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Abstract
We consider simply typed lambda-calculus with fixpoints as a non-interpreted functional pro-
gramming language: the result of the execution of a program is its normal form that can be seen
as a potentially infinite tree of calls to built-in operations. Properties of such trees are properties
of executions of programs and monadic second-order logic (MSOL) is well suited to express them.

For a given MSOL property we show how to construct a finitary model recognizing it. In other
words, the value of a lambda-term in the model determines if the tree that is the result of the
execution of the term satisfies the property. The finiteness of the construction has as consequences
many known results about the verification of higher-order programs in this framework.

1 Introduction

Higher-order functions are being adopted by most mainstream programming languages.
Higher-order functions not only increase modularity and elegance of the code, but also help
to address such fundamental issues as scalability and fault-tolerance. In consequence, higher-
order functions are increasingly used for writing programs interacting with an environment,
like, for example, client-server web applications. To accompany this evolution, new kinds
of analysis tools are needed, focusing on behavioural properties of higher-order functional
programs. For example, some guidelines for secure web programming may require that if
a database access is required infinitely often then calls to a logging function must be made
again and again. Our objective is to develop denotational models for such kinds of properties.

We consider λY -calculus, the simply typed λ-calculus with fixpoints, as an abstraction
of a higher-order programming language that faithfully represents the control flow. Under
the name of recursive program schemes the calculus has been studied since 1960s [11, 4,
6, 7, 13, 19]. The particularity of this approach is to focus on the free interpretation: all
constants are non-interpreted symbols and the interpretation of a term is a tree composed
from constants. In the context of λ-calculus this tree is called the Böhm tree. Figure 1
presents the Böhm tree of map function. It is a generic iterator taking a function and a list,
and applying the function to every element of the list. Observe that even for such a simple
program its Böhm tree is infinite and not regular.

Program properties can be grouped in two families. The first, and the most obvious
one, concerns the absence of run-time errors. A slogan “well-typed programs never go
wrong” clearly expresses this idea. More generally, this family contains all kinds of safety
properties, i.e., those determined by a set of finite executions considered as admissible. The
other family is that of liveness properties that talk about infinite executions. For example:
“logging function is called again and again” or “every initiated communication is eventually
closed”. Concerning the map function, we can say for example that if l is a finite list then
the call map(f, l) evokes f only finitely many times. In fact all fairness properties are
particular liveness properties. Such properties are of relevance to servers, web services,
operating systems, and more generally, to all kinds of interactive applications. Regarding
liveness properties, monadic second-order logic (MSOL), or equivalently automata on infinite
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2 A model for behavioural properties of higher-order programs

if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

nil cons

Figure 1 The map function and its semantics in the form of a (simplified) Böhm tree.

objects, sets the standard of expressivity and algorithmic manageability. Moreover, thanks
to the result of Ong [19], it is decidable if the Böhm tree of a given term of the λY -calculus
satisfies a given MSOL property.

In this paper we show how to construct for a given MSOL property a finitary model so
that the value of a term in the model determines if the Böhm tree of the term satisfies the
property. More precisely, we work with the formalism of parity automata instead of MSOL.
We show that the value of a term of the base type in the model constructed from a given
automaton is simply the set of states from which the automaton accepts the Böhm tree of
the term (Theorem 11).

Our model construction shows how to extend Scott models to integrate the parity condi-
tion of a given automaton. Finitary Scott models are the simplest models of the λY -calculus:
the base type is interpreted as a finite lattice, functional types as the sets of monotone func-
tions, and the fixpoint as the least fixpoint. Such models correspond in a precise sense to
safety properties, or equivalently to finite automata on infinite trees that are Ω-blind and
have trivial acceptance conditions [22]. This implies that in order to capture the expressive
power of parity automata some modification of Scott models is needed. The straightforward
idea of introducing ranks of the parity condition directly in the base type does not seem
to work. Instead our construction introduces ranks only in higher types. The other crucial
point is the interpretation of function spaces: we cannot take all monotone functions but
only those that behave well with respect to ranks. This is formalized with a new domain
identity we call stratification.

The model construction gives a completely compositional approach to verification: the
result of a term is calculated from the results for its subterms. In particular, we give the
meaning of a fixpoint constant as a particular fixpoint of its argument. The construction
implies the transfer theorem for MSOL [21], and with it a number of consequences offered
by this theorem. Finitary models are used in program transformations: during its execution
the program can calculate the values of chosen subterms [22, 9]. In our case it can, for
example, detect if an argument satisfies a particular liveness property.

Our construction is based on the insights from a very influential paper of Kobayashi
and Ong [16], where, amongst other contributions, they give a typing system to capture the
same dependencies inside terms that we represent in our model. Although the quest for
models for behavioural properties has began some time ago, the results started to appear
only recently. Tsukada and Ong [25] extended the approach from [16] to a typing system for
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the whole λY -calculus. In this system the fixpoint is still treated externally via games, and
the model underlying the system is not finitary. They use game semantics to understand a
difficult problem of the behaviour of the application operation on the level of Böhm trees.
Also last year, Hofmann and Chen provided a model for verifying path properties expressed
in MSOL [10]. Their construction is restricted only to first-order λY -terms. They use in an
elegant way Wilke algebras that are an algebraic notion of recognizer for languages of infinite
words. One of the problems we are facing here is that there does not exist equally satisfying
notion of an algebraic recognizer for infinite trees. Even if we wanted to stay with properties
of paths, it is not clear how to extend Wilke algebras to higher orders, the problem being to
find an admissible class of fixpoint operations. More recently, Grellois and Mellies [8] have
given a categorical account of the behaviour of ranks in a model. They derive an infinite
model via elegant general constructions. About the same time, we have provided a model
construction for properties expressed in weak MSOL [23]. The model is a sort of layered
Scott model. The restriction to weak MSOL greatly simplifies the integration of ranks in
the model. As a consequence, it was possible to adapt classical arguments from domain
theory to prove the correctness of the model. The present construction does not follow the
line of [23]. Apart from [16], the main influence comes from the work of Mellies [17] clearly
showing the value of using the morphism composition similar to that in Kleisli categories.
Furthermore, the stratification property is essential to get the model to satisfy the required
equations. The proof methods for the correctness of the model are extensions of game based
methods we have developed for the proof of the transfer theorem [21].

Apart from model based approaches cited above, there is a very active research in veri-
fication of behavioural properties of higher-order programs. Among the closest methods
using the class of properties and programs we consider here we can list [15, 3, 20]. Similar
research objectives are also pursued in different settings. We would like to mention the
work of Naik and Palsberg [18] who make a connection between model-checking and typing.
They consider only safety properties, and focus on first-order imperative programs. Another
interesting line of research is proposed by Jeffrey [12] who shows how to incorporate Linear
Temporal Logic into types using a richer dependent types paradigm. The calculus is inten-
ded to talk about control and data in functional reactive programming framework, and aims
at using SMT solvers.

Organization of the paper: In the next preliminary section we introduce basic definitions, and
present two special cases that allow us to introduce the main concepts in a simpler setting.
Section 3 is devoted to the definition of the model and its properties. The main theorem of
the paper is stated in this section. The next section presents the proof outline. Section 4
shows some consequences of the model construction. The conclusions section outlines some
directions for further research.

2 Preliminaries

We start by introducing λY -calculus and parity automata. Then we present two simple
special cases of the main result of the paper. The first case shows what can be achieved
with the classical notion of a model for λY -calculus. The second considers only terms of
order at most 1. It allows us to introduce some crucial elements of the general solution.
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2.1 λY -calculus
The set of types is constructed from a unique basic type o using a binary operation → that
associates to the right. Thus o is a type and if A, B are types, so is (A→ B). The order of
a type is defined by: order(o) = 0, and order(A→ B) = max(1 + order(A), order(B)). We
work with tree signatures that are finite sets of typed constants of order at most 1. Types of
order 1 are of the form o→ · · · → o→ o that we abbreviate oi → o when they contain i+ 1
occurrences of o. For convenience we assume that o0 → o is just o. If Σ is a signature, we
write Σ(i) for the set of constants of type oi → o.

Simply typed λY -terms are built from the constants in the signature, and constants
Y A, ΩA for every type A. These stand for the fixpoint combinator and undefined term,
respectively. Apart from constants, for each type A there is a countable set of variables
xA, yA, . . . . Terms are built from these constants and variables using typed application and
λ-abstraction. We shall write sequences of λ-abstractions λx1. . . . λxn. M with only one λ:
either λx1 . . . xn. M , or even shorter λ~x. M . We take for granted the operational semantics
of the calculus given by β and δ reductions.

The Böhm tree of a term M is obtained by reducing it until one reaches a term of the
form λ~x.N0N1 . . . Nk with N0 a variable or a constant. Then BT (M) is a tree having its root
labelled by λ~x.N0 and having BT (N1), . . . , BT (Nk) as subtrees. Otherwise BT (M) = ΩA,
where A is the type of M . Böhm trees are infinite normal forms of λY -terms. A Böhm
tree of a closed term of type o over a tree signature is a potentially infinite ranked tree: a
node labelled by a constant a of type oi → o has i successors. Among constants ΩA, only
constant Ωo can appear in the Böhm tree of such a term.

2.2 MSOL and parity automata
We are interested in properties of trees expressed in monadic second-order logic (MSOL).
This is an extension of first-order logic with quantification over sets of elements. Over infinite
trees MSOL formulas define precisely regular tree languages. This class of languages has
numerous other characterizations. Here we will rely on the one using parity tree automata.

Automata will work on Σ-labelled trees, where Σ is a tree signature. Trees are partial
functions t : N∗ ·→ Σ ∪ {Ω} such that the number of successors of a node is determined by
the label of the node. In particular, if t(u) ∈ Σ(0) then u is a leaf. The nodes of t, are the
elements of the domain of t. The set of nodes should be prefix closed. A label of a node u
is t(u).

We will use nondeterministic max-parity automata, that we will call parity automata for
short. Such an automaton accepts trees over a fixed tree signature Σ. It is a tuple

A = 〈Q,Σ, {δi}i∈N, rk : Q→ [m]〉

where Q is a finite set of states, rk is the rank function with the range [m] = {0, . . . ,m},
and δi : Q× Σ(i) → P(Qi) is the transition function. Observe that since the signature Σ is
finite, only finitely many δi are nontrivial. From the definition it follows that, for example,
δ2 : Q× Σ(2) → P(Q×Q) and δ0 : Q× Σ(0) → {∅, {∅}}. We will simply write δ without a
subscript when this causes no ambiguity. We require that δ(Ωo, q) = {∅} if the rank of q is
even, and δ(Ωo, q) = ∅ otherwise1.

1 This unusual treatment of Ωo is a small but important ingredient of our construction. Any other choice
looses the correspondance between ranks in A and fixpoint alternation in the definition of the fixpoint.
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A run of A on t from a state q0 is a labelling of nodes of t with the states of A such
that: (i) the root is labelled with q0, (ii) if a node u is labelled q and its k-successors are
labelled by q1, . . . qk, respectively, then (q1, . . . , qk) ∈ δk(q, t(u)); recall that t(u) is the letter
in the node u.

A run is accepting when: (i) for every leaf u of t, if q is the state of the run in u then
δ0(q, t(u)) = {∅}, and moreover (ii) for every infinite path of t, the labelling of the path
given by the run satisfies the parity condition. This means that if we look at the ranks of
states assigned to the nodes of the path then the maximal rank appearing infinitely often
is even. A tree is accepted by A from a state q0 if there is an accepting run from q0 on the
tree.

It is well known that for every MSOL formula there is a parity automaton recognizing
the set of trees that are models of the formula. The converse also holds. Let us also
recall that the automata model can be extended to alternating parity automata without
increasing the expressive power. Here, for simplicity of the presentation, we will work only
with nondeterministic automata but our constructions apply also to alternating automata.

In the context of verification of higher-order properties, automata with trivial acceptance
conditions have gathered considerable attention [14]. These are obtained by requiring that
all states have rank 0. In terms of runs it means that every run of such an automaton on
an infinite tree without leaves is accepting. For the reasons that will be apparent in the
next subsection one more simplifying condition is imposed in the literature. An automaton
is Ω-blind if δ(q,Ω) = {∅} for all states q. So Ω-blind automaton unconditionally accepts
divergent computations, while our definition allows to test divergence with the rank of the
state.

A parity automaton together with a state recognize a language of closed terms of type o:

L(A, q0) = {M :M is closed term of type o, BT (M) is accepted by A from q0} .

2.3 Models with the least fixpoint
A Scott model associates to each type A a finite lattice DA in which λY -terms of type A can
be interpreted. For a type B → C, this lattice is the set of monotone functions f from DB to
DC . The set DB→C is ordered pointwise (f ≤ g when for every b ∈ DB , f(b) ≤ g(b)) making
it a lattice. Constants are interpreted as functions of the right type. Fixpoint operators Y
are interpreted as the least fixpoints.

The semantics of a term M of type A in a given valuation υ, denoted [[M,υ]], is an
element of DA. As usual, a valuation is a partial function from variables to elements of
the model respecting types: if defined υ(xA) is an element of DA. We use ∅ for the empty
valuation. The inductive definition of the semantics is presented in Figure 2. For illustration
we have also included a clause for constants. It explains the case when we would like to
construct a model from an automaton as stated in the theorem below.

[[x, υ]] =υ(x)
[[a, υ]]h1 . . . hk ={q : ∃(q1,...,qk)∈δ(q,a)qi ∈ hi for all i}

[[λx.M, υ]]h =[[M,υ[h/x]]]
[[MN,υ]] =[[M,υ]]([[N, υ]])

Figure 2 Semantics in a Scott model.
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A Scott model can be used to recognize a set of terms. A subset R of Do is said to
recognize the set of closed λY -terms M of type o whose semantics is in R, i.e. [[M, ∅]] ∈ R.
In this way, finitary Scott models determine a class of languages of λY -terms they recognize.
The following theorem characterizes this class.

I Theorem 1 ([22]). A language of λY -terms is recognized by a boolean combination of
Ω-blind automata with trivial acceptance condition iff it is recognized by a Scott model where
Y constants are interpreted as the least fixpoint.

This theorem determines the limits of Scott models with least fixpoints. By duality this also
applies to models with greatest fixpoints. So in order to capture more properties we need
to be able to construct some other fixpoints.

2.4 The case of terms of order at most 1
The case of Scott models clearly pointed out the challenge in a model construction for all
parity automata. In this section we will present the special case of our construction for
terms of order at most 1. Such terms have only variables of type o and all their subterms
are of type of order at most 1. We will construct a model for an arbitrary parity automaton.
The advantage of terms of order at most 1 is that we can describe in a direct way what our
semantics expresses. The semantic equations for the general case will be the same as here.
We hope that this presentation will give some general intuitions about what properties of
Böhm trees the model captures, as well as specific intuitions about the operation (·)�r (cf.
Definition 3) that deals with parity acceptance conditions at the level of semantics. One can
see the construction below as a reformulation of the type system of Kobayashi and Ong [16]
in terms of models.

For the rest of the subsection we fix a parity automaton A = 〈Q,Σ, δ, rk : Q→ [m]〉.
Let us first consider terms without fixpoints. IfM is a closed term of type o then BT (M)

is a finite tree with internal nodes labelled by constants of types of order 1 and leaves labelled
by constants of type o. It is clear what is an accepting run of automaton A on BT (M).

Suppose now that M has free variables, that are necessarily of type o. If M is of type o
then BT (M) is still a finite tree but it may have nodes labelled by variables. We can thus
consider variables as holes where we can put states and ask whether there is a run. The
parity condition requires to keep more information. So in addition to states, we keep track
of the maximal ranks of states that appear on the paths from the root to the leaves labelled
with variables. This idea is formalized in the following definition and illustrated in Figure 3.

Figure 3 Acceptance from q to υ

I Definition 2. Let M : o be a term of order at most 1. Let υ be a function assigning to
every free variable of M a value from P(Q× [m]). We say that A accepts BT (M) from q to
v iff there is a run of A on BT (M) starting in q, satisfying the conditions of an accepting
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run from page 5, and such that for every variable x and leaf of BT (M) labelled by x: if q′
is a state of the run in the leaf, and i is the maximal rank of states on the path from the
root to the leaf then (q′, i) ∈ υ(x).

We will define a semantics of λ-terms that captures this notion of acceptance. First we
define semantic domains for types of order at most 1:

Do = P(Q) Ro = P({(q, r) : q ∈ Q and rk(q) ≤ r ≤ m})
Do→···→o→o = Ro → · · · → Ro → Do

So Ro is the set of sets of ranked states, with the restriction that the rank should be at least
as big as the rank assigned to the state in the automaton. The intended meaning of ranks
given by the above definition clearly justifies this restriction. We call the elements of Ro
residuals.

Both Do and Ro are ordered by inclusion, and Doi→o is ordered pointwise.
We now introduce the operation (·)�r that is taking care of the parity condition at the

level of semantics. Even though the definition may at first sight seem technical, Lemma 4
provides some rather clear intuitions about how it works.

I Definition 3. For h ∈ Ro, and r ∈ [m] we put

h�r = {(q, i) ∈ h : r ≤ i} ∪ {(q, j) : (q, r) ∈ h, rk(q) ≤ j ≤ r} .

As an example, observe that h�0 = h.

I Lemma 4. For h ∈ Ro, q ∈ Q, and r, r1, r2 ∈ [m]:
(h�r1)�r2 = h�max(r1,r2);
(q, rk(q)) ∈ h�r iff (q,max(r, rk(q)) ∈ h

The above two properties characterize the family of operations (·)�r. So Definition 3 is
imposed on us if we want to have properties listed in the lemma.

The proof of Proposition 5 below, illustrates how we use the two properties from Lemma 4
to capture in a compositional way the acceptance of Böhm trees of Definition 2.

We also use two other operations. The first is a lifting of elements from Do to Ro. The
second projects an element of Ro to Do by taking a sort of diagonal.

f · r ={(q, r) : q ∈ f and rk(q) ≤ r} for f ∈ Do and r ∈ [m]
h∂ ={q : (q, rk(q)) ∈ h} .

Given a valuation υ : V ars → Ro the semantics of a term M of type A is an element
[[M,υ]] ∈ DA. Its definition is presented in Figure 4. Put next to the semantics in a Scott
model from Figure 2, one can clearly see the differences that are due to the presence of
ranks. For example, in the variable rule it is necessary to convert the meaning of a variable
from Ro to Do. Later, in the application rule, it is necessary to lift the meaning of N from
Do to Ro. The notation υ�r means υ where (.)�r is applied pointwise.

In our characterization of the semantics we will use step functions. For f1, . . . , fk ∈ Ro
and q ∈ Do we write

f1 7→ . . . 7→ fk 7→ q

for the function h of typeRko → Do such that h(f ′1, . . . , f ′k) = {q} if f ′i ≥ fi for all i = 1, . . . , k
and h(f ′1, . . . , f ′k) = ∅ otherwise. A step function f1 7→ . . . 7→ fk 7→ (q, i) for some (q, i) ∈ Ro
is defined similarly.
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[[x, υ]] =(υ(x))∂

[[a, υ]]h1 . . . hk ={q : ∃(q1,...,qk)∈δ(q,a) qi ∈ (hi�rk(q))∂ for all i}

[[λx.M, υ]]h =[[M,υ[h/x]]]

[[MN,υ]] =[[M,υ]]〈〈N, υ〉〉 where 〈〈N, υ〉〉 =
m∨
r=0

(
[[N, υ�r]] · r

)

Figure 4 Semantics in an extension of the Scott model with ranks

Example: Take a signature with three constants a, b, c of arity 2, 1, 0, respectively. Consider
a parity automaton A = 〈{q0, q1},Σ, δ, rk : Q→ [1]〉 where the rank of a state is given by its
index, and the only pairs for which the value of δ is not ∅ are δ(a, q0) = Q×Q, δ(b, q1) = Q,
and δ(c, q0) = δ(c, q1) = {∅}. So from q0 the automaton recognizes the set of trees with root
labelled a and only finitely many b’s on every path.

We are going to evaluate the term a x (f(b x)) in the model induced by A and in the
valuation υ that maps x to {(q1, 1)} and f to the step function {(q1, 1)} 7→ (q0, 0). We get
[[a x(f(b x)), υ]] = {q0} with the following calculation:

[[x, υ]] = {q1} 〈〈x, υ〉〉 ={(q1, 1)}
[[b x, υ]] ={q1} 〈〈b x, υ〉〉 ={(q1, 1)}

[[f(b x), υ]] ={q0} 〈〈f(b x), υ〉〉 ={(q0, 0)}
[[a x(f(b x)), υ]] ={q0} .

I Proposition 5. [[M,υ]] ≥ f1 7→ . . . 7→ fk 7→ q iff for some fresh variables z1 . . . zk, A accepts
BT (Mz1 . . . zk) from q to υ[f1/z1 . . . fk/zk].

Proof. The case of a variable follows by unrolling the definitions. If BT (M) is just the
variable, A accepts BT (M) from q to υ iff (q, rk(q)) ∈ υ. This is because the maximal rank
of a state seen from the root of BT (M) to the leaf (which is the same node as the root) is
rk(q).

A more interesting case is that of a constant a, say it is of a type o→ o→ o. For the left
to right implication, suppose [[a, υ]] ≥ f1 → f2 → q. We need to show that az1z2 admits a run
from q to a valuation υ[f1/z1, f2/z2]. From the definition of the semantics we have (q1, q2) ∈
δ(q, a) such that (qi, rk(qi)) ∈ fi�rk(q). By Lemma 4 we get (qi,max(rk(qi), rk(q))) ∈ fi. So
we can take a run on az1z2 assigning q to the root and q1, q2 to the leafs labelled z1, z2,
respectively. Since indeed max(rk(qi), rk(q)) is the maximal rank seen in the run from the
root to zi this shows that A accepts az1z2 from q to υ. The other direction is analogous
thanks to the equivalence in Lemma 4.

We consider the case of the application. We will only present the left to right direction.
Suppose [[MN,υ]] ≥ f1 7→ · · · 7→ fk 7→ q, and let us look what is the semantics of the
application. Since we are considering only terms of order at most 1, N is of type o and
〈〈N, υ〉〉 is in Ro. We have [[M,υ]]〈〈N, υ〉〉 ≥ f1 7→ · · · 7→ fk 7→ q, which is the same as
[[M,υ]] ≥ 〈〈N, υ〉〉 7→ f1 7→ · · · 7→ fk 7→ q. Now the induction hypothesis tells us that
BT (Mz0z1 . . . zk) is accepted by A from q to υ[〈〈N, υ〉〉/z0, f1/z1, . . . fk/zk]. Now let us look
what it means that (q′, r′) ∈ 〈〈N, υ〉〉. By unfolding the definitions we obtain q′ ∈ [[N, υ�r′ ]].
Using the induction hypothesis for N , we have a run of A on BT (N) from q′ to υ�r′ . From
these observations we construct a required run on BT (MNz1 . . . zk) from q to υ.
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Observe that BT (MNz1 . . . zk) is obtained from BT (Mz0z1 . . . zk) by plugging in every
leaf labelled z0 the tree BT (N) (cf. Figure 5). We want to construct on BT (MNz1 . . . zk)
a run from q to υ. For this we just take a run on BT (Mz0z1 . . . zk) from q to the valuation
υ[〈〈N, υ〉〉/z0, f1/z1, . . . fk/zk]. Then for every leaf l of BT (Mz1 . . . zk) labelled z0 with ql
the state of the run in l and rl the maximal rank from the root to l, we prolong the run
with the run on BT (N) from ql to υ�rl

.

Figure 5 The case of application.

To show that this run is as required we take a leaf l2 of BT (MNz1 . . . zk) labelled by
some variable y. We suppose that q2 is the state assigned by the run to l2 and that r is the
maximal rank of states of the run on the path from the root to l2. We want to show that
(q2, r) ∈ υ(y). If l2 is a leaf of BT (Mz0z1 . . . zk) then this directly follows from the definition
of the run. If it is not, then the path to l2 passes through the leaf l1 of BT (Mz0z1 . . . zk)
labelled by z0 and then gets to BT (N); cf. Figure 5. Let q1 be the state labelling l1, let
r1 be the maximal rank from the root to l1, and let r2 be the maximal rank from l1 to l2.
By looking at the part of the run on BT (N) we get (q2, r2) ∈ υ�r1(y). Lemma 4 then gives
(q2,max(r1, r2)) ∈ υ(y), that is exactly the required property. J

The above proof is so simple because the composition of Böhm trees of terms of order at
most 1 is easy. We can now try to add a fixpoint to our syntax. We consider terms of the
form YM with M of type o→ o. The semantics of a term [[M,υ]] is a function from Ro to
Do. If we want to calculate the semantics of YM then we need to do some manipulation with
the function [[M,υ]] as its domain and co-domain are different. The situation becomes clearer
when we recall that Ro ⊆ Do × [m]. So [[M,υ]] is essentially a function of m arguments.
This is very fortunate as we can expect that the computation of the semantics of YM needs
m fixpoints alternating between the least and the greatest fixpoints.

We will give a general formula for calculating the fixpoint in Section 3 when we fully
describe our model. Since we have Y in the syntax, this formula itself should denote an
element of our model. Here let us show the formula for the case of m = 1. This means that
we have two ranks 0 and 1. Using f : Ro → Do to denote the function [[M,υ]] the semantics
[[YM, υ]] is given by F0 ∈ Do defined by

F0 =νZ0. f
∂(Z0 · 0 ∪ F1 · 1)

F1 =µZ1νZ0. (f�1)∂(Z0 · 0 ∪ Z1 · 1)

We omit a, not so short, proof of the correctness of this formula. The proof for the general
case is presented in the appendix.
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3 A model recognizing MSOL properties

We now extend the definitions we have given in the previous section to higher orders. We
obtain a model of the λY -calculus that recognizes terms whose Böhm trees are accepted by
a given parity automaton. More precisely, for every closed λY -term M of type o we will
have:

[[M, ∅]] = {q : A accepts BT (M) from q} .

For the rest of this section we fix a parity automaton A = 〈Q,S, δ, rk : Q → [m]〉. In
particular, m is the maximal rank of a state of A.

We start by generalizing the definition of residuals Ro to all types. At the same time we
will generalize the operation (·)�r, as well as define a new operation (·)⇓q. For a residual
f in Ro, we let f⇓q be {r : (q, r) ∈ f}. Now we define RA→B to be the set of monotone
functions f that satisfy the following stratification property:

∀g ∈ RA. ∀q ∈ Q. (f(g))⇓q = (f(g�rk(q)))⇓q (strat)

at the same time we define for every g ∈ RA:

f⇓q(g) = (f(g))⇓q, f�r(g) = (f(g))�r .

The elements of RA are ordered using the pointwise order. It can be shown that this order
makes RA a lattice.

For an intuition behind the (strat) property it may be useful to look back at Figure 5.
Suppose f is the meaning of M and g is the meaning of N . The formula f(g)⇓q then means
that we are interested in the runs on BT (MN) starting from q. As can be seen from the
proof of Proposition 5, in such a run every appearance of BT (N) will be lifted with �r
operation where r is the maximal rank seen from the root to this appearance. We do not
know what this r will be, but it will be at least rk(q), so it is safe to already apply �rk(q)
to g. In other words, for the runs starting in q we should get the same result from f(g) as
from f(g�rk(q)). Yet another more formal intuition comes from the application clause. The
meaning of 〈〈N, υ〉〉 as a function of υ satisfies the (strat) property.

As in the previous section, we do not interpret λY -terms in the lattices RA, but rather
in the lattices DA that are generalizations at every type of Do. For this we must define f⇓q
for f ∈ DA: we put f⇓q = f ∩ {q} for f ∈ Do; and f⇓q(g) = (f(g))⇓q for f ∈ DA→B , and
g ∈ RA. Using the same notation for the operation ⇓q when it acts on DA or RA should
not confuse the reader as in both cases, it corresponds to focusing on the behaviour of the
function on the state q. With this definition we let DA→B be the set of monotone functions
from RA to DB that satisfy the same (strat) identity.
Remark: The definitions of (·)�r and (·)⇓q are covariant and they become more intuitive
when we consider types written as A1 → · · · → Ak → o, or in an abbreviated form as ~A→ o.
In this case, using →ms for the set of monotone and stratified functions, we have:

D ~A→o = RA1 →ms · · · →ms RAk
→ms Do

R ~A→o = RA1 →ms · · · →ms RAk
→ms Ro

g⇓q(~h) = (g(~h))⇓q g�r(~h) = (g(~h))�r

where ~h is a vector of elements from RA1 × · · ·×RAk
, and the operations ⇓q, �r are applied

only to elements from Do or Ro, depending on whether g is from D ~A→o or R ~A→o.
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Before we define the semantics, we observe several properties of the domains and the
operations we have introduced. First, the generalization of (·)�r to higher orders preserves
the properties of Lemma 4.

I Lemma 6. For every type A, both DA and RA are finite complete lattices. When A is
A1 → · · · → Al → o, g ∈ RA, ~h ∈ RA1 × · · · × RAl

and r, r1, r2 ∈ [m] then:
(g�r1)�r2 = g�max(r1,r2);
(q, rk(q)) ∈ g�r(~h) iff (q,max(rk(q), r)) ∈ g(~h).

For every g1, g2 in RA: (g1 ∨ g2)�r = g1�r ∨ g2�r and (g1 ∧ g2)�r = g1�r ∧ g2�r.

We now extend to higher-orders the operations (·)∂ and (·) · r we have introduced in
Section 2.4. These extensions use the same covariant pattern as the extensions of (·)⇓q and
(·)�r; we first define the operations for objects of type o and then extend them to all higher
types. For g0 ∈ Ro, f0 ∈ Do, g1 ∈ RA→B , f1 ∈ DA→B we have:

g∂0 ={q : (q, rk(q)) ∈ g0} g∂1 (h) =(g1(h))∂

f0 · r ={(q, r) : q ∈ f0, rk(q) ≤ r} (f1 · r)(h) =(f1(h)) · r

Thus g∂ converts an element of RA to an element of DA, and f · r does the opposite.

I Lemma 7. For every type A, every f ∈ DA, g ∈ RA, and r ∈ [m], we have: f · r ∈ RA,
g�r ∈ RA, and g∂ ∈ DA.

The semantics of a term M of some type A, under a given valuation υ is denoted [[M,υ]].
It is an element of DA provided υ is defined for all free variables of M . As in Section 2.4, a
valuation is a function assigning to a variable of type B an element of RB . The semantic
clauses are those from Figure 4, so they are the same as for the order 1 case of Section 2.4.
It remains to define the fixpoint:

[[Y A, υ]]h = fix(h, 0)

where for l = 0, . . . ,m we define

fix(h, l) = σfl. . . . µf1.νf0. (h�l)∂
( l∨
i=0

fi · i ∨
m∨

i=l+1
fix(h, i) · i

)
.

We use σ to stand for µ or ν depending on whether l is odd or even, respectively.
The structure of this formula may be better visible if we look at fix(h,m), and assume

that m is odd:

µfm.νfm−1 . . . µf1.νf0. (h�m)∂
( m∨
i=0

fi · i
)
.

So we see a rather expected alternation of least and greatest fixpoints, and inside the big
brackets we see an operation of composing fi’s to one residual. This operation is of the same
shape as in the clause for application. Observe that the expression (

∨m
i=0 fi · i) considered

as a function of f0, . . . , fm is a monotone function from Dm+1
A to DA. This remark together

with Lemma 7 and the fact that DA is a complete lattice explains why fix(h, l) is well-defined,
for every l.

We state a couple of lemmas implying that what we have defined is indeed a model.
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I Lemma 8. For every type A, if f is in RA→A then for every k, l ∈ [m]:
(i) fix(f, l) is in DA; and (ii) fix(f�k, l) = fix(f,max(k, l)) .

The next lemma implies that for every term M of type A, the value [[M,υ]] assigned by
the semantics is indeed in DA.
Notation: We write (·)�q for (·)�rk(q).

I Lemma 9. For every term M , every υ, and ~f , of appropriate types:
1. If υ ≤ υ′ and ~f ≤ ~g then [[M,υ]]~f ≤ [[M,υ′]]~g.
2. For every q ∈ Q: q ∈ [[M,υ]]~f iff q ∈ [[M,υ]]~f�q iff q ∈ [[M,υ�q]]~f�q.
3. [[M,υ]] and 〈〈M,υ〉〉 satisfy the (strat) property.
4. 〈〈M,υ�q〉〉 = 〈〈M,υ〉〉�q.

The above lemmas allow us to show that the interpretation of terms is invariant under
=βδ, or, put differently, that we have constructed a model of λY -calculus.

I Proposition 10. For every M , N and υ, if M =βδ N , then [[M,υ]] = [[N, υ]] and 〈〈M,υ〉〉 =
〈〈N, υ〉〉 .

It now remains to explain how this model is related to the acceptance of the Böhm trees
of λY -terms by A. This explanation is given by the following theorem which is the main
result of the paper. Recall that we denote the empty valuation by ∅.

I Theorem 11 (Correctness). For a given parity automaton A, the semantics defined above
is such that for every closed term M of type o and every state q of A:

q ∈ [[M, ∅]] iff A accepts BT (M) from state q.

Example: Continuing the example from page 8 we will calculate the value of the term
Mo→o = Y (λfx.a x (f(b x))). This term is a simplified version of map function from the
Introduction, in the sense that it has a Böhm tree of a similar shape. In order to show that
every path of BT (Mc) contains only finitely many b’s we show q0 ∈ [[Mc, ∅]]. In the first part
of the example we have established [[a x (f(b x)), υ]] = {q0} where υ that maps x to {(q1, 1)}
and f to the step function {(q1, 1)} 7→ (q0, 0). This implies that [[λfx.a x(f(b x))]] ≥ g where
g = ({(q1, 1)} 7→ {(q0, 0)}) 7→ {(q1, 1)} 7→ q0. We now compute fix(g, 0). We observe that
g(> · 0 ∨ ⊥ · 1) = {(q1, 1)} 7→ q0 and, g(h · 0 ∨ ⊥ · 1) = h, for h = {(q1, 1)} 7→ q0. Therefore
νg0.g(g0 ·0∨⊥·1) = h. Now, g(h ·0∨h ·1) = h which implies that µg1.νg0.g(g0 ·0∨g1 ·1) = h.
With this we have showed [[M, ∅]] ≥ h which finally gives us q0 ∈ [[Mc]].

The proof of Theorem 11 is presented in the appendix.

4 Applications

The model construction we have presented allows us to derive a number of results on veri-
fication of higher-order schemes and the λY -calculus. Since the constructed model is finite,
it implies the decidability of the model-checking problem [19]. More importantly, it implies
the transfer theorem [21]. Actually this theorem is proved in op. cit. also for infinite terms.
This cannot be done solely with the techniques in the present paper. The transfer theorem
gives an effective reduction of the MSOL theory BT (M) to the MSOL theory of the tree
representation of M . The strength of the theorem lies in the fact that the reduction is
uniform for all terms over a fixed set of variables and types.

A term can be represented as a tree with back edges: the nodes of the tree are labelled
with the application symbol, the lambda abstraction, a variable, or a constant. The back
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edges go from occurrences of variables to their binding lambdas. This representation makes
it rather clear what it means for a term to be a model of an MSOL formula [21]. We will
use Terms(Σ, T , X) for the set of terms over a signature Σ, such that all the their (free or
bound) variables are from X , and all their subterms have types in T .

I Theorem 12 ([21]). Let Σ be a finite tree signature, X a finite set of typed variables, and
T a finite set of types. For every MSOL formula ϕ one can effectively construct an MSOL
formula ϕ̂ such that for every λY -term M ∈ Terms(Σ, T ,X ) of type o:

BT (M) � ϕ iff M � ϕ̂.

Proof. Let A be the automaton equivalent to ϕ. Consider the model DA given by The-
orem 11. The model DA is finite in every type. So the set of possible semantical values of
terms from Term(Σ, T ,X ) is finite.

There is a correspondence between subterms of the term and the nodes of the tree
representation of the term. So the labelling assigning to a node of the tree representation
the meaning of the subterm it represents is a colouring of the tree with colours from a finite
set. Let us call it the semantic colouring. The next observation is that if we are given any
colouring of the tree representation of a term with elements of the model then we can check
if it is the semantic colouring by verifying some local constraints implied by the definition
of the model. For example, the local constraints say that the meaning assigned to the node
labelled by the application symbol is indeed the result of the application of the meaning
assigned to the first child applied to the meaning assigned to the second child. This can
be checked by a looking in a finite table. Now the desired MSOL formula can guess such a
colouring of the tree representation of a term, verify that it satisfies the local constraints,
and that the initial state of the automaton A belongs to the colour of the root node. J

This theorem implies the global model checking property [2]. Other applications of
the theorem are outlined in [21]. In particular, a model clearly explains how to solve the
synthesis problem from higher-order modules [21]. The synthesized program is composed
from modules using application. Since the set of modules is fixed and finite, we can evaluate
the meaning of such a composition using a finite automaton. Thus the synthesis problem is
reduced to the emptiness problem for finite automata on finite trees.

As described in [22], a model can be used to design program transformations. A general
principle of such a transformation is that during evaluation the program “knows” what is
its meaning in the model. Such a program, or in our case a term of λY-calculus, is called
reflective [1]. This intuitive statement requires some explanation. What we mean is that
when evaluating a term M we reach a head normal form, say bN1N2. Then b is a non-
interpreted symbol that is output as the root of the tree BT (M), and the evaluation process
splits to evaluation of N1 and N2. While at the beginning we can simply calculate the
semantics [[M ]] in the model, it is the reflective program itself that needs to calculate [[N1]]
and [[N2]]. As the model is finite, Church encoding permits to work with model’s elements.
Interestingly, this general method of translating a term into a reflective term follows a simple
inductive pattern. We refer to [22] for more details.

5 Conclusions

We have extended Scott models with ranks, and have shown that this extension recognizes
all MSOL properties of λY -terms. The meaning of the fixpoint operator is an alternation of
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the least and the greatest fixpoints reminiscent to the fixpoint characterization of winning
positions in a parity game. This is somehow expected since acceptance for parity automata
is expressed in terms of existence of a strategy in a parity game.

The model construction reduces the higher-order verification problem to the evaluation
problem. Surprisingly, even the problem of evaluating terms without fixpoints in a Scott
model is not that well studied (cf. [24]). We believe that the evaluation problem can be an
unifying algorithmic problem for many kinds of program analyses whose theoretical com-
plexity is “sufficiently high” to justify a semantic approach. Verification of MSOL properties
considered in this paper is one such case. The model we construct is essentially of the same
size as the Scott model so the evaluation approach should be essentially as efficient as ap-
proaches based on intersection types refining simple types. Indeed, every step function in
the model can be represented by such a type.

Model formulation opens a possibility to use abstract interpretation methods. For ex-
ample, instead of λY -calculus one can consider PCF extended with uninterpreted constants.
So a PCF term will also generate an infinite tree constructed from added constants. In order
to evaluate such PCF terms we would need to work with infinite models with fixpoints of the
form we have here. Under some conditions these models could recognize MSOL properties
of Böhm trees generated by such terms. Then abstract interpretation will be given by a
suitable homomorphisms from infinite to finite models.

We hope that our result is a step towards understanding infinitary properties in the usual
frameworks of semantics, and with this to extend semantic methods to reactive programs
and their behaviors. We have tried here to make the presentation as concrete as possible. It
is evident though that a more abstract description bringing out the structure of the model
should be pursued. A more ambitious goal is to find an abstract description of models
recognizing MSOL properties. Let us mention that the expressive power of Scott models
with arbitrary interpretations of fixpoints is unknown.
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A Omitted proofs from Section 3

Lemma 6 For every type A, both DA and RA are finite complete lattices. When A is
A1 → · · · → Al → o, g ∈ RA, ~h ∈ RA1 × · · · × RAl

and r, r1, r2 ∈ [m] then:
(g�r1)�r2 = g�max(r1,r2);
(q, rk(q)) ∈ g�r(~h) iff (q,max(rk(q), r)) ∈ g(~h).

For every g1, g2 in RA:
(g1 ∨ g2)�k = g1�k ∨ g2�k and (g1 ∧ g2)�k = g1�k ∧ g2�k.

Proof. Proving that DA and RA are finite complete lattices is a simple induction on the
structure of A.

Since by definition g�r(~h) = (g(~h))�r, the argument for higher types is the same as for
the base type. So we will consider only g of type o.

If (q, r) is in (g�r1)�r2 , then either r ≥ r2 and (q, r) is in g�r1 , or r < r2 and (q, r2) is in
g�r1 . Each case can then be split in two.

In the first case, (q, r) is in g�r1 either since r ≥ r1 and (q, r) is in g, or since r < r1 and
(q, r1) is in g. If r ≥ r1 and (q, r) is in g, then, because r ≥ r2, we have r ≥ max(r1, r2) and
thus, (q, r) is in g�max(r1,r2). If r < r1, then because r ≥ r2, we have max(r1, r2) = r1, then
because (q, r) is in g�r1 , we also have that (q, r) in g�max(r1,r2).

In the second case, (q, r2) is in g�r1 either since r2 ≥ r1 and (q, r2) is in g or since r2 < r1
and (q, r1) is in g. If r2 ≥ r1, then r2 = max(r1, r2), and since (q, r2) is in is in g, because
r < r2, we obtain that (q, r) is in g�max(r1,r2). If r2 < r1, then r1 = max(r1, r2) and as,
(q, r1) is in g, we obtain that (q, r) is in g�max(r1,r2).

We have thus showed that (g�r1)�r2 ⊆ g�max(r1,r2). We now turn to the converse inclusion.
If (q, r) is in g�max(r1,r2), then it is either because r ≥ max(r1, r2) and (q, r) is in g or because
r < max(r1, r2) and (q,max(r1, r2)) is in g. In both cases, the definitions immediately lead
to the fact that (q, r) is also in (g�r1)�r2 . In the first case, since r ≥ max(r1, r2) and (q, r) is
in g, we have that (q, r) is in g�r1 which finally entails that (q, r) is in (g�r1)�r2 . In the second
case, we have that (q,max(r1, r2)) is in g which implies that for every r′ ≤ max(r1, r2), (q, r′)
is in (g�r1)�r2 and, thus, (q, r) is in (g�r1)�r2 .

The second and third statements follow the similar reasoning but are easier. J

As a side remark we show that the operations (·)�r is characterised by the two properties
from the previous lemma.

I Lemma 13. Suppose that we have an operation liftk : [m] × Ro → Ro satisfying the
conditions:

lift(r1, lift(r2, g)) = lift(max(r1, r2), g);
(q, rk(q)) ∈ lift(r, g) iff (q,max(rk(q), r)) ∈ g.

then lift(k, g) = g�k for every k ∈ [m]

Proof. Take some r ∈ [m]. Suppose (q, i) ∈ lift(r, g). By the second condition we know that
this is equivalent to (q, rk(q)) ∈ lift(i, lift(r, g)) = lift(max(i, r), g); where the equality is by
the first condition. We have two cases. If i ≥ r then (q, rk(q)) ∈ lift(i, g), By the second
condition this is equivalent to (q, i) ∈ g. If i < r then (q, rk(q)) ∈ lift(r, g). So this time it
is equivalent to (q, r) ∈ g. So in both cases this is equivalent to (q, i) ∈ g�r. J

Lemma 7 For every type A, every f ∈ DA, g ∈ RA, and r ∈ [m], we have: f · r ∈ RA,
g�r ∈ RA, and g∂ ∈ DA.
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Proof. When A = o is the base type, the statements are immediate. We verify that f · r
satisfies the (strat) condition when A is a higher-order type. For the induction step it is
convenient to consider types in the form ~A→ o. Take a vector of elements ~h of types ~A and
a state q. We have (f · r)(~h) = (f(~h)) · r, and similarly (f · r)(~h�q) = (f(~h�q)) · r. So we
need to show that (f(~h) · r)⇓q = ((f(~h�q)) · r)⇓q. To show the inclusion from left to right,
take i ∈ (f(~h) · r)⇓q. We must have (q, i) ∈ f(~h) · r so i = r, rk(q) ≥ r and q ∈ f(~h). The
(strat) property gives q ∈ f(~h�q) implying that r belongs to ((f(~h�q)) · r)⇓q. The other
direction is similar. By the same argument if i ∈ ((f(~h�q)) · r)⇓q then i = r, rk(q) ≥ r and
q ∈ f(~h�q). Stratification gives q ∈ f(~h) and we are done.

The reasoning in the case of �r operation is similar. We need to show stratification, which
means that for every ~h of appropriate types and q we need to show (g(~h))�r⇓q = g(~h�q)�r⇓q.
For the left to right inclusion we take i ∈ (g(~h))�r⇓q. This gives us (q, i) ∈ g(~h)�r. If
i ≥ r then (q, i) ∈ g(~h) and by (strat) also (q, i) ∈ g(~h�q) so we are done. If i < r then
(q, r) ∈ g(~h) and the same argument works. The right to left inclusion follows with the same
lines.

The statement g∂ ∈ DA follows directly from the definitions. J

Lemma 8 For every type A, if f is in RA→A then for every k, l ∈ [m]: (i) fix(f, l) is in DA;
(ii) fix(f�k, l) = fix(f,max(k, l)) .

Proof. We show the first statement of the lemma by induction on m− l. In the case where
l = m, as DA is finite, we can rewrite fix(f,m) as a finite formula with meets and joins of
elements of DA. Using inductively Lemma 6 on this formula proves that indeed fix(f,m) is
in DA. For the inductive case, the method is the same, but we need the induction hypothesis,
Lemma 6 and Lemma 7 to prove that

∨m
i=l+1 fix(f, i) · i is in RA.

For the second statement, we first remark that Lemma 6 implies fix(f�k, l) = fix(f�max(k,l), l).
We then prove fix(f�max(k,l), l) = fix(f,max(k, l)). We start by showing fix(f�k+1, k) =
fix(f, k + 1):

fix(f, k + 1) =
= σgk+1. . . . µg1.νg0.

(f�k+1)∂
(
k+1∨
i=0

gi · i ∨
m∨

i=k+2
fix(f, i) · i

)
= σ′gk. . . . µg1.νg0.

(f�k+1)∂
(

k∨
i=0

gi · i ∨
m∨

i=k+1
fix(f, i) · i

)
= σ′gk. . . . µg1.νg0.

((f�k+1)�k)∂
(

k∨
i=0

gi · i ∨
m∨

i=k+1
fix(f, i) · i

)
= fix(f�k+1, k)

In the above the passage from the third to the fourth line follows from Lemma 6. Now,
with this identity and by induction on i, we obtain fix(f, k+ i) = fix(f�k+i, k) which entails
fix(f�max(k,l), l) = fix(f,max(k, l)). J
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I Lemma 14. For every M , υ, and q ∈ Q, 〈〈N, υ�q〉〉 = 〈〈N, υ〉〉�q.

Proof.

〈〈N, υ〉〉�q =(
m∨
r=0

[[N, υ�r]] · r)�q

=(
m∨

r>rk(q)

[[N, υ�r]] · r) ∨ (
∨

r≤rk(q)

[[N, υ�q]] · r)

=(
m∨

r>rk(q)

[[N, υ�q�r]] · r) ∨ (
∨

r≤rk(q)

[[N, υ�q�r]] · r)

=(
m∨
r=0

[[N, (υ�q)�r]] · r) = 〈〈N, υ�q〉〉

The equality between the first and the second line is a consequence of Lemma 6. J

Lemma 9 For every term M , every υ, and ~f , of appropriate types:
1. If υ ≤ υ′ and ~f ≤ ~g then [[M,υ]]~f ≤ [[M,υ′]]~g.
2. For every q ∈ Q:

q ∈ [[M,υ]]~f iff q ∈ [[M,υ]]~f�q iff q ∈ [[M,υ�q]]~f�q.
3. [[M,υ]] and 〈〈M,υ〉〉 satisfy the (strat) property.
4. 〈〈M,υ�q〉〉 = 〈〈M,υ〉〉�q.

Proof. We show the statements by an induction on the structure of M . The first statement
is immediate.

The third statement is implied by the second, since q ∈ [[M,υ]](~h) iff q ∈ [[M,υ]](~h�q).
Similarly (q, r) ∈ 〈〈M,υ〉〉(~h) iff q ∈ [[M,υ�r]](~h) iff q ∈ [[M,υ�r]](~h�q) iff (q, r) ∈ 〈〈M,υ〉〉(~h�q).

It remains to prove the second statement. The only interesting cases are the ones where
the term is an application or is equal to Y . We start with the application case. By definition
of the semantics

q ∈ [[MN,υ]]~f iff q ∈ [[M,υ]]〈〈N, υ〉〉~f .

The latter, by the induction hypothesis for M , is equivalent to

q ∈ [[M,υ�q]]〈〈N, υ〉〉�q ~f�q = [[M,υ�q]]〈〈N, υ�q〉〉~f�q = [[MN,υ�q]]~f�q

where the first equality uses Lemma 14. This shows q ∈ [[M,υ]]~f iff q ∈ [[M,υ�q]]~f�q. Using
the fact that (f�q)�q = f�q we then obtain q ∈ [[M,υ�q]]~f�q iff q ∈ [[M,υ�q]](~f�q)�q iff
q ∈ [[M,υ]]~f�q.

Let us now turn to the case where the term is equal to Y . Because [[Y, υ]] = [[Y, υ�q]],
it is enough to show the equivalence: q ∈ [[Y, υ]]f~h iff q ∈ [[Y, υ]]f�q~h�q. By definition
[[Y, υ]]f~h = fix(f, 0)~h = f∂(

∨m
i=0 fix(f, i) · i)~h. As f is in RA→A, Lemma 7 tells us that f∂ is

in DA→A, therefore, by (strat), q ∈ f∂(
∨m
i=0 fix(f, i) · i)~h iff q ∈ f∂((

∨m
i=0 fix(f, i) · i)�q)~h�q

iff (q, rk(q)) ∈ f((
∨m
i=0 fix(f, i) · i)�q)~h�q iff (q, rk(q)) ∈ f�q((

∨m
i=0 fix(f, i) · i)�q)~h�q iff q ∈

(f�q)∂((
∨m
i=0 fix(f, i) · i)�q)~h�q. But,(

m∨
i=0

fix(f, i) · i
)
�q =

rk(q)∨
i=0

fix(f, rk(q)) · i ∨
m∨

i=rk(q)+1

fix(f, i) · i
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So we have

(f�q)∂
((

m∨
i=0

fix(f, i) · i
)
�q

)
(~h�q) =

= (f�q)∂
rk(q)∨

i=0
fix(f, rk(q)) · i ∨

m∨
i=rk(q)+1

fix(f, i) · i

~h�q
= fix(f, rk(q))~h�q
= fix(f�q, 0)~h�q
= [[Y, υ]]f�qh�q

Lemma 8 justifies the equality between the second and the third lines. As desired, we have
proved that q is in [[Y, υ]]f~h iff it is in [[Y, υ]]f�qh�q. J

Next we show that the model is invariant under β-reduction.

I Lemma 15. For every M and υ, [[(λx.M)N, υ]] = [[M [N/x], υ]].

Proof. A simple induction on the structure of M yields [[M [N/x], υ]] = [[M,υ[〈〈N, υ〉〉/x]]]
and 〈〈M [N/x], υ〉〉 = 〈〈M,υ[〈〈N, υ〉〉/x]〉〉. Once this identity is established, we can obtain
[[(λx.M)N, υ]] = [[λx.M, υ]]〈〈N, υ〉〉 = [[M,υ[〈〈N, υ〉〉/x]]] = [[M [N/x], υ]]. J

The case of δ reduction is more complicated. We will need two observations.

I Lemma 16. For every M and υ, 〈〈M,υ〉〉∂ = [[M,υ]].

Proof. We have: (q, rk(q)) is in 〈〈M,υ〉〉~h iff q is in [[M,υ�q]]~h which, thanks to the Lemma 9,
is equivalent to q being in [[M,υ�q]]~h�q and then to q being in [[M,υ]]~h. J

I Corollary 17. For every M and υ, [[YM, υ]] = [[M(YM), υ]].

Proof. This is obtained with the following sequence of equalities:

[[M(YM), υ]] = [[M,υ]](〈〈YM, υ〉〉)

= [[M,υ]]
(

m∨
i=0

[[YM, υ�i]] · i
)

= [[M,υ]]
(

m∨
i=0

fix(〈〈M,υ�i〉〉, 0) · i
)

= [[M,υ]]
(

m∨
i=0

fix(〈〈M,υ〉〉�i, 0) · i
)

by Lemma 14

= [[M,υ]]
(

m∨
i=0

fix(〈〈M,υ〉〉, i) · i
)

by Lemma 8

= 〈〈M,υ〉〉∂
(

m∨
i=0

fix(〈〈M,υ〉〉, i) · i
)

by Corollary 16

= fix(〈〈M,υ〉〉, 0)
= [[Y, υ]](〈〈M,υ〉〉)
= [[YM, υ]]

J
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Proposition 10 For every M , N and υ, if M =βδ N , then [[M,υ]] = [[N, υ]] and 〈〈M,υ〉〉 =
〈〈N, υ〉〉

Proof. Since the λY -calculus enjoys the Church-Rosser property, it suffices to prove the
statement whenM ∗→βδ N . This statement is established by iterating the property: M →βδ

N implies [[M,υ]] = [[N, υ]]. The statment is proved by induction on the structure of M . J

B Proof of Theorem 11

In Section 3 we have presented a construction of a model from a given automaton. Here we
will outline the proof of Theorem 11 characterizing the expressive power of this model. The
missing proofs are presented in the next section.

For the rest of this section we fix a parity automaton A = 〈Q,Σ, δ, rk : Q→ [m]〉.
Theorem 11 talks only about terms of type o. In order to prove the theorem we need

to generalize the statement to terms of arbitrary types. For this we will introduce a special
game G(A) (Definition 18) and show the characterization of the semantics in terms of winning
positions in this game (Theorem 19). After this step, we relate winning positions in G(A)
and the acceptance of Böhm trees by A. For this we establish a refinement of an earlier
result [21] that characterizes acceptance by A in terms of some more liberal game Gst(A)
(Theorem 23). Finally, we show the equivalence of G(A) and Gst(A) for positions that
interest us (Proposition 24).

B.1 Game G(A)
Our first goal is to generalize the statement from Theorem 11 to terms of all types. For this
we introduce a game G(A) and characterize the semantics with regard to winning positions
in this game.

It is easier to present games using a different syntax for fixpoints. We write Y x.M
instead of Y (λx.M). So we consider Y as a binder and not as a constant. Since a term YM

is equivalent to Y x.Mx this is not a restriction. In Y x.M we use special bold variables that
are disjoint from variables bound by λ. Moreover we assume that the variable x determines
M uniquely, that is we have a function term(x) from fixpoint variables to terms such that
term(x) is M .

Recall from page 10 that for a type A = B1 → · · · → Bk → o, the set DA is the set
of monotone functions in RB1 →ms · · · →ms RBk

→ms Do satisfying the (strat) property.
We use expressions of the form h1 7→ · · · 7→ hk 7→ q to denote step functions as explained
on page 7. Not all such expressions determine functions satisfying (strat) property. It can
observed though that all of the form h1�q 7→ · · · 7→ hk�q 7→ q do.

I Definition 18. The game G(A) has positions of the form (NA, υ) ≥ f where NA is a term
of type A, f ∈ DA is a step function, and υ is a valuation assigning to a variable x of a type
C a step function in DC . The game has also indexed positions (NA, υ) ≥ind f with ind being
one of: (i) a step function, or (ii) a vector of states, or (iii) a rank in [m]. Usually we will
omit the superscript A from NA. The rules of the game are given in Figure 6. Eve chooses
a transition from positions of the form (a, υ)≥f , and a step function g from positions of the
form (NK, v)≥f . Adam chooses a successor from positions of the form (NK, υ)≥g f 7→ q.
The rank of a node (N, υ)≥~h 7→ q is the rank of q in A. The rank of a node (N, υ)≥r~h 7→ q

is r, while the rank of a node labelled (N, υ)≥g ~h 7→ q is 0 when g is a step function. Eve
wins an infinite play when the sequence of ranks on the play satisfies the parity condition.
She also wins when she reaches a position of one of the two forms:
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(a, υ) ≥q1,...,qk
h1 7→ . . . 7→ hk 7→ q with (q1, . . . , qk) ∈ δ(q, a), and qi ∈ (hi�rk(q))∂ for

i = 1, . . . , k.
(x, υ)≥~h 7→ q iff q ∈ (υ(x))∂(~h).

Otherwise the play is winning for Adam.

(a, υ)≥f −→ (a, υ)≥q1,...,qk
f

(Y x.N, υ)≥f −→ (N, υ)≥f
(x, υ)≥f −→ (term(x), υ)≥f

(λx.M, υ)≥f0 7→ f1 7→ . . . 7→ fk 7→ q −→
(M,υ[f0/x])≥f1 7→ . . . 7→ fk 7→ q

(NK, υ)≥f −→ (NK, υ)≥g f for every g ∈ RB
with B the type of K

(NK, υ)≥g ~f 7→ q −→ (N, υ)≥g�q 7→ ~f 7→ q

(NK, υ)≥g ~f 7→ q −→ (K, υ)≥r′~h�q′ 7→ q′

for every (q′, r′) ∈ g(~h�q′)
(K, υ)≥r f −→ (K, υ�r)≥f

Figure 6 Rules of the game G(A).

Remark: The operations g�q and ~h�q′ in the definition of the game ensure that we use
only step functions that are stratified. Observe that the clauses for winning positions in the
game correspond directly to the clauses in the semantics.
Remark: While the game G(A) is infinite, for every position of the game there is a finite
number of positions reachable from it. So for a fixed term the game is a finite parity game.

The next theorem says that our semantics characterizes the winning positions in this
game. We need to do a small syntactic adjustment. Games use Y x.N notation while in the
model construction we consider Y as a constant. In order to make things match let M∗ be
a term resulting from replacing all constants Y by a term λz.Y x.zx.

I Theorem 19. For every state q ∈ Q, term M , valuation υ, and a sequence of arguments
~f of appropriate types:

q ∈ [[M,υ]]~f iff Eve wins from the position (M∗, υ)≥ ~f → q in G(A)

Proof. The proof is by induction on the size of M . The case of Y is treated separately
in Proposition 20 below. Among the remaining cases only application is complicated. We
present the left to right direction.

Take some q ∈ [[NK, υ]]~f . We need to show how Eve can win from (NK, υ)≥ ~f 7→ q. A
good strategy for Eve is to choose g = 〈〈K, υ〉〉 = (

∨m
r=0 [[K, υ�r]] · r) as this will make the

next (two) steps of the game G(A) give:
(NK, υ)≥g ~f → q

(N, θ)≥g�q → ~f → q (K, υ�r′)≥~h�q′ → q′

for all ~h and (q′, r′) ∈ g(~h�q′ )
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The definition of [[NK, υ]] tells us that q ∈ [[N, υ]]g ~f . By the (strat) property from
Lemma 9 we have q ∈ [[N, υ]]g�q ~f�q. Then, since g�q = (g�q)�q we can use once again
Lemma 9 to obtain q ∈ [[N, υ]]g�q ~f . So the position in the left branch is winning by induction
hypothesis.

The statement (q′, r′) ∈ g(~h�q′) is by definition of g just q′ ∈ [[K, υ�r′ ]]~h�q′ . By induction
hypothesis, this means that every position of the form in the right branch is winning. This
concludes the case of application. J

I Proposition 20. For every q ∈ Q, type A, f ∈ RA→A, and ~h of appropriate types:

q ∈ [[Y A, ∅]]f~h iff Eve wins from the position (λz.Y x.zx, ∅)≥f 7→ ~h 7→ q in G(A).

The proof of this proposition makes the use of the fixpoint characterization of the set
winning positions in a parity game [5, 26]. We extract the relevant part of G(A) and show
some kind of equivalence between the fixpoint formula defining Y and the one characterizing
the winning condition.

B.2 Winning in G(A) versus acceptance by A
The missing piece is the following equivalence:
I Proposition 21. For every closed term M of type o, and every state q of the automaton A:

(M, ∅)≥q is winning in G(A) iff BT (M) is accepted by A from q.

This proposition is proved in two steps. First, we define a more liberal game Gst(A) and
show the proposition for this more liberal game. Here we can reuse already known results.
Next, we show the equivalence of Gst(A) and G(A).

The game Gst(A) is easier to win for Eve since she is allowed to use a weaker notion of
residual: the requirement for monotonicity is dropped but the requirement to satisfy (strat)
remains.

I Definition 22. The set RstA of stratified residuals of type A is defined by induction on A:

Rsto = P({(q, r) : rk(q) ≤ r ≤ m})
RstA→B = {R : RstA → RstB : R satisfies (strat) condition}

The game Gst(A) is as G(A) but where Eve can use step functions from {RstA}A∈types, and
not just form {RA}A∈types as it is the case in G(A).

The following theorem linking the game Gst(A) and acceptance by A is the main reason
for introducing Gst(A) as the intermediate step of the whole argument.

I Theorem 23. For every closed term M of type o: the automaton A accepts BT (M) from
a state q iff the position (M, ∅) ≥ q is winning for Eve in Gst(A).

The proof of this theorem is a refinement of the argument from [21] where the same charac-
terization is proved for a variant of the game Gst(A); the main difference being the (strat)
requirement. To take (strat) into account, it is enough to observe that the strategies
constructed in the proof in op. cit. use residuals satisfying this property.

In the light of the above theorem, Proposition 21 is implied by the following proposition
comparing games G(A) and Gst(A).
I Proposition 24. For every closed term M of type o, and every state q of A: (M, ∅)≥ q is
winning in G(A) iff it is winning in Gst(A).
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In the proof we essentially show how to find for every stratified residual an “equally good”
monotone and stratified residual. While the construction is quite natural, the details are bit
heavy. The main part is to show how to transfer a strategy in Gst(A) to a more constrained
setting of G(A). For this we first associate to every stratified residual a monotone stratified
residual. For R0 ∈ Rsto , R1 ∈ RstA→B and h ∈ RstA we put:

mon(R0) =R0

mon(R1)(h) =
∨
{mon(R1(S)) : mon(S) ≤ h}

Recall that RA is a complete lattice for every type A, so the join in the above definition
exists. Actually it requires some calculation to show that mon(R) is indeed in R. This done,
we can prove the announced transfer of strategies, and hence also Proposition 24.

I Lemma 25. If (M, θ) ≥ ~S 7→ q is a winning position for Eve in Gst(A) then for every
υ ≥ mon(θ), and every ~f ≥ mon(~S), the position (M,υ)≥ ~f 7→ q is winning in G(A).

C Omitted proofs from Section B

Theorem 19 For every state q ∈ Q, term M , valuation υ, and a sequence of arguments ~f
of appropriate types:

q ∈ [[M,υ]]~f iff Eve wins from the position (M∗, υ)≥ ~f → q in G(A)

Proof. In the main text we have only given a part of this proof. Here we have added the
missing argument.

The proof is by induction on the size of M . The case of Y is treated separately in
Proposition 20 below. Among the other cases only the application is not direct. So we
concentrate on that particular case. We first present left to right implication.

To examine the case where M = NK, take some q ∈ [[NK, υ]]~f . We need to show how
Eve can win from (NK, υ)≥ ~f 7→ q. A good strategy for Eve is to choose g = 〈〈K, υ〉〉 =
(
∨m
r=0 [[K, υ�r]] · r). Then in the following step the play in G(A) looks as follows:

(NK, υ)≥g ~f → q

(N, θ)≥g�q → ~f → q (K, υ�r′)≥~h�q′ → q′

for all ~h and (q′, r′) ∈ g(~h�q′ )

The definition of [[NK, υ]] tells us that q ∈ [[N, υ]]g ~f . By the (strat) property from
Lemma 9 we have q ∈ [[N, υ]]g�q ~f�q. Then, since g�q = (g�q)�q we can use once again
Lemma 9 to obtain q ∈ [[N, υ]]g�q ~f . So the position in the left branch is winning by induction
hypothesis.

The statement (q′, r′) ∈ g(~h�q′) is by definition of g just q′ ∈ [[K, υ�r′ ]]~h�q′ . By induction
hypothesis, this means that every position of the form in the right branch is winning. This
concludes the case of application.

For the right to left implication suppose that (NK, υ)≥ ~f → q is winning. In this case
Eve can choose some g and the play will develop as in the picture above.

Looking at the left branch, the induction hypothesis gives us q ∈ [[N, υ]]g�q ~f . By the
same reasoning as above we obtain q ∈ [[N, υ]]g ~f from Lemma 9. The right branch gives us
q′ ∈ [[K, υ�r′ ]]~h�q′ , or writing it differently (q′, r′) ∈ (

∨m
r=0 [[K, υ�r]] · r)~h�q′ = 〈〈K, υ〉〉~h�r. As
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〈〈K, υ〉〉 satisfies (strat) we can conclude that (q′, r′) ∈ 〈〈K, υ〉〉~h. Since this holds for all ~h
and all (q′, r′) ∈ g(~h) we obtain g ≤ 〈〈K, υ〉〉. By monotonicity we get q ∈ [[N, υ]]〈〈K, υ〉〉~f .
So q ∈ [[NK, υ]]~f as required. J

C.1 Correctness of the fixpoint
This rest of this subsection is devoted to the proof of the following proposition.

Proposition 20 For every q ∈ Q, type A, f ∈ RA→A, and ~h of appropriate types:

q ∈ [[Y A, ∅]]f~h iff Eve wins from the position (λz.Y x.zx, ∅)≥f 7→ ~h 7→ q in G(A).

We fix a type A = ~B → o, and f ∈ RA→A. The first, rather cosmetic, step is to define
a new game that is equivalent to Gms(A) for the positions we are interested in.

I Definition 26. For a given A and f we define the game GY fA . The positions for Eve in
GY fA are (q, l,~h) where q ∈ Q is a state, l ∈ [m] is a rank, and ~h ∈ R ~B is a list of arguments
of suitable types. The positions of Adam are (g, l) where g ∈ RA and l ∈ [m]. The moves
are as follows:

from (q, l,~h) there is a move to every (g, l) such that q ∈ (f�l)∂(g,~h). This transition
has rank 0.
from (g, l) there is a move to (q′,max(l, r′),~h′�q′) for every ~h′ and every (q′, r′) ∈ g(~h′�q′).
This transition has rank r′.

The winning condition in GY fA is the parity condition given by the ranks on the transitions.

By direct examination of the definitions we obtain

I Lemma 27. (q, l,~h) is winning for Eve in GY fA iff (λz.Y (λx.zx), ∅) ≥ f�l → ~h → q is
winning for Eve in G(A).

In view of this lemma, in order to prove Proposition 20 we can work with the game
GY fA . The main advantage of this game is its simple structure. The winning positions in a
parity game are characterized by a fixpoint formula, and the simpler the game the simpler
the formula. We consider the game GY fA as a transition system with positions as states and
moves as transitions. Every transition has a label that is its rank. We will use a notation
borrowed from modal logic. For a set of positions V of the game we write 〈0〉V for the set
of positions having a transition of rank 0 leading to V . Dually, [i]V is the set of positions
from which every transition of rank i leads to a state from V . With this view, the set of
winning positions for Eve is the set of states satisfying the formula (we suppose that m is
odd)

θwin = µXm.νXm−1 . . . µX1.νX0. 〈0〉
(

m∧
i=0

[i]Xi

)
(1)

Intuitively the first 〈0〉 represents the choice of Eve, and then [i] represent the choices of
Adam, the rank of transition is reflected in the variable used.

Recall that the semantics of Y in the model is

[[Y A, υ]]f =fix(f, 0) where for l = 0, . . . ,m we have

fix(f, l) =σgl. . . . µg1.νg0. (f�l)∂
( l∨
i=0

gi · i ∨
m∨

i=l+1
fix(f, i) · i

)
With these preparations we have reduced Proposition 20 to the following lemma.
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I Lemma 28. For every l: fix(f, l) ≥ ~h 7→ {q} iff (q, l,~h) is in θwin.

Indeed, as the semantics of Y is fix(f, 0) we are done since by Lemma 27 winning from
(q, 0,~h) in GY fA is the same as winning from (λz.Y x.zx, ∅)≥f 7→ ~h 7→ q in in G(A).

Given a set V of positions that belong to Eve in GY fA , we define [V, k] to be the function:∨
{~h 7→ q : (q, k,~h) ∈ V }. With this notation, the equivalence characterizing fix(f, l) can be

rephrased as fix(f, l) = [θwin, l]. We will prove this statement below (Corollary 34).
We say that V is saturated, when if (q, k,~h) is in V , then for every ~h′ ≥ ~h, (q, k,~h′) is in

V . We show that the property of being saturated is preserved by all the operations we are
interested in.

I Lemma 29. Given a family of (Vi)i∈I of saturated sets of positions,
⋂
i∈I Vi and

⋃
i∈I Vi

are also saturated.

I Lemma 30. Given arbitrary sets of positions V1, . . . , Vm in GY fA , 〈0〉(
∧m
i=0[i]Vi) is a

saturated set.

Proof. If (q, k,~h) is in 〈0〉(
∧m
i=0[i]Vi), this means that there is g so that q ∈ (f�k)∂(g,~h) and

for every ~h′, (q, i) in g(~h′) implies that (q′, k,~h′) is in Vi. Take ~h′ ≥ ~h, then by monotonicity
of (f�k)∂ , q ∈ (f�k)∂(g,~h′) which implies that (q, k,~h′) is in 〈0〉(

∧m
i=0[i]Vi). J

I Lemma 31. Fix 0 ≤ k ≤ m, for all sets Vk, . . . , Vm, the set

σXk−1. . . . µX1.νX0.〈0〉(
k−1∧
i=0

[i]Xi ∧
m∧
i=k

[i]Vi)

is saturated.

Proof. We proceed by induction on k. The case where k = 0 is treated in the previous
lemma. The induction case is a simple consequence of Lemma 29 and of the definition of
least and greatest fixpoints as unions and intersections, respectively. J

The next lemma is the core of the proof of Proposition 20. It gives a correspondence
between the inner operation from the definition of θwin and the ones from the definition of
fix(f, l).

I Lemma 32. For all V0, . . . , Vm saturated sets of positions in the game GY fA , for every
state q and vector of elements ~h of appropriate types:

(f�l)∂
(

l∨
i=0

[Vi, l] · i ∨
m∨

i=l+1
[Vi, i] · i

)
≥ ~h 7→ {q}

iff

(q, l,~h) ∈ 〈0〉
(

m∧
i=0

[i]Vi

)
.

Proof. Let g =
∨l
i=0[Vi, l] · i ∨

∨m
i=l+1[Vi, i] · i in the course of this proof.

If we suppose that (f�l)∂(g) ≥ ~h 7→ {q}, then by definition, there is a transition from
(q, l,~h) to (g, l) in GY fA . We need to show that (g, l) ∈ (

∧m
i=0[i]Vi). Given ~h′ let (q′, i)

be in g(~h′�q′). There are two cases. The first is when i ≤ l. We need to prove that
(q′,max(l, i),~h′�q′) = (q′, l,~h′�q′) is in Vi. As, (q′, i) is in g(~h′�q′), it must be the case that q′

is in [Vi, l](~h′�q′). From the definition of [Vi, l], and the fact that Vi is saturated, we obtain
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that (q′, l,~h′�q′) is in Vi. The second case is when i > l. Since (q′, i) belongs to g(~h′�q′), we
must have q′ in [Vi, i](~h′�q′). By definition this means that (q′, i,~h′�q′) = (q′,max(l, i),~h′�q′)
is in Vi as expected.

For the converse direction, suppose (q, l,~h) is in 〈0〉 (
∧m
i=0[i]Vi), there must be (g′, l) so

that:
1. q is in f�∂l (g′,~h), and
2. for every ~h′, and every (q′, i) in g′(~h′�q′), (q′,max(l, i),~h′�q′) is in Vi.
We need to prove g′ ≤ g. For this it is sufficient to show that for every ~h′, (q′, i) ∈ g′(~h′)
implies (q′, i) ∈ g(~h′). Since both g′ and g satisfy (strat) it is sufficient to show this for
~h′ such that ~h′�q = ~h′. So we fix such ~h′ and take (q′, i) in g′(~h′). In the case where
i ≤ l, we can remark that if (q′,max(l, i),~h′) = (q′, l,~h′) is in Vi then q′ ∈ [Vi, l](~h′) and
therefore (q′, i) ∈ g(~h′). In the case where i > l, if (q′,max(l, i),~h′) = (q′, i,~h′) is in Vi, then
q′ ∈ [Vi, i](~h′) and thus (q′, i) ∈ g(~h′). So in every case we have seen (q′, i) ∈ g′(~h′) implies
(q′, i) ∈ g(~h′) and thus g′ ≤ g. As (f�l)∂ is monotone, we obtain q′ ∈ (f�l)∂(g,~h). J

We then extend the previous lemma to formulas with fixpoints.

I Lemma 33. For every k and l verifying 0 ≤ k ≤ l ≤ m, and for all saturated sets Vk,
. . . , Vm, we have:

σgk−1. . . . µg1νg0.

(f�l)∂(
k−1∨
i=0

gi · i ∨
l∨

i=k
[Vi, l] · i ∨

m∨
i=l+1

[Vi, i] · i) ≥ ~h 7→ {q}

iff

(q, l,~h) ∈ σXk−1. . . . µX1νX0.〈0〉(
k−1∧
i=0

[i]Xi ∧
m∧
i=k

[i]Vi) .

Proof. We fix l ∈ [m] and we prove the lemma by induction on k.
The proof for k = 0 starts from the statement of the previous lemma. The induction step

uses the unrolling of the greatest/least fixpoint definition. This case also relies on Lemma 31
so as to ensure that at each iteration of a fixpoint, the hypothesis that the new set Vk is
saturated is verified. J

I Corollary 34. For every l ∈ [m], fix(f, l) = [θwin, l].

Proof. We proceed by induction on m − l. The case where l = m, is an immediate con-
sequence of the previous lemma when taking k = m.

Now, for the inductive case, we assume that for every i > l, fix(f, i) = [θwin, i]. As
fix(f, i) is a monotone function, this implies that θiwin = {(q, i,~h) ∈ θwin : for some q and ~h}
is a saturated set. Then, the previous lemma allows us to conclude that q ∈ fix(f, l)(~h) iff
(q, l,~h) is in σXl. . . . µX1.νX0.〈0〉(

∧l
i=0[i]Xi ∧

∧m
i=l+1[i]θiwin). As moreover, the latter set is

just θwin we obtain fix(f, l) = [θwin, l]. J

As noted above this Corollary is a reformulation of Lemma 28. We have already shown
that the lemma implies in turn Proposition 20.
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C.2 Winning in Gst(A) versus acceptance
In this subsection we present the proof the following theorem

Theorem 23 For every closed term M of type o: the automaton A accepts BT (M) from
state q iff the position (M, ∅) ≥ q is winning for Eve in Gst(A).

The variant of this theorem is proved in already in [21]. We will not recall all the material
from that paper. In particular we will omit the definition of the Krivine machine.

C.2.1 Game K(A,M)
We now give the definition of RT (A,M), the runs of the automaton A on the graph of
configurations of the Krivine Machine computing BT (M). The actual runs of A on BT (M)
can easily be read off RT (A,M).

The labels of the tree RT (A,M) will be of the form (N, ρ)≥C where N is a term, ρ is
an environment, and C is a closure expression. The latter is either just a state q or has the
form (u,K, ρ′) 7→ C where u is a node of RT (A,M), and (K, ρ′) is a closure. We will also
have labels with indices (N, ρ)≥indC, where ind is a pair of states or a node of RT (A,M).

I Definition 35. For a given closed λY -term M of type o , and a parity automaton A we
define the tree of runs RT (A,M) of A on the execution tree of the Krivine Machine on M :
1. The root of the tree is labelled with (M, ∅)≥q0.
2. A node labelled (a, ρ)≥C has a successor (a, ρ)≥q1,...,qk

C for every (q1, . . . , qk) ∈ δ(q, a).
3. A node labelled (a, ρ) ≥q1,...,qk

C1 7→ · · · 7→ Ck 7→ q, where Ci = (ui, Ni, ρi), has suc-
cessors (Ni, ρi) ≥ui

qi for i = 1, . . . , k.
4. A node labelled (λx.N, ρ) ≥ C 7→ D has a unique successor labelled (N, ρ[C/x]) ≥ D.
5. A node (Y x.N, ρ) ≥ C has a unique successor (N, ρ)≥C.
6. A node labelled (x, ρ)≥C, for x a recursive variable, has a unique successor (term(x), ∅)≥

C.
7. A node u labelled (NK, ρ)≥C has a unique successor labelled (N, ρ)≥ (u,K, ρ) 7→ C.

We say that here a u-closure is created.
8. A node labelled (x, ρ)≥C, for x a λ-variable and ρ(x) = (u′, N, ρ′), has a unique successor

labelled (N, ρ′) ≥u′ C.
9. A node labelled (N, ρ) ≥u C has a unique successor labelled (N, ρ)≥C.
We will say that in the nodes of the form (N, ρ) ≥u C the closure (u,N, ρ) is used.

The definition is as expected but for the fact that in the rule for application we store the
current node in the closure. When we use the closure in the variable rule or constant rule
(rules 8 and 3), the stored node does not influence the result. The stored node is just used
to detect what is exactly the closure that we are using. This will be important in the proof.

Notice also that the rules 2,3,4 rely on the typing properties of the Krivine machine
ensured by the definition of its configurations (cf. [21]). Indeed, when the machine reaches
a configuration of the form (a, ρ)≥C then, since we are working with a tree signature, a
is of type ok → o for some k. In consequence, C is of the form D1 7→ · · · 7→ Dk 7→ q with
D1, . . . , Dk are k closures of type o. The environment ρ plays no role in such a configuration
as a is a constant. Also from the typing invariant we get that, when the machine is in a
configuration like (λx.N, ρ)≥C then C is of the form C ′ 7→ D.

I Definition 36. We use the tree RT (A,M) to define a game between two players: Eve
chooses a successor in nodes of the form (a, ρ)≥ C, and Adam in nodes (a, ρ)≥q1,...,qk

C.
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The parity rank of a node (N, ρ)≥D → q is rk(q). We can use max parity condition to
decide who wins an infinite play. Let us call the resulting game K(A,M).

The following has been proved in [21].
I Proposition 37. For every parity automaton A and concrete canonical term M . Eve has
a strategy from the root position in K(A,M) iff A accepts BT (M).
The only interesting point to observe is that the above definition is consistent with our
assumption that the Böhm tree consisting of the root labelled by Ω is accepted from states
of even rank and rejected from states of odd rank.

The above proposition reduced deciding whether BT (M) is accepted by A is reduced
to deciding who has a winning strategy from the root of K(A,M). We will introduce a
“smaller” game G(A,M), and show that the winner in the two games is the same. The
game Gst(A) is the union of the finite games G(A,M).

C.2.2 Game G(A,M)
The positions of the game are of the form (N, θ)≥ S where N is a subterm of M , θ is a
function assigning residuals to variables of M , and S is a residual expression. The latter is
either a state of A, or R 7→ S where R is a residual and S a residual expression. We will also
have positions with indices (N, θ)≥indS, where ind is a pair of states, a rank, or a residual.

I Definition 38. The game G(A,M) is as follows:
1. The initial position is (M, ∅)≥q0

2. A node (a, θ)≥S has a successor (a, θ) ≥q1,...,qk
S for every (q1, . . . , qk) ∈ δ(q, a).

3. A node (Y x.N, θ)≥S has a successor (N, θ)≥S.
4. A node (x, θ)≥S, for x a recursive variable, has a successor (term(x), θ)≥S.
5. A node (NK, θ)≥S has a successor (NK, θ) ≥R S for every R residual of the type of K.
6. A node (NK, θ) ≥R ~S 7→ q has two types of successors

one successor (N, θ)≥R�q 7→ ~S 7→ q, and
for every ~P and every (q′, r′) ∈ R(~P ) with r′ ≥ max(rk(q′), rk(q)) a successor
(K, θ) ≥r′ ~P 7→ q′.

7. A node (K, θ) ≥r′ ~P 7→ q′ has a unique successor (K, θ�r′)≥ ~P 7→ q′.

The rank of a node labelled (N, θ)≥ ~S 7→ q is the rank of q. The rank of a node labelled
(N, θ)≥r ~S 7→ q is r, while the rank of a node labelled (N, θ)≥R ~S 7→ q is 0 when R is a
residual.

A position (a, θ) ≥q1,...,qk
R1 7→ · · · 7→ Rk 7→ q is winning for Eve iff (qi, rk(qi)) ∈

Ri�max(rk(q),rk(qi)) for i = 1, . . . , k.
A position (x, θ)≥ ~S 7→ q is winning for Eve iff (q, rk(q)) ∈ θ(x)(~S).

C.2.3 Residuals in K(A,M)
We here introduce the key notion of the proof, the notion of residuals of nodes. Given a
subtree T of K(A,M), i.e. a tree obtained from K(A,M) by pruning some of its subtrees,
we calculate the residuals RT (u) and resT (u, u′) for some nodes and pair of nodes of T . In
particular, T may be taken as being a strategy of Eve or a strategy of Adam. When T is
clear from the context we will simply write R(u) and res(u, u′).

Recall that a node v in K(A,M) is an application node when its label is of the form
(NK, ρ)≥A. In such node a closure (u,K, ρ) is created. We will define a residual R(u) for
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such a closure. Thanks to typing, this can be done by induction on the order of type. We
also define a variation of this notion: a residual R(u) seen from a node u′, denoted res(u, u′).
The two notions are the main technical tools used in the proof of the theorem.

Before giving a formal definition we will describe the assignment of residuals to nodes in
concrete terms. We will need one simple abbreviation. If u is an ancestor of u′ in T then we
write max(u, u′) for the maximal rank appearing on the path between u and u′, including
both ends.

Consider an application node u in T . It means that u has a label of the form (NK, ρ)≥C,
and its unique successor has the label (N, ρ)≥ (u,K, ρ) 7→ C. That is the closure (u,K, ρ)
is created in u. We will look at all the places where this closure is used and summarize the
information about them in R(u). We will do this by induction on the type of K.

First, suppose that the closure, or equivalently the term K, is of type o. The residual
R(u) is a subset of Q × [d]. It contains all pairs (q′, r′) ∈ R(u) such that there is u′ in T
labelled (K, ρ)≥u q′ and r′ = max(u, u′). Observe that u′ is necessarily a descendant of u.

For the induction step, suppose that K is of type B1 → · · · → Bk → o and that we have
already calculated residuals for all closures of types B1, . . . , Bk. Consider a closure (u,K, ρ).
This time R(u) ∈ RstB1→···→Bk→o. A node u′ using the closure has the label of the form
(K, ρ) ≥u C1 7→ · · · 7→ Ck 7→ q′ for some q′ and Ci = (ui, Ni, ρi), for i = 1, . . . k. We put

(q′,max(u, u′)) ∈ R(u)(R(u1)�max(u1,u′), . . . , R(uk)�max(uk,u′)) .

We now give a formal definition of R(u). By structural induction on types it is easy to
see that such an assignment of residuals exists and is unique for T .

I Definition 39 (R(u) and res(u, u1)). Given T a subtree of K(A,M), we define a residual
R(u) for every application node u of T .

For more clarity we will write res(u, u1) for R(u)�max(u,u1). For a closure (u,K, ρ) we
define res((u,K, ρ), u′) = res(u, u′). We then extend this operation to sequences of closures:
res(~C, u′) is a sequence of residuals obtained by applying res(·, u′) to every element of ~C.

Consider a closure (u,K, ρ) with K of type A1 → · · · → Ak → o. The residual R(u)
is in RstA1→···→Ak→o and for every sequence of residuals ~S of appropriate types the set
R(u)(~S) contains pairs (q′,max(u, u′)) for every node u′ labelled by (K, ρ) ≥u ~C 7→ q′ with
res(~C, u′) = ~S.

C.2.4 Transferring Eve’s strategy from K(A,M) to G(A,M)
The invariant Will use positions in the game K(A,M) and the strategy σ as hints. The
strategy in G(A,M) will take a pair of positions (u, v) with u in K(A,M) and a v in
G(A,M). It will then give a new pair of positions (u′, v′) such that v′ is a successor v, and
u′ is reachable from u using the strategy σ. Moreover, all visited pairs (u, v) will satisfy the
following invariant:

u is labelled by (N, ρ) ≥ ~C 7→ q and v is (N, θ) ≥ ~R 7→ q with θ = res(ρ, u) and
~R = res(~C, u).

The strategy. In G(A,M) there are two kinds of nodes where Eve needs to decide which
successor to choose: nodes with a constant, and nodes with an application. We show how
Eve should play in order to preserve the invariant.
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If the play reaches a node v with a constant in the label then the invariant tells us that
we have an associated node u with the following situation

u : (a, ρ) ≥ C1 7→ · · · 7→ Ck 7→ q and v : (a, θ) ≥ R1 7→ · · · 7→ Rk 7→ q,

Since u is a part of the winning strategy for Eve in K(A,M), this node has a successor
labelled (a, ρ) ≥q1,...,qk

C1 7→ · · · 7→ Ck → q. It is clear that from v Eve can choose
(a, θ) ≥q1,...,qk

R1 7→ · · · 7→ Rk 7→ q. We show that this position is winning for Eve.
By the invariant, we know that Ri = res(Ci, u). Suppose Ci = (ui, Ni, ρi). Since u is a

part of the winning strategy for Eve in K(A,M), the successor of u has itself two successors
labelled (Ni, ρi) ≥ui qi for i = 1, . . . , k.

Looking at the definition of winning positions in G(A,M), we need to show (qi, rk(qi)) ∈
Ri�max(rk(q),rk(qi)), for i = 1, . . . , k. Definition of R(ui) gives (qi,max(max(ui, u), rk(qi))) ∈
R(ui). Recall that Ri = res(Ci, u) = R(ui)�max(ui,u). Since rk(q) ≤ max(ui, u), we obtain

(qi, rk(qi)) ∈ (R(ui)�max(ui,u))�max(rk(q),rk(qi)) = Ri�max(rk(q),rk(qi)).

The second case is that of the application. In this case, the invariant tells us that we
have

u : (NK, ρ)≥ ~C 7→ q and v : (NK, θ)≥ ~S 7→ q

with θ = res(ρ, u) and ~S = res(~C, u).
In v Eve needs to choose a residual R and move to a node (NK, θ) ≥R ~S 7→ q. The

strategy for Eve is to choose R = R(u), the residual of the closure created at u in K(A,M).
From the position (NK, θ)≥R(u) ~S 7→ q in G(A,M) Adam can choose:

1. either (N, θ)≥R(u)�q 7→ ~S 7→ q, or
2. (K, θ) ≥r′ ~P 7→ q′ for some ~P and some (q′, r′) ∈ R(u)(~P ) with r′ ≥ max(rk(q′), rk(q)).

For each of these choices we need to find appropriate nodes in K(A,M). The node u
has a unique successor u′ labelled by (N, ρ) ≥ (u,K, ρ) 7→ ~C 7→ q. So u′ looks like a good
choice for (N, θ) ≥ R�q → ~S → q. Indeed, θ = res(ρ, u′) = res(ρ, u) is guaranteed by
the invariant in u. From the invariant we also have ~S = res(~C, u′) = res(~C, u). Finally
R(u)�q = res(R(u), u′), so the invariant is holds for u′.

We make here a small observation concerning ranks that will be importnat later. Observe
that the rank of u and u′ is just rk(q). The rank of all positions met in the corresponding
part of the play from v is rk(q) too.

Let us consider now the second case, that is when Adam chooses (K, θ) ≥r′ ~P 7→ q′ for
some ~P , q′ and r′. This node has a unique successor (K, θ�r′)≥ ~P 7→ q′ and we want to find
a node of K(A,M) corresponding to it.

From (q′, r′) ∈ R(u)(~P ) the definition of R(u) tells us that there is a descendant u~Pq′,r′

of u labelled by (K, ρ)≥u ~C 7→ q′ with res(~C, u~Pq′,r′) = ~P , and r′ = max(u, u~Pq′,r′). Node
u
~P
q′,r′ has a unique successor u′ labelled (K, ρ) ≥ ~C 7→ q′. We show that the invariant is

satisfied for u′ and (K, θ�r′)≥ ~P 7→ q′. We have ~P = res(~C, u~Pq′,r′) = res(~C, u′). Concerning
the environments, we know θ = res(ρ, u), since the invariant holds for (u, v). But then
res(ρ, u′) = res(ρ, u~Pq′,r′) = res(ρ, u)�max(u,u~P

q′,r′ ) = res(ρ, u)�r′ = θ�r′ , and we are done.
Similary, as above let us look at the rank of positions seen from u and v. The maximal

rank seen from u to u′ is r′. From v to (K, θ�r′)≥ ~P 7→ q′ we the positions of ranks rk(q),
r′ and rk(q′). So on this side too the maximal rank seen is r′.



Sylvain Salvati and Igor Walukiewicz 31

C.2.5 The strategy is winning
The initial position in G(A,M) is (M, ∅) ≥ q. The root of K(A,M) is labelled (M, ∅) ≥ q.
So clearly the invariant is satisfied for the pair of initial positions.

A direct examination of the rules shows that if (u, v) satisfy the invariant and node v
has a unique successor then u has also the unique successor and this successor makes the
invariant satisfied. In the definition of the strategy for Eve above we have shown how she
can play in order to preserve the invariant in nodes with more than one successor.

In order to verify that the strategy is winning consider a play v0, v1, . . . in G(A,M) with
respect to this strategy. The strategy gives us the sequence of nodes in K(A,M): u0, u1, . . .

such that the invariant holds for every pair (ui, vi). From the way we have constructed the
strategy we get that ui+1 is a successor of ui in all but one case appearing in the application
rule. In that unique case ui+1 is a descendant of ui, and the rank of vi+1 is the maximal
rank of a state on the path from ui to ui+1. This means that the maximal rank appearing
infinitely often on v0, v1, . . . is the same as on u0, u1, . . . . So every infinite play respecting
our strategy is winning, since u0, u1, . . . is winning.

It remains to check what happens when a maximal play is finite. This happens when the
last position v on the play does not have successors. We have two cases: either the term in
v is a variable or a constant. The constant case has been dealt with when we have defined
the strategy for Eve.

In the case where the term is a variable we are in the situation

u : (x, ρ)≥ ~C → q iff v : (x, θ)≥ ~S → q

with ~S = res(~C, u) and θ(x) = res(ρ(x), u). We need to show that (q, rk(q)) ∈ θ(x)(~S).
Suppose ρ(x) = (u′,K, ρ′), so θ(x) = R(u′)�max(u′,u).

In K(A,M), the node u has a successor labelled by (K, ρ′)≥u′ ~C → q. By definition of
R(u′) we have (q, r′) ∈ R(u′)(~S) where r′ = max(u′, u). So (q, r′) ∈ R(u′)�r′(~S) which by
definition of �r gives (q, rk(q)) ∈ R(u′)�r′(~S).

C.2.6 Transferring Adam’s strategy from K(A,M) to G(A,M)
In order to formulate the invariant for the strategy we introduce complementarity predicate
Comp(R1, R2) between a pair of residuals:

For R1, R2 ∈ D0 we put Comp(R1, R2) if R1 ∩R2 = ∅.
For R1, R2 ∈ DA where A = A1 → · · · → Ak → 0 we put Comp(R1, R2) if for all
sequences (R1,1, . . . , R1,k), (R2,1, . . . , R2,k) ∈ DA1×· · ·×DAk

such that Comp(R1,i, R2,i)
for all i = 1, . . . , k we get R1(R1,1, . . . , R1,k) ∩R2(R2,1, . . . , R2,k) = ∅.

As can be expected, for two closures (v,N, ρ) and (v′, N, ρ′) we say that the predicate
Comp((v,N, ρ), (v′, N, ρ′)) holds if Comp(R(v), R(v′)) is true. For two sequences of closures
~S1, ~S2 of the same length, Comp(S, S′) holds if the predicate holds for every coordinate.
Finally, for two environments ρ, ρ′ we write Comp(ρ, ρ′) if the two environments have the
same domain and for every x, the predicate Comp(ρ(x), ρ′(x)) holds.

It is important to observe that Comp behaves well with respect to �r operation

I Lemma 40. If Comp(R1, R2) then also Comp(R1�r, R2�r) for every rank r.

The invariant The pairs (u, v) will satisfy

u is labelled by (N, ρ)≥ ~C → q, and v is (N, θ)≥ ~R→ q where Comp(θ, res(ρ, u)) and
Comp(~R, res(~C, u)).
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The strategy Adam makes a choice only in the application rule. In this case the invariant
tells us that we have

u : (NK, ρ)≥ ~C 7→ q and v : (NK, θ)≥ ~S 7→ q

with Comp(θ, res(ρ, u)) and Comp(~S, res(~C, u)).
From node v Eve chooses some successor (NK, θ)≥R ~S 7→ q, and then Adam can choose:

1. either (N, θ)≥R�q 7→ ~S 7→ q, or
2. (K, θ)≥r′ ~P 7→ q′ for some ~P and some (q′, r′) ∈ R(~P ) with r′ ≥ max(rk(q′), rk(q)).

Adam should choose the node of the first type if Comp(R,R(u)) holds. Indeed the unique
successor u′ of u is labelled by (N, ρ) ≥ (u,K, ρ) 7→ ~C 7→ q. We have Comp(θ, res(ρ, u′))
since res(ρ, u′) = res(ρ, u) and Comp(θ, res(ρ, u)) holds by assumption. Similarly we have
Comp(~S, res(~C, u′)). Finally, Comp(R�q, res(u, u)) holds since from Comp(R,R(u)) we can
deduce Comp(R�q, R(u)�q) by Lemma 40, and R(u)�q = res(u, u) since q is the state in u.

If Comp(R,R(u)) does not hold then by the definition of this predicate there are ~P

and ~T such that Comp(~P , ~T ) but R(~P ) ∩ R(u)(~T ) is not empty. Let (q′, r′) be an element
from this intersection. Adam should choose (K, θ)≥r′ ~P 7→ q′. Then the play will move to
(K, θ�r′) ≥ ~P 7→ q′, and we need to find a corresponding node in K(A,M) to restore the
invariant.

Looking what (q′, r′) ∈ R(u)(~T ) means we get that there is a descendant u′ of u labelled
by (K, ρ)≥u ~D 7→ q′ with ~T = res( ~D, u′) and r′ = max(u, u′). The unique successor of u′
is u′′ labelled by (K, ρ)≥ ~D 7→ q′. We show that we can take it as the node corresponding
to (K, θ�r′) ≥ ~P 7→ q′. By the invariant in u we know that Comp(θ, res(ρ, u)). Observe
that res(ρ, u′′) = res(ρ, u)�r′ since max(u, u′) = max(u, u′′). Then Comp(θ�r′ , res(ρ, u′′))
by Lemma 40. Finally, Comp(~P , res( ~D, u′′)) thanks to ~T = res( ~D, u′′), so the invariant is
satisfied.

It is worth noticing that in both cases, the maximal parity seen in K(A,M) on the path
from u to the new companion node of v′ is the same as the one seen on the path between v
and v′ in G(A,M). This obvious remark is important so as to establish that when Adam is
winning in K(A,M), he is also winning in G(A,M).

C.3 Relating G(A) and Gst(A)
In this subsection we prove

Proposition 24 For every M closed term of type 0: (M, ∅)≥q is winning in G(A) iff it is
winning in Gst(A).

In the proof we essentially show how to find for every stratified residual an “equally
good” monotone and stratified residual. While the construction is quite natural, the details
are bit heavy. The main part is to show how to transfer a strategy in Gst(A) into the more
constrained setting of G(A). We first treat the easier direction.

Below we will use ⊥A for the least element of RstA . If we write A in the form ~B → o then
⊥ ~B→o(~S) = ∅ for all residuals ~S of the appropriate type.

In order to relate G(A) and Gst(A) we need to be able to transform elements of RA into
RstA and vice versa. One direction is quite straightforward. Since Ro = Rsto , for an element
f ∈ Ro we simply set f� = f . For f ∈ RA→B we put

f�(S) =
{

(f(g))� if S = g� for some g ∈ RA
⊥B otherwise.
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I Lemma 41. For every position (M, θ) ≥ ~f 7→ q of G(A): if this position is winning in
G(A) then (M, θ�)≥ ~f� 7→ q is winning in Gst(A).

Proof. Given a winning strategy in G(A) we define a strategy in Gst(A). This strategy just
copies the moves in G(A) staying in positions given by the operation (·)�. As the strategy we
obtain this way induces the same sequences of colours, it is obvious that it is winning. J

Now we show how to translate a winning strategy of Gst(A) into a winning strategy of
G(A). For this, we first associate to every stratified residual a monotone stratified residual:

mon(R) =R for R ∈ Rsto
mon(R)(h) =

∨
{mon(R(S)) : mon(S) ≤ h}

for R ∈ RstA→B and h ∈ RstA

Recall that RA is a complete lattice for every type A, so the join in the above definition
exists. Nevertheless, it requires some calculation to show that mon(R) is indeed inR. Before
we can prove the announced transfer of strategies, and hence also Proposition 24, we need
to explore the properties of the operation mon(·) and prove that mon(R) is indeed in R.

I Lemma 42. For every residual R and every rank r ∈ [m]: mon(R�r) = mon(R)�r.

Proof. The lemma is the consequence of the following calculation:

mon(R�r)(~h) =
⋃
{R�r(~S) : mon(~S) ≤ ~h}

=
⋃
{(R(~S))�r : mon(~S) ≤ ~h}

=
(⋃
{R(~S) : mon(~S) ≤ ~h}

)
�r = mon(R)�r(~h)

The second equality is direct from the definition of the operation (·)�r. The third from the
observation that (R1 ∪R2)�r = R1�r ∪R2�r. J

I Lemma 43. If mon(R) ≤ f then mon(R�r) ≤ f�r.

Proof. By monotonicity of the operation (·)�r, we get mon(R)�r ≤ f�r. Then we can use
Lemma 42. J

For the proof of Lemma 46 below we will need one more operation on residuals. Given
a rank r ∈ [m], we write R≥r for the truncation of a residual R to ranks at least r:

R≥r ={(q, i) ∈ R : i ≥ r} if R ∈ Ro
R≥r(S) =(R(S))≥r if R ∈ RA→B and S ∈ RA.

I Lemma 44. For every type A, rank r ∈ [m], and R ∈ RstA we have R≥r ∈ RstA . Moreover,
R�r = (R≥r)�r.

Proof. In order to verify the (strat) property take some (q, i) ∈ R≥r(~S), for some ~S of
the appropriate type. By definition we have i ≥ r and (q, i) ∈ R(~S). Since R is stratified
(q, i) ∈ R(~S�q). So (q, i) ∈ R≥r(~S�q). The other direction is very similar. The second
statement follows by direct examination. J

I Lemma 45. If mon(R) ≤ f�r then mon(R≥r) ≤ f .
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Proof. Take (q, i) ∈ mon(R≥r)(~h), for some ~h of the appropriate type. We need to show
(q, i) ∈ f(~h). By definition of mon(·), there is ~S such that mon(~S) ≤ ~h and (q, i) ∈ R≥r(~S).
So i ≥ r and (q, i) ∈ R(~S). The assumption of the lemma gives us (q, i) ∈ f�r(~h). Since
i ≥ r we obtain (q, i) ∈ f(~h). J

I Lemma 46. If R ∈ RstA then mon(R) ∈ RA.

Proof. When A is the base type o, the statement is trivial. So let us consider type A→ B

and take some R ∈ RstA→B . By definition mon(R) is monotone. It suffices to check the
stratification property.

Take (q, i) ∈ mon(R)(~h). We need to show (q, i) ∈ mon(R)(~h�q). By definition of
mon(R), there is ~S with mon(~S) ≤ ~h and (q, i) ∈ R(~S). Since R is stratified (q, i) ∈ R(~S�q).
By Lemma 43 we get mon(~S�q) ≤ ~h�q. So (q, i) ∈ mon(R)(~h�q).

For the opposite direction take (q, i) ∈ mon(R)(~h�q). We have that (q, i) ∈ R(~S) for
some ~S with mon(~S) ≤ ~h�q. Lemma 45 gives us mon(~S≥rk(q)) ≤ ~h and Lemma 44 ensures
that ~S≥rk(q) is a vector of stratified residuals. As R is stratified, (q, i) ∈ R(~S�q). Once again
using Lemma 44 we get ~S�q = (~S≥rk(q))�q. So (q, i) ∈ R((~S≥rk(q))�q) and once again using
stratification of R we obtain (q, i) ∈ R(~S≥rk(q)), that gives (q, i) ∈ mon(R)(~h). J

Lemma 25 If (M, θ) ≥ ~S 7→ q is a winning position for Eve in Gst(A) then for every
υ ≥ mon(θ) and every ~f ≥ mon(~S), the position (M,υ)≥ ~f 7→ q is winning in G(A).

Proof. Given a winning strategy in Gst(A), we show how to play in G(A) while preserving
the invariant given by the lemma. The only complicated case is that of the application rule.
The situation in Gst(A) is

(NK, θ)≥ ~S → q

(NK, θ)≥R ~S → q

(K, θ�r′)≥ ~P �q′ → q′(N, θ)≥R�q → ~S → q′

for all ~P and (q′, r′) ∈ R(~P �q′ )

In this case we should play in G(A) as follows
(NK, υ)≥ ~f → q

(NK, υ)≥mon(R) ~f → q

(K, υ�r′)≥~h�q′ → q′(N, υ)≥mon(R)�q → ~f → q′

for all ~h and (q′, r′) ∈ mon(R)(~h�q′ )

For the left branches Lemma 42 gives us mon(R)�q = mon(R�q). So the invariant is
satisfied. For the right branches, the condition (q′, r′) ∈ mon(R)(~h) means that (q′, r′) ∈
R(~P ) for some ~P such that mon(~P ) ≤ ~h�q′ . By monotonicity of �q′ we get mon(~P )�q′ ≤ ~h�q′ .
Using once again Lemma 42 we obtain mon(~P �q′) ≤ ~h�q′ . So the obtained positions satisfy
the hypothesis of the lemma, as Lemma 43 guarantees mon(θ�r′) ≤ υ�r′ . J

Proposition 24 follows directly from Lemmas 41 and 25.
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