 0 annotated higher-order pushdowns arranged from left to right, where each pushdown is of order n ą 0. While push operations are unrestricted, pop and collapse operations implicitly destroy all pushdowns to the left of the pushdown being manipulated, in the spirit of [?].

[?] has shown that reachability in this model can be decided in mn-fold exponential time, by using a saturation-based construction leveraging on the previous analysis for the first-order case [?]. In Sec. B in the appendix we provide a simple encoding of an annotated multi-pushdown system with parameters pm, nq into a tree-pushdown system of order mn. It is essentially obtained by taking together our previous encodings of ordered (cf. Sec.4.1) and annotated systems (cf. Sec. 4.2). The following complexity result is a direct consequence of Theorem 2.

Theorem 8 ([?]). Reachability in alternating ordered annotated multi-pushdown systems of parameters pm, nq is in pmnq-EXPTIME.

Conclusions

We have introduced a novel extension of pushdown automata which is able to capture several sophisticated models thanks to a simple ordering condition on the tree-pushdown. As future research it would be interesting to study other restrictions, such as phase-bounding [?] or scope-bounding [?]. Our general saturation algorithm can be used to verify reachability properties. We plan to extend it to the more general parity properties, in the spirit of [?,?]. We leave as future work implementing our saturation algorithm, leveraging on subsumption techniques to keep the search space small.

In the second case, Lppq refers to the language of p in the automaton B. In the last case, p is defined in terms of P 2 , . . . , P m , which is well-defined by induction on the order since P 2 , . . . , P m Ď Q 1 i`1 . Second, we define sound transitions as those respecting the semantics: Formally, a transition P a ÝÑ P 1 ¨¨¨P m is sound iff whenever @pt 1 P P 1 , . . . , t m P P m q, apt 1 , . . . , t m q P P .

Proposition 1. If all transitions are sound, then Lppq Ď p for every p P Q 1 .

Proof. Let t P Lppq. We proceed by complete induction on the height of t. If t " a is a leaf, then there exists a sound transition p a ÝÑ, and thus a P p by definition of sound transition. For the inductive step, let t " apt 1 , . . . , t m q. There exists a sound transition p a ÝÑ P 1 ¨¨¨P m s.t. t 1 P LpP 1 q, . . . , t m P LpP m q. By induction hypothesis, t 1 P P 1 , . . . , t m P P m , and thus by the definition of sound transition, apt 1 , . . . , t m q P p .

Proposition 2. Transitions in ∆ Y ∆ 0 are sound.

Proof. Let p a ÝÑ P 1 ¨¨¨P m P ∆ Y ∆ 0 , and let t 1 P P 1 , . . . , t m P P m . Since we assume that there are no transitions back to the initial states in P , we have P 1 , . . . , P m Ď QzP , and thus t 1 P LpP 1 q, . . . , t m P LpP m q by the definition of the semantics. Consequently, t :" apt 1 , . . . , t m q P Lppq. If p R P we are done, since p " Lppq in this case. Otherwise, if p P P then pp, tq P LpA, P q, which is included in Pre ˚pLpA, P qq, and thus we have t P p by definition.

Proposition 3. The saturation procedure adds only sound transitions.

Proof. Let g " p, l Ñ S, r with l " apu 1 , . . . , u m q, and let t be a sound run tree in B from S on r. We show that the transition p a ÝÑ P 1 ¨¨¨P m as added by rule (∆ 1 -shallow) is sound. To this end, let t 1 P P 1 , . . . , t m P P m , and we show t 1 :" apt 1 , . . . , t m q P p . Since p P P , this amounts to showing that pp, t 1 q P Pre ˚pLpA, P qq. We apply the rewrite rule g above to configuration pp, t 1 q: pp, t 1 q Ñ S ˆtrσu, where σ is the unique substitution s.t. t 1 " lσ. (σ is unique since l is linear.) It thus suffices to show S ˆtrσu Ď Pre ˚pLpA, P qq. First, assume that g is shallow. Every variable x appearing in r is labelled by t by the set of states P i " Ť tpr ´1pxqq, for some i. Since t uses only sound transitions and t 1 P P 1 , . . . , t m P P m , by induction on its height we have rσ P S , which implies S ˆtrσu Ď Pre ˚pLpA, P qq by the definition of the semantics since S Ď P . If g is not shallow, then P 1 " tpg, P 2 , . . . , P m qu. In this case, since t 1 P P 1 , by the definition of the semantics, we deduce directly pp, t 1 q P Pre ˚pLpA, P qq.

When g is not shallow, the transition pg, P 2 , . . . , P m q b ÝÑ S 1 ¨¨¨S n is additionally added by rule (∆ 1 -deep), and we have to show that this transition is sound too. Let w 1 P S 1 , . . . , w n P S n , and we show t 1 :" bpw 1 , . . . , w n q P pg, P 2 , . . . , P m q . To this end, let t 2 P P 2 , . . . , t m P P m , and we show pp, apt 1 , . . . , t m qq P Pre ˚pLpA, P qq. The proof is as above, noticing that t labels a variable x in r by either P i for some 2 ď i ď m, or S j for some 1 ď j ď n, and we can again conclude rσ P S by induction on the height of t.

Proof (of Lemma 3). By Proposition 2, the initial transitions in ∆ Y ∆ 0 are sound, and by Proposition 3, all transitions in ∆ 1 are sound. Let pp, tq P LpB, P q. Thus, t P Lppq. By Proposition 1, t P p . Since p P P , by the definition of the semantics, pp, tq P Pre ˚pLpA, P qq.

B Ordered annotated multi-pushdown systems

We encode ordered annotated multi-pushdown systems [?] into tree-pushdown systems. Formally, an alternating ordered annotated multi-pushdown system is a tuple R " xm, n, Γ, Q, ∆y, where m P N ą0 is the the number of higher-order pushdowns, n P N ą0 is the order of each of the m higher-order pushdowns, Γ is a finite pushdown alphabet, Q is a finite set of control locations, and

∆ Ď QˆΓ m K Ôˆ2 Q is a set of rules. Let O " Ť m l"1 Ť n k"1 tluˆtpush b k , push k , pop k , collapse k | b P Γ u.
Pop and collapse operations are called consuming. An alternating ordered annotated multi-pushdown system R induces an alternating transition system xC, Ñ R y, C " QˆΓ m n , and pp, w 1 , . . . , w m q Ñ R P ˆtpw 1 1 , . . . , w 1 m qu if, and only if, there exists a rule pp, pa 1 , . . . , a m q, pl, oq, P q P ∆ s.t. 1) w 1 " xa u1 1 , ¨¨¨y, . . . , w m " xa um m , ¨¨¨y, 2) if o is consuming, then w 1 1 " ¨¨¨" w 1 l´1 " x y, 3) if o is not consuming, then w 1 1 " w 1 , . . . , w 1 l´1 " w l´1 , 4) w 1 l " opw l q, and 5) w 1 l`1 " w l`1 , . . . , w 1 m " w m . For tp 0 u, T Ď Q, the reachability problem for R asks whether pp 0 , x y, . . . , x yq P Pre ˚pT ˆΓ m n q.

Encoding. Let Σ be an ordered alphabet containing, for every a P Γ K , pushdown index 1 ď l ď m, and order 1 ď k ď n a symbol pl, k, aq of order pl ´1q ¨n `k and rank k `1. Moreover, Σ also contains, for every tuple pa 1 , . . . , a m q P Γ m K , a symbol pa 1 , . . . , a m q of order 1 and rank m ¨pn `1q. Thus Σ has order mn. Fix a pushdown index l. An order-k pushdown is encoded as the tree enc l,k pxa û, u 1 , . . . , u k yq " pl, k, aq enc l,1 pu 1 q ¨¨¨enc l,k pu k q enc l,i pûq , where i is the order of û, and a m-tuple of order-n pushdowns w " xa û1 1 , u 1,1 , . . . , u 1,n y, . . . , w m " xa ûm m , . . . , u m,n y is encoded as the as a the following tree enc n pwq pa 1 , . . . , a m q enc 1,1 pu 1,1 q ¨¨¨enc 1,n pu 1,n q enc 1,i1 pû 1 q ¨¨¨enc m,im pû m q where i 1 is the order of û1 , . . . , i m is the order of ûm . Let xm, n, Γ, Q, ∆y be an ordered annotated multi-pushdown system. We define an equivalent ordered tree-pushdown system S " xmn, Σ, Q, Ry of order mn, where Σ and Q are as defined above, and R contains a rule for each rule in ∆, as follows. We use the convention that a variable subscripted by pl, kq has order pl ´1q ¨n `k, and we write x i..j l (with i ď j) for the tuple of variables px l,i , . . . , x l,j q. If pp, pa 1 , . . . , a m q, pl, push b k q, P q P ∆, then there is the following shallow rule in R: p, pa 1 , . . . , a m q x 1..n 1 y 1 ¨¨¨x 1..n m y m ÝÑ P, pa 1 , . . . , b, . . . , a m q ¨¨¨pl, 1, a l q

x l,1 y l x 2..n l pl, k, a l q

x 1..k l y l ¨¨Ï f pp, pa 1 , . . . , a m q, pl, push k q, P q P ∆, then there is the following shallow rule in R:

p, pa 1 , . . . , a m q x 1..n 1 y 1 ¨¨¨x 1..n m y m ÝÑ P, pa 1 , . . . , a m q ¨¨¨xl,k´1 pl, k, a l q x 1..k l y l

x l,k`1 ¨¨Ï f pp, pa 1 , . . . , a m q, pl, pop k q, P q P ∆, then there is the following deep rule in R:

p, pa 1 , . . . , a m q ¨¨¨zl,k´1 pl, k, bq

x 1..k l y l
x l,k`1 ¨¨Ý Ñ P, pa 1 , . . . , b, . . . , a m q K ¨¨¨K x 1..n l y l ¨¨F inally, if pp, pa 1 , . . . , a m q, pl, collapse k q, P q P ∆, then there is the following deep rule in R: he two deep rules above satisfy the ordering condition since pl, k, bq has order pl ´1q¨n`k, and all other variables x k`1..n l , x 1..n l`1 , y l`1 , . . . , x 1..n m , y m have strictly higher order.

Lemma 4 (Simulation). We have that pp, wq Ñ R P ˆtw 1 u if, and only if, pp, enc n pwqq Ñ S P ˆtenc n pw 1 qu. Thus, the reachability problem for R is equivalent to the reachability problem for S.

C The translation for annotated pushdown systems

We present graphically the rewrite rules of the resulting ordered tree transition system. The rules in Figure 1 are the same as in the main text. We hope that the graphical presentation better conveys the intuition behind them.

D The translation for Krivine machines

We present graphically the rewrite rules of the resulting ordered tree transition system. The rules in Figure 2 are the same as in the main text. We hope that the graphical presentation better conveys the intuition behind them.

 pa 1 , . . . , b, . . . , a m q K ¨¨¨K x 1..n l y l ¨¨T

Fig.

 Fig. Translation from annotated pushdowns to ordered tree-pushdown systems.

Fig. 2 :

 2 Fig. 2: Translation from the Krivine machine to ordered tree-pushdown systems.

Collapsible and annotated systems generate the same configuration graphs when started from the same initial configuration, since new annotations can only be created to sub-pushdowns of the current pushdown. However, annotated pushdown systems have a richer backward reachability set which includes non-constructible pushdowns.

Strictly speaking 2 Q does not have a rank/order. It is easy to duplicate each subset at every rank/order to obtain an ordered alphabet, which we avoid for simplicity.

Our definition is equivalent to [?].

Acknowledgments. We kindly acknowledge stimulating discussions with Irène Durand, Géraud Sénizergues, and Jean-Marc Talbot.

A Proof of Lemma 1

Let A be the automaton recognizing the target set of configurations, and let B be the automaton obtained at the end of the saturation procedure (cf. page 5).

Lemma 1. For A and B be as above, LpB, P q " Pre ˚pLpA, P qq.

We prove the two inclusions of the lemma separately.

Lemma 2 (Completeness). For A and B as above, Pre ˚pLpA, P qq Ď LpB, P q.

Proof. Let pp, tq be a configuration in Pre ˚pLpA, P qq with p P P and t " apt 1 , . . . , t m q. We show pp, tq P LpB, P q by induction on the length d ě 0 of the shortest sequence of rewrite steps from pp, tq to LpA, P q. If d " 0, then pp, tq P LpA, P q. Since the saturation procedure only adds states and transitions to A, we directly have pp, tq P LpB, P q. Inductively, assume that the property holds for all configurations reaching LpA, P q in at most d ě 0 steps, and let configuration pp, tq be at distance d `1 ą 0 from LpA, P q. There exists a rule p, l Ñ S, r P R with l " apu 1 , . . . , u m q and a substitution σ s.t. t " lσ and pp, tq Ñ S S ˆtrσu Ď Pre ˚pLpA, P qq By induction hypothesis, S ˆtrσu Ď LpB, P q. By definition of ∆ 1 , automaton B contains a transition p a ÝÑ P 1 ¨¨¨P m . It thus suffices to show that t 1 P LpP 1 q, . . . , t m P LpP m q. If u i " x is a variable, then by definition P i " Ť tpr ´1pxqq. Since S ˆtrσu Ď LpB, P q, t i " σpxq P LpP i q. If u i is not a variable and r-ground, then P i " tp ui u and t i P Lpp ui q by construction. Finally, if u i is not r-ground, then u i " bpv 1 , . . . , v n q, t i " bps 1 , . . . , s n q, and B contains a transition pg, P 1 , . . . , P i´1 , P i`1 , . . . , P m q b ÝÑ S 1 ¨¨¨S n . Thus, it suffices to show s 1 P LpS 1 q, . . . , s n P LpS n q, which is done as above.

Lemma 3 (Soundness). For A and B as above, LpB, P q Ď Pre ˚pLpA, P qq.

The soundness proof requires several steps. We assume w.l.o.g that in the automaton A initial states in P have no incoming transitions. Notice that this property is preserved during the saturation procedure, therefore also in B there are no transitions entering initial states in P . We also assume that in deep rules p, apu 1 , . . . , u m q Ñ S, r, the unique u i " bp¨¨¨q which is not r-ground actually occurs in the first position, i.e, i " 1. This is w.l.o.g. since we can always add shallow rules that just reshuffle subtrees. First, we assign a semantics p Ď T pΣq to all states p in B. For a set of states S Ď Q 1 , S :" Ş pPS p , where p is defined as follows: i zQ 1 i`1 for some 1 ď i ă n with p " pg, P 2 , . . . , P m q, and g " pq, ap¨¨¨q Ñ ¨¨¨q