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Abstract : A recent promising technique for moving a robotic micro-
swimmers is to apply an external magnetic field. This paper focuses on a
simple micro-swimmer model with two magnetized segments connected by
an elastic joint, which is able to move in a plane by using a magnetic field.
By considering the latter as control functions, we prove that the swimmer is
locally controllable around the straight position.

1 Introduction

The propulsion at micro scale through a fluid faces a number of challenges
[10]. At this scale, the inertia is negligible compared to the viscous effects.
In this regime, one of the typical obstructions, well-known as the scallop
theorem [16], imposes to micro-swimmer to use time reciprocal strategies of
deformation for achieving their self-propulsion. Micro-swimming has led to
a growing interest because of the potential of micro-scale robotic swimmer.
Such devices could be used in the new therapeutic and diagnostic procedures
such as targeted drug delivery, minimally invasive microsurgical operations
[13]. A challenging task consists in designing a remote controlled micro-robot
able to swim through a narrow channel.

A recent promising technique resides in using an external magnetic fields
to act on a magnetized micro-object by creating an external force or torque
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[15]. The robot experiences a deformation and then moves without require-
ment for chemical fuel and reaction. There are various approaches for cre-
ating a magnetically driven propulsion [14]. A first method, inspired by the
motility of the bacterial cell called Escherichia coli [19], consists in rotating
rigid helical tail fixed into a head ([7]). An alternative one is to use a surface
in addition to the external field for breaking the spatial symmetry to over-
come the feature of the scallop theorem ([18]). The last approach relies on
the flexible filaments for propulsion ([5, 14]). In this paper, we focus on a
simplified model of magnetic micro-swimmer introduced in [9] which derives
from the latter type of propulsion mechanism, using a flexible magnetized
filament for swimming such as the prototype introduced in [5].

In this context, the study of the controllability of such devices is a sig-
nificant theoretical task. Starting from the pioneering work of A. Shapere
and F. Wilczek [17], the connexion between control theory and the micro-
swimming [12] has been addressed in numerous of works up to now (see for
instance [2, 6, 11]). This paper focus on a 2-link elastic-magneto swimmer. A
generalized version of the latter, called the N-link magneto-elastic swimmer,
which is made of a head fixed to N magnetized segments linked each other
by a spring, was studied in [1]. More precisely, it has been proved in [1] that
the dynamics of the swimmer is governed by a nonlinear ordinary differential
equation (ODE) which is linear with respect tho the external magnetic fields.
A surprising behavior already mentioned in [9] is that the elasticity in this
context allows to overcome the feature of the scallop theorem. The authors
also prove that a sinusoidal magnetic field leads to steer the swimmer along
one direction. In this paper, by considering the magnetic field as a control
function, we establish the local controllability of the 2-link magneto-elastic
swimmer around the straight configuration. An important difficulty faces
by this paper derives from the fact that the linearized dynamical system of
the swimmer at the straight configuration is not controllable. In the rest,
we overcome this feature by using a pioneering approach, developed by J.-
M. Coron in [3] and called the “return method”. Applying this latter for a
micro-swimming problem consists in an original task which allows promising
perspectives.

The paper is organized as follows: Section 2 describes the swimmer and
formulates its equations of motion with the 2-dimensionnalmagnetic field as
controls and Section 3 states and proves the main result of this paper.
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2 Modeling

This paper focuses on the swimmer model introduced in [9]. We consider
a magneto-elastic 2-link swimmer moving in a plane. This two-dimensional
setting is suitable for the study of slender, essentially one-dimensional swim-
mers exploring planar trajectories as explained in [1, 9].

The swimmer consists of 2 rigid segments, of length ℓ1 > 0 and ℓ2 > 0
respectively, with one articulated joint. It can move in the horizontal 2d-
plane of the lab-frame, defined by the vectors (ex, ey). We set ez := ex × ey.
In the rest, we call x = (x, y) the coordinates of the central point of the
second segment, θ the angle that it forms with the x-axis, α the relative
angle between the first and second segments (see Figure 1). The position
and orientation of the swimmer are characterized by the triplet (x, y, θ), and
its shape by α. We denote by

e1,‖ =

(
cos(θ + α)
sin(θ + α)

)

, e2,‖ =

(
cos(θ)
sin(θ)

)

the unit vectors aligned with segments [A1, A2] and [A2, A3], their orthogonal
vectors by

e1,⊥ =

(
− sin(θ + α)
cos(θ + α)

)

, e2,⊥ =

(
− sin(θ)
cos(θ)

)

.

•
•

•

•
A1 A2

A3x
α

θ

ex

ey

H(t)

Figure 1: Magneto-elastic 2-link swimmer in plane subject to an external
magnetic field H(t).

Elastic effects As in [9], there is a torsional spring at the joint that tends
to align the segment one with the other. It apples a torque

Tel = κα ez ,
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to segment [A1, A2] and −Tel to segment [A2, A3], here κ is a spring constant
(more detail on its physical unit can be found in [1]).

Magnetic effects Additionally, we assume that each segment are con-
stantly magnetized. the two segments submit torques deriving from the effect
of an external magnetic field

Tm
i = Mi

(
ei,‖ ×H

)
, i = 1, 2 ,

where Mi is a constant of magnetization and H is the external magnetic field.
The reader could find more details on the physical units used for Mi and H

in [1]. We assume that the external magnetic field H is horizontal in such a
way that the motion holds in the plane generate by ex and ey and we call H‖

and H⊥ its coordinates into the into the moving frame H = H‖ e2,‖+H⊥ e2,⊥.

Hydrodynamic effects Moreover, the swimmer is assumed to be suffi-
ciently small for modeling the hydrodynamic interaction between the swim-
mer and the fluid by the local drag approximation of Resistive Force The-
ory [8]. The latter assumes a linear dependance between the hydrody-
namic drag force per unit length acting and the velocity at that point.
It means that if the point of abscissa s on segment number i has velocity
ui(s) = ui,‖(s) ei,‖ + ui,⊥(s) ei,⊥ (namely ui,‖(s) and ui,⊥(s) are the tangent
and normal components of the velocity), then the drag force applied to the
a part of length ds of this segment around this point is fi(s)ds with

fi(s) = − ξi ui,‖(s) ei,‖ − ηi ui,⊥(s) ei,⊥ , i = 1, 2 , (1)

with ξi and ηi for i = 1, 2 the positive drag coefficient such as ξi ≤ ηi.
Denote by Rϕ the matrix of the rotation of angle ϕ, Rϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)

for any angle ϕ. By noticing that the matrix Rθ+α sends the basis (ex, ey)
onto the basis (e1,‖, e1,⊥) and the matrix Rθ sends the basis (ex, ey) onto the
basis (e2,‖, e2,⊥), relation (1) translates into

f1(s) = −R(θ+α)D1R−(θ+α) u1(s) and f2(s) = −Rθ D2R−θ u2(s) , (2)

with Di the matrix
(
ξi 0
0 ηi

)
for i = 1, 2 and where the vectors are coordi-

nates in the bases (ex, ey).
If the origin of the abscissa s is the point A2 on segment 1 and the point

x on segment 2, one has

x1(s) = x−
ℓ2
2
e2,‖ − s e1,‖ , 0 ≤ s ≤ ℓ1 , (3)

x2(s) = x+ s e2,‖ , −
ℓ2
2

≤ s ≤
ℓ2
2
, (4)
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hence

u1(s) = ẋ−
ℓ2
2
θ̇e2,⊥ − s

(

α̇ + θ̇
)

e1,⊥ , 0 ≤ s ≤ ℓ1 , (5)

u2(s) = ẋ+ sθ̇e2,⊥ , −
ℓ2
2

≤ s ≤
ℓ2
2
. (6)

Noting ẋθ the rotated vector ẋ through the angle θ, i.e., ẋθ = R−θx, we
deduce from (2) the total hydrodynamic force acting on the first segment as

Fh
1 =

∫ ℓ1

0

f1(s
′)ds′ = −RθRαD1R−α

(

ℓ1ẋθ − ℓ1
ℓ2
2
θ̇ey −

ℓ1
2

2

(

θ̇ + α̇
)

Rαey

)

. (7)

Identically, according to (2), we have the one acting on the second segment
as

Fh
2 =

∫ ℓ2

2

−
ℓ2

2

f2(s
′)ds′ = −ℓ2RθD2ẋθ . (8)

Moreover, the total hydrodynamic torque generated by the each segment
is given by

ez ·T
h
i := ez ·

∫

i-th segment

(xi(s)− x)× fi(s) ds , with i = 1, 2 ,

here × stands for the cross product. Let us express

ez ·T
h
2 =

∫ ℓ2

2

−
ℓ2

2

(Rθsex)× (RθD2R−θu2(s)) ds

=

∫ ℓ2

2

−
ℓ2

2

(sex)× (D2R−θu2(s)) ds

= −ξ2
ℓ2

3

12
θ̇ . (9)

Similarly, we get

ez ·T
h
1 = −ξ1

(
ℓ1

2

2

(

− sin(α)(ẋθ −
ℓ2
2
θ̇) + cos(α)(ẏθ −

ℓ2
2
θ̇)

))

−ξ1
ℓ1

3

3

(

α̇ + θ̇
)

+
ℓ2ℓ1
2

sin(α) cos(α) (η1 − ξ1) ẋθ

ℓ2ℓ1
2

(
sin2(α)η1 + cos2(α)ξ1

)
(

ẏθ −
ℓ2
2
θ̇

)

−ξ1
ℓ2
2

ℓ1
2

2
cos(α)(α̇+ θ̇) . (10)
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Equations It remains to assemble the equations governing the motion of
the magneto-elastic 2-link swimmer. We then write the total balance of
forces and of the total torque for the whole system and to express the torque
component on the subsystem consisting of one segment (see [1]). Since inertia
is assumed to be negligible, these equations take the form







Fh
1 + Fh

2 = 0
Th

1 +Th
2 = − (Tm

1 +Tm
2 )

Th
2 = −Tm

2 +Tel

(11)

In the previous system of equations (11) only 4 equations are non-trivial, the
latter reads

Mh(θ, α)







ẋ
ẏ

θ̇
α̇







=







0
0

−M1

(
cos(α)H⊥ − sin(α)H‖

)
−M2H⊥

+κα−M2H⊥







(12)

where

Mh(θ, α) =

(
Rθ+α 0
0 I2

)(
E11(α) E12(α)
E21(α) E22(α)

)

︸ ︷︷ ︸

=E(α)

(
R−θ 0
0 I2

)

(13)

where

E11 =

(
− (ξ1ℓ1 + ξ2ℓ2) cosα − (ξ1ℓ1 + η2ℓ2) sinα
(η1ℓ1 + ξ2ℓ2) sinα − (η1ℓ1 + η2ℓ2) cosα

)

, (14)

E12 =

(
1
2
ξ1ℓ1ℓ2 sinα 0

1
2
η1ℓ1 (ℓ1 + ℓ2 cosα)

1
2
η1ℓ1

2

)

, (15)

E21 =
1
2

(
η1ℓ

2

1
η2ℓ

2

2

0 η2ℓ
2

2

)(
− sinα cosα

0 −1

)

, (16)

E22 = −
(

η1ℓ
2

1
η2ℓ

2

2

0 η2ℓ
2

2

)(
1

4
ℓ2 cosα+ 1

3
ℓ1

1

3
ℓ1

1

12
ℓ2 0

)

. (17)

Noticing that detMh(θ, α) = detE(α), a straightforward computation yields
to get detMh(θ, α) as

detMh(θ, α) = −1
9
η1η2 ℓ

3
1 ℓ

3
2

(
1
4
(ξ1ℓ1 + ξ2ℓ2) (η1ℓ1 + η2ℓ2) cos

2 α

+
(
ξ1ℓ1 +

1
4
η2ℓ2

)(
1
4
η1ℓ1 + ξ2ℓ2

)
sin2 α

)
, (18)

hence the matrix Mh is invertible. Summing this up, the dynamics of the
swimmer (12) is given by the following control system, affine with respect to
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the control functions H⊥ and H‖

ż = F0(z) +H‖F1(z) +H⊥F2(z) with z =







x
y
θ
α







, (19)

calling X3 and X4 the vector fields whose vector of coordinates in the basis
( ∂
∂x
, ∂
∂y
, ∂
∂θ
, ∂
∂α
) are respectively the third and fourth columns of

(
R−θ 0
0 I2

)

(Mh(θ, α))−1 , (20)

the vector fields F0, F1, F2 are defined by the following expressions

F0(z) = καX4 , F1(z) = M1 sin(α)X3 ,

F2(z) = − (M1 cos(α) +M2)X3 −M2X4 .
(21)

3 Controllability result

This section is devoted to the main result of this paper. We are interested
in the equilibrium points

(
(xe, θe, αe), (H‖, H⊥)

)
of the system (19) given by

Me =
{
((x, θ, 0) , (0, 0)) ,x ∈ R2 , θ ∈ [0, 2π]

}
.

The latter corresponds to a straight configuration for the swimmer. Since
Jacobian of the drift term F0 is not invertible, it could be checked that the
Kalman rank condition (see Theorem 1.16 on page 9 of the book [4]) does not
hold around this particular configuration. However, this paper establishes a
local controllability result which confirm that a straight swimmer can be lo-
cally controlled by the exterior magnetic field. As the following section will
show, getting this controllability result requires to use an advanced method
of control theory well-known as the return method, which has been intro-
duced by J. -M. Coron in [3].

Before stating the main result of this paper, let us first point two cases
where this controllability will certainly not hold. First, a straightforward
computation leads to get the first point of the following proposition.
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Proposition 3.1. • If η1− ξ1 = η2− ξ2 = 0, then the two first equations
in (19) imply

d

dt

(

x−
η1ℓ1 (ℓ1 cos(α + θ) + ℓ2 cosα)

2(η1ℓ1 + η2ℓ2)

)

= 0 ,

d

dt

(

y −
η1ℓ1 (ℓ1 sin(α + θ) + ℓ2 sinα)

2(η1ℓ1 + η2ℓ2)

)

= 0 .

• If
(

3 + 4
ℓ2
ℓ1

+
η2ℓ2

2

η1ℓ1
2

)

M1 −

(

3 + 4
ℓ1
ℓ2

+
η1ℓ1

2

η2ℓ2
2

)

M2 = 0 ,

then the set {α = 0} is invariant for equations (19).

Proof. Substituting α = 0 in (19) and solving for α̇ yields

α = 0 ⇒ α̇ = 3

(

3 + 4 ℓ2
ℓ1
+ η2ℓ2

2

η1ℓ1
2

)

M1 −
(

3 + 4 ℓ1
ℓ2
+ η1ℓ1

2

η2ℓ2
2

)

M2

ℓ1 ℓ2 (η1ℓ1 + η2ℓ2)
H⊥ . (22)

and the second point; the first one results from a straightforward but long
computation.

We have to rule out these two cases, where no controlability may hold:

Assumption 3.2. The constants ℓ1, ℓ2, ξ1, ξ2, η1, η2, M1, M2, κ charac-
terizing the system are such that ℓ1, ℓ2, ξ1, ξ2, η1, η2 and κ are positive, M1

and M2 are nonzero, and

( η1 − ξ1 , η2 − ξ2 ) 6= (0, 0) , (23)

η1 ≥ ξ1 , η2 ≥ ξ2 , (24)
(

3 + 4
ℓ2
ℓ1

+
η2ℓ2

2

η1ℓ1
2

)

M1 −

(

3 + 4
ℓ1
ℓ2

+
η1ℓ1

2

η2ℓ2
2

)

M2 6= 0 . (25)

Theorem 3.3 (Main local controllability result). Let assumption 3.2 hold.
For any equilibrium ze = (xe, θe, 0) ∈ Me, any T > 0, any ε > 0 and any
neighborhood W of (xe, θe, 0), there exists a neighborhood V ⊂ W of (xe, θe, 0)
such that, for any (xi, θi, αi) ∈ V and (xf , θf , αf) ∈ V, there exist bounded
measurable functions H‖ and H⊥ in L∞([0, T ]), IR) such that

‖H⊥‖∞ < ε , ‖H‖‖∞ < 2 κ

∣
∣
∣
∣

M2 +M1

M2 M1

∣
∣
∣
∣
+ ε (26)

and, if t 7→ (x(t), θ(t), α(t)) is the solution of (19) starting at (xi, θi, αi),
then (x(t), θ(t), α(t)) ∈ W for all time t ∈ [0, T ] and (x(T ), θ(T ), α(T )) =
(xf , θf , αf).
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Remark 3.4 (Small time local controllability). Theorem 3.3 establishes a
property weaker than small time local controllability (STLC) [4, Definition
3.2]. Indeed STLC around an equilibrium with zero control requires that the
control can be taken arbitrarily small to reach any point sufficiently close to
the equilibrium, whereas in Theorem 3.3, the bounds on the control functions
are greater than 2 κ |M1+M2|

|M2 M1|
. We do not know whether STLC holds when

M1 + M2 6= 0. Note that, in our context, we expect to have this kind of
constraint on the magnetic field since it has to be sufficiently strong to deform
the swimmer.

Let us make some remarks concerning the proof. It could be checked that
the linearized of system (19) at an equilibrium (xe, θe, 0) is not controllable.
In what follows, we use the return method to overcome this feature. Let us
recall the idea of the return method (see chapter 6 of the book [4] for more
details). If one can find a trajectory of the nonlinear control system (here
system (19)) such that it starts and ends at the equilibrium and the linearized
control system around this trajectory is controllable, then we can conclude
by using the implicit function theorem that one can go from any state close
to the equilibrium to any other final state close to the equilibrium.

Let us proceed with the proof. First, we identify in Lemma 3.5 a family
of bounded magnetic fields that lead the swimmer to move while starting and
ending at an equilibrium point (xe, θe, 0). Secondly, Lemma 3.6 shows the
controllability of the linearized system (19) around some of these trajectories.
These lemmas are then used ot prove the theorem.

Lemma 3.5 (return trajectory). Let assumption 3.2 hold. There exists pos-
itive numbers k and T with the following property: For any T , 0 < T < T ,
and any bounded measurable control t 7→ H(t) = (H⊥(t), H‖(t)) defined on
[0, T/2], there is a bounded measurable control t 7→ H∗(t) = (H∗

⊥(t), H
∗
‖ (t))

t 7→ H(t) = (H⊥(t), H‖(t)) defined on [0, T ] such that

H∗
⊥(t) = H⊥(t) and H∗

‖ (t) = H‖(t) , 0 ≤ t ≤
T

2
, (27)

the sup norm of control functions H∗
⊥(.) and H∗

‖ (.) satisfy

‖H∗
⊥(.)‖∞ ≤ (1 + k T ) ‖H‖∞ , (28)

‖H∗
‖(.)‖∞ ≤ 2κ

∣
∣
∣
∣

M1 +M2

M1 M2

∣
∣
∣
∣
+ (1 + k T ) ‖H‖∞ , (29)

and, if t 7→ z∗(t) is the solution of system (19) with control H∗ and initial
condition z∗(0) = ze, then

z∗(t) = z∗(T − t) , 0 ≤ t ≤ T . (30)
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Let us recall that the linearized control system around a trajectory (z∗(.),
H∗

⊥(.), H
∗
‖ (.)) (defined on [0, T ]) is the time-varying control system

ẏ = A(t)y +B(t)v , (31)

where A(t) is the Jacobian of z 7→ F0(z) + H∗
⊥(t)F2(z) + H∗

‖ (t)F1(z) with

respect to z at z = z∗(t) and the two columns of B(t) are F1(z
∗(t)) and

F2(z
∗(t)).

Lemma 3.6 (linear controllability along trajectories). Let ze be an equilib-
rium belonging to Me. For any number β, denote by t 7→ zβ(t) the solution
of (19) with initial condition zβ(0) = ze and (constant) controls

Hβ
⊥(t) = β , Hβ

‖ (t) = 0 . (32)

It is defined on [0,+∞). Under Assumption 3.2, there exists, for any β > 0,
some β∗ positive no larger than β such that the linearized system (31) of (19)
around (zβ

∗

(.), Hβ∗

⊥ (.), Hβ∗

‖ (.)) is controllable on [0, τ ] for any positive τ .

These two lemmas are proved later. Let us first use them.

Proof of Theorem 3.3. Let ε > 0, T > 0 the equilibrium ze and its neigh-
borhood W be given. In the sequel we may make T smaller without loss of
generality because the property for some (ε, T,W) implies the same property
for (ε, T ′,W), T ′ ≥ T .

Set β = ε/4 and apply Lemma 3.6; then set

H⊥(t) = Hβ∗

⊥ (t) = β∗ , H‖(t)) = Hβ∗

‖ (t) = 0 , (33)

with β∗ given by Lemma 3.6, and apply Lemma 3.5 (this requires T < T ):
this yields, if T < 1/k, a control t 7→ (H∗

⊥(t), H
∗
‖ (t)) associated with a solution

t 7→ z∗(t) of (19) with this control, both defined on [0, T ], such that

‖H∗
⊥‖∞ < ε/2 , ‖H∗

‖‖∞ <
2κ |M+M2|

M1M2
+ ε/2 ,

z∗(0) = z∗(T ) = ze , z∗(t) ∈ W , t ∈ [0, T ] ,

(34)

and the linear approximation of (19) along this solution is controllable. Note
that z∗([0, T ]) ⊂ W is obtained by taking T small enough.

Let the end-point mapping E : L∞([0, T ],R2) → R
4 be the one that maps

a control on [0, T ] to the point z(T ) with z(.) the solution of the system (19)
with that control and initial value z(0) = ze, we have E(H∗(.) ) = ze and
linear controllability amounts to E being a submersion at this point; hence
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E sends any neighborhood of H∗ in L∞([0, T ],R2) to a neighborhood of ze;
this yields all the properties of the theorem with (xf , θf , αf) = ze; this trick
may be done twice to obtain arbitrary (xf , θf , αf). This concludes the proof
of Theorem 3.3.

Proof of Lemma 3.5. Take for instance T = 1 (it can be chosen arbitrary)
and let ze ∈ Me be an equilibrium point. Consider T positive no larger
than T and an arbitrary t 7→ (H⊥(t), H‖(t)) defined on [0, T/2]. Let u =
‖H‖∞ = max{‖H⊥‖∞, ‖H‖‖∞} and let t 7→ z∗(t) = (x∗(t), θ∗(t), α∗(t)) be
the solution of system (19) on [0, T

2
] associated with the control (H⊥(.), H‖(.))

and starting at ze. We now construct particular control functions H∗
⊥(.) and

H∗
‖ (.) on [0, T ] which extend the previous ones:

H∗
⊥(t) = H⊥(t) , H∗

‖ (t) = H‖(t) , t ∈

[

0,
T

2

]

, (35)

and allow the swimmer to come back to the starting point ze at time T by
using the same path:

z∗(t) = z∗(T − t) , t ∈

[
T

2
, T

]

. (36)

Differentiating the latter with respect to time, we get:

ż∗(t) = ż∗(T − t) , t ∈

[
T

2
, T

]

. (37)

From equation (19), this yields

F0(z
∗) + F1(z

∗)H∗
‖ + F2(z

∗)H∗
⊥

=− F0(z
∗)− F1(z

∗)H‖ − F2(z
∗)H⊥ .

The latter reads

2F0(z
∗) + F1(z

∗)
(
H∗

‖ +H‖

)
+ F2(z

∗)
(
H∗

⊥ +H⊥

)
= 0 .

By using the expression (21) for F0, F1 and F2 and because X3 and X4 are
linearly independents, the projection onto the vector space generated by Xi,
i = 3, 4 of the previous equality has to vanish. Solving the following system
of linear equation with the two unknowns, H∗

‖ and H∗
⊥,







M1 sin(α
∗)
(

H∗
‖ +H‖

)

=
(

M2 +M1 cos(α
∗)
)(

H∗
⊥ +H⊥

)

,

M2

(

H∗
⊥ +H⊥

)

= 2 κα∗ ,
(38)
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we deduce that the magnetic field H∗
⊥(.) and H∗

‖ (.) on [T
2
, T ] has to be defined

by

H∗
⊥(t) =

2 κ

M2

α∗(t)−H⊥(T − t) , t ∈

[
T

2
, T

]

, (39)

and

H∗
‖ (t) =

2 κα∗(t)

M2 M1 sin(α∗(t))
(M2 +M1 cos(α

∗(t)))

−H‖(T − t) , t ∈

[
T

2
, T

]

. (40)

To sum up, defining the magnetic field H∗
⊥(.) and H∗

‖ (.) as a following piece-
wise functions

• on the interval [0, T
2
], H∗

⊥(.) and H∗
‖ (.) are equal to the fixed functions

(H⊥(.) and H‖(.) (see (35)) and

• on the interval [T
2
, T ], H∗

⊥(.) and H∗
‖ (.) are defined by the expression

given in formulas (39) and (40),

the solution of system (19) associated with these control functions and z∗(0) =
ze, satisfies (30) with z∗(T ) = z∗(0) = ze.

Moreover, by continuity, there exists k such that

|
2 κ

M2
α̇∗(t)| ≤ ku , t ∈ [0, 1] ,

thus the norm sup of function t 7→ 2κ
M2

α∗(t) on [0, T ] is bounded by k T u. Sim-

ilarly, the norm sup of t 7→ 2κα∗(t)
M2 M1 sin(α∗(t))

(M2 +M1 cos(α
∗(t))) is bounded by

2κ
∣
∣
∣
M1+M2

M1 M2

∣
∣
∣ + k T u. From the latter point and the definition of the control

functions H∗
⊥(.) and H∗

‖ (.), we deduce the upper bounds in equations (28)

and (29). It concludes the lemma 3.5.

The proof of Lemma Lemma 3.6 requires a more technical lemma:

Lemma 3.7. Let Assumption 3.2 hold. For any β > 0, there exists β∗,
0 < β∗ ≤ β, and α > 0, such that the distribution spanned by the vector
fields X3, X4, [X3,X4] and X

β∗

5 , with

X
β∗

5 = −β∗ (M2 +M1 cosα) [X3, [X3,X4]] + (κα− β∗M2) [X4, [X3,X4]] .
(41)

has rank 4 at all points in

{z = (x, y, θ, α) ∈ R
4 , |α| < α, α 6= 0} . (42)
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Proof. A simple computation shows that the determinant of X3, X4, [X3,
X4], X

β
5 depends only on α and β and that it is a polynomial with respect

to β, α, cosα and sinα; this expression vanishes for α = 0 but can easily
be seen to be nonzero under Assumption 3.2, for instance by its leading
coefficients. Hence, for almost all β, it is a nonzero real analytic function of
α that vanishes at zero, hence the result.

Proof of Lemma 3.6. Define the matrices Bj(t) =
(

d
dt
−A(t)

)j
B(t) , with

A(t) and B(t) given by (31). According to [4, Theorem 1.18], the linear
system (31) is controllable on [0, τ ] if there is at least one t, 0 < t < τ , such
that

Sp(t) := Span
{
Bj(t)v; v ∈ R

2; j ≥ 0
}
= R

4 . (43)

By a simple computation, it turns out that, with the constant controls
H∗

‖(t) = 0 and H∗
⊥(t) = β, the ith column of Bj(t) is the column of coordinates

of the vector field C
β
i,j at point z∗(t), with

C
β
i,0 = Fi , C

β
i,1 = [F0 + β F1,C

β
i,0] , C

β
i,2 = [F0 + β F1,C

β
i,1] (44)

and so on (we do not need j > 2). We claim that

for any β > 0, there exists β∗, 0 < β∗ ≤ β, and α > 0, such that the distribution

spanned by C
β
1,0,C

β
2,0,C

β
1,1,C

β
2,1,C

β
1,2,C

β
2,2 has rank 4 at all points of (42).

}

(45)
This claim implies Lemma 3.6: take β∗ in the lemma as the one given by
(45), along the trajectory t 7→ zβ

∗

(t) = (x∗(t), y ∗( t), θ∗(t), α∗(t)), one has
α∗(0) = 0, and, from (22), α̇∗(0) 6= 0, hence there exists t̄ > 0 (that depends
on β∗) such that

0 < t < t̄ ⇒ α(t) 6= 0 and |α(t)| < α ; (46)

hence, according to the above remark and if the claim holds, (43) holds for
all t, 0 < t < t̄; linear controllability on [0, τ ] in the lemma follows from (43)
at some positive t smaller than min{t̄, τ}.

Let us now prove (45). Recall that

F0 + β F1 = −β (M2 +M1 cosα)X3 + (κα− βM2)X4 . (47)

According to (21) and (44), and since M1 6= 0 and M2 6= 0, Cβ
1,0 and C

β
2,0

span the same distribution as X3 and X4 at points where α 6= 0. Hence
C

β
1,0,C

β
2,0,C

β
1,1,C

β
2,1 span the same distribution as X3, X4, [F0+β F1,X3] and

[F0+β F1,X4], that is, according to (47), X3, X4, −β (M2 +M1 cosα) [X3,X4]
and (βM2 − κα) [X3,X4], i.e., if, in addition, (M2 +M1 cosα, κα− βM2) 6=

13



(0, 0), the same distribution as {X3, X4, [X3,X4]}, and finally C
β
1,0, C

β
2,0,

C
β
1,1, C

β
2,1, C

β
1,2, C

β
2,2 span the same distribution as X3, X4, [X3,X4] and

X
β
5 given by (41) at points where α 6= 0 and (M2 +M1 cosα, κα − βM2) 6=

(0, 0). This property, together with Lemma 3.7, proves the claim (45), hence
Lemma 3.6.

4 Perspectives

This paper establishes the local controllability of a micro-swimmer model
made by two magnetized links connected by an elastic joint. We show that
the swimmer displacement can be locally controlled by an external magnetic
field. A natural perspective would be to address the question of global con-
trollability for this model. In addition, extending our result for more realistic
swimmer would be an important issue.
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