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A DIVISIBILITY RESULT ON COMBINATORICS OF
GENERALIZED BRAIDS

LOIC FOISSY AND JEAN FROMENTIN

ABSTRACT. For every finite Coxeter group I', each positive braids in the cor-
responding braid group admits a unique decomposition as a finite sequence of
elements of I, the so-called Garside-normal form. The study of the associated
adjacency matrix Adj(I") allows to count the number of Garside-normal form
of a given length. In this paper we prove that the characteristic polynomial
of Adj(Bn) divides the one of Adj(Bp+1). The key point is the use of a Hopf
algebra based on signed permutations. A similar result was already known for
the type A. We observe that this does not hold for type D. The other Coxeter
types (I, E, F and H) are also studied.

INTRODUCTION

Let S be a set. A Cozeter matriz on S is a symmetric matrix M = (ms,)
whose entries are in NU {+o0} and such that ms; = 1 if, and only if, s = ¢. A
Coxeter matrix is usually represented by a labelled Coxeter graph T' whose vertices
are the elements of S; there is an edge between s and t labelled ms, if, and only
if, ms+ > 3. From such a graph I', we define a group Wr by the presentation

W=<S s2=1 for s € S >
r prod(s,t;ms ) = prod(t, s;ymes) for s,t € S and ms ¢ # +00
where prod(s,t;ms ) is the product s¢s... with ms, terms. The pair (Wr,S) is
called a Coxeter system, and Wt is the Cozeter group of type I'. Note that two
elements s and t of S commute in Wr if, and only if, s and ¢ are not connected
in I'. Denoting by I'y, ..., I'x the connected components of I', we obtain that Wr is
the direct product Wr, x ... x Wr, . The Coxeter group Wr is said to be irreducible
if the Coxeter graph I' is connected. We say that a Coxeter graph is spherical if
the corresponding group Wr is finite. There are four infinite families of connected
spherical Coxeter graph: A, (n > 1), B, (n > 2), D, (n > 4), I2(p) (p = 5), and
six exceptional graphs Fg, Fr, Eg, Fy, Hs and Hy. For I' = A,,, the group Wr is
the symmetric group &,,4;.

For a Coxeter graph I', we define the braid group B(Wr) by the presentation

B(Wr) = (S| prod(s, t;ms:) = prod(t, s;ms ) for s,t € § and my; # +00).

and the positive braid monoid to be the monoid presented by
BY(Wr) = <S‘ prod(s,t;ms ) = prod(t, s;my s) for s,t € S and ms . # +oo>+.

The groups B(Wr) are known as Artin-Tits groups; they have been introduced
in [4, 2] and in [10] for spherical type. The embedding of the monoid B (Wr) in
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2 LOIC FOISSY AND JEAN FROMENTIN

the corresponding group B(Wr) was established by L. Paris in [13]. For T' = A,,
the braid group B(Wa, ) is the Artin braid group B,, and B*(W,, ) is the monoid
of positive Artin braids B;!.

We now suppose that I' is a spherical Coxeter graph. The Garside normal form
allows us to express each braid 3 of BT (Wr) as a unique finite sequence of elements
of Wr. This defines an injection Gar form B (Wr) to WISN). The Garside length
of a braid 8 € BT(Wr) is the length of the finite sequence Gar(g8). If, for all £ € N,
we denote by BY(Wr) the set of braids whose Garside length is ¢, the map Gar
defines a bijection between Bf(Wr) and Gar(B*(Wr)) N WE.

A sequence (s,t) € W is said normal if (s, t) belongs to B?(Wr). From the local
characterization of the Garside normal form, for ¢ > 2 the sequence (ws, ..., wy)
of W belongs to Gar(B*(Wr)) if, and only if, (w;,w;11) is normal for all i =
1,...,£ — 1. Roughly speaking, in order to recognize the elements of Gar(B*(Wr))
among thus of WIEN) it is enough to recognize the elements of B?(Wr) among thus
of WZ.

We define a square matrix Adjp = (ay,») indexed by the elements of Wt by

1 if (u,v) is normal,
a =
v 0 otherwise.

For ¢ > 1, the number of positive braids whose Garside length is ¢ is then

ifu=1
card(BYWp)) = 'X A" X, where X, — 40 1 4= 1wr
1 otherwise

Therefore the eigenvalues of Adjr give informations on the growth of card(B*(Wr))
relatively to £.

Assume that I' is a connected spherical type graph of one of the infinite family
Ay, By, or D,,. We define 2}, xZ and x2 to be the characteristic polynomials of
Adj,, ,Adjp, and Adjp, respectively. In [3], P. Dehornoy conjectures that X2 is
a divisor of xﬁ " 1. This conjecture was proved by F. Hivert, J.C. Novelli and J.Y.
Thibon in [9]. To prove that xz divides xi, , they see Adj, as the matrix of an
endomorphism ®2 of the Malvenuto-Reutenauer Hopf algebra FQSym [11, 6]. We
recall that FQSym is a connected graded Hopf algebra whose a basis in degree n
is indexed by the element of &, ~ Wy, ,. The authors of [9] then construct a
surjective derivation 0 of degree —1 satisfying 9 o 2 = &2 | 0 9, and eventually
prove the divisibility result. A combinatorial description of Adj, can be found
in [3] and in [7], with a more algorithmic approach.

The aim of this paper is to prove that the polynomial yZ divides the polyno-
mial x2 1. The first step is to construct a Hopf algebra BFQSym from Wp, which
plays the same role for the type B as FQSym for the type A; this is a special case
of a general construction for families of wreath products, see [12]. We then inter-
pret Adjp ~as the matrix of an endomorphism ®B of the Hopf algebra BFQSym.
The next step is to construct a derivation & on BFQSym satisfying the relation
0o ®B = ®B | 09 and establish the divisibility result. Unfortunately there is no
such a result for the Coxeter type D,: the polynomial x? is not a divisor of x¥
neither of y5.

The paper is divided as follows. The first section is an introduction to Coxeter
groups and braid monoids of type B. The adjacency matrix Adjp is introduced
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here. Section 2 is devoted to the Hopf algebra BFQSym. In Section 3, we prove the
divisibility result using a derivation on the Hopf algebra BFQSym. Conclusions
and characteristic polynomials of type D, I, E, F' and H are in the last section.

1. COXETER GROUPS AND BRAID GROUPS OF TYPE B.

The following notational convention will be useful in the sequel: if p < ¢ in Z,
we denote by [p, q] the subset {p,...,q} of Z.

1.1. Signed permutation groups.

Definition 1.1. A signed permutation of rank n is a permutation o of [—n,n|
satisfying o(—i) = —o (i) for all i € [-n,n]. We denote by & the group of signed
permutations.

In the literature, the group of signed permutations G is also known as the
hyperoctahedral group of rank n. We note that, by very definition, all signed
permutations send 0 to itself. Always by definition, a signed permutation is entirely
defined by its values on [1,n]. In the sequel, a signed permutation o of rank n will
consequently be written as (o(1), ...,0(n)). This notation is often called the window
notation of the permutation o.

Definition 1.2. For ¢ a signed permutation of &F, the word of o, denoted by
w(o) is the word (1) ...o(n) on the alphabet [—n,n] \ {0}.
Example 1.3. Signed permutations of rank 2 are
+
62 - {(17 2>a (71, 2)7 (L 72)) (71, 72)) (27 1)a (72, 1)7 (25 71)7 (725 71)}

One remarks that for any signed permutation o of GF, the map |o| defined
on [1,n] by |o|(?) = |o(¢)| is a permutation of &,,.

Among the signed permutations, we isolate a generating family s;’s which even-
tually equips Gf with a Coxeter structure.

Definition 1.4. Let n > 1. We define a permutation sz(-") of & by s((J") =
(—=1,2,...,n) and sz(-") =(1,..,i+1,i,..,n) for i € [1,n].

From the natural injection of & to (‘5#_1 we can write s; instead of sz(-") with-
out ambiguity. The following proposition is a direct consequence of the previous
definition.

Proposition 1.5. For all n > 1, the permutations S, = {sq, ..., Sn} are subject to
the relations:

~ R1(Sn): s2 =1 for alli € [0,n];

- RQ(Sn) S0 81 S0 S1 = S1 S0 S1 S0,
- R3(Sy): sis; =s;js; fori,j€0,n] with |i —j| > 2;
— Ry(Sn): sisjsi=s;8;8; for 1 <i,j<n with|i—j|=1.

Each signed permutation o of 6% can be represented as a product of the s;’s.
Some of these representations are shorter than the others. The minimal numbers
of s;’s required is then a parameter of the signed permutation.

Definition 1.6. Let o a signed permutation of &F. The length of o denoted
by ¢(c) is the minimal integer k such that there exists z1,...,x in S, satisfying
0 =1 ... Tk An expression of ¢ in terms of S, is said to be reduced if it has
length £(o).
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Example 1.7. Permutations of th admit the following decompositions in terms
of permutations in s;’s:

(1,2) = 0 (2,1) = s
(—1,2) = S0 (—2,1) = 8150
(1, —2) = 818081 (2, —1) = S0 81
(71,72) = S090°S51°-S0°S1 (72,71) = S0°S51"S50

Each given expression is reduced. In particular, the length of (—1,—2) is 4, while
the length of (—2,1) is 2.

Among all the signed permutations of &, there is a unique one with maximal
length called Coxeter element of & and denoted by wE:

wB = (~1,...,—n).

A presentation of G is given by relations Ry, Ry, R3 and Ry on S,,. More pre-
cisely the group of signed permutations &= is isomorphic to the Coxeter group Wp,
with generator set S,, and relations given by the following graph:

S0 S1 S2 S3 Sn—2 Sn—1
B,: e——e—e—@ —o
4 3 3 3

For more details the reader can consult [1]. Thanks to this isomorphism, we
identify the group &} with Wp, for n > 1.

1.2. Braid monoids of type B. Putting ©2 = {0, ...,0,_1}, the braid monoid
of type B and of rank n is the monoid BB;} whose presentation is
BB} = BY (6%) = B* (Wg,) = (02| R, (62), Rs (6Z) and Ry (62))7.
The group of signed permutations & is a quotient of BB} by 62 = 1. We
denote by 7 the natural surjective homomorphism defined by:
m:BBf — &F
91' = S;.
The following result is fundamental in the study of Coxeter groups, and is known

as the Exchange Lemma.

Lemma 1.8 (Theorem 1.4.3 of [1]). Let 1 ...x; be a reduced expression of a
signed permutation o € & and i € [0,...,n—1]. If £(0s;) < {(c), then there
exists j € [1, k] such that os; is equal to 1 ... Z; ... zy.

A consequence of the Exchange Lemma is that we can go from a reduced expres-
sion of a signed permutation to another only by applying relations of type Re, R3
and Ry; in other words, relation s? = 1 can be avoided, see [5] for more details.

Definition 1.9. For ¢ in & we define r(c) to be the braid 6;, ... §;, where s;, ... s;,
is a reduced expression of o.

Since relations Rg, R3 and Ry are also verified by the 6;’s, the braid (o) is well
defined for every signed permutation o.

Proposition 1.10. Forn > 0, the map v : & — BB is injective.

This is a direct consequence of the definition of r.
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Definition 1.11. A braid z of BB; is simple if it belongs to 7 (&). We denote
by SB,, the set of all simple braids. The element AZ = r(w?) is the Garside
element of BB;'.

In particular, there are 2"n! simple braids in BB;. Simple braids are used
to describe the structure of the braid monoid BB, from the one of the Coxeter
group & ~ Wpg, .

Example 1.12. Using Example 1.7 we have that the simple braids of BB, are
SBy = {1,00,01,0001,0100,010001,616001,000,006, }

The Coxeter element of SBs is w¥ = (-1, —2), whose a decomposition in terms of

the S/S is ’LUQB = S0 S1 S0 S1 and so A2B = 90 91 90 91.

Definition 1.13. Let 2 and y be two braids of BB;". We say that x left divides y
or that y is a right multiple of z if there exists z € BB, satisfying z.z = y.

The Coxeter group & is equipped with a lattice structure via the relation <
defined by o < 7 iff (1) = (o) + (6~ '7). Equipped with the left divisibility,
the set SB, is a lattice which is isomorphic to (&, <). The maximal element of
& is wP, while the one of SB,, is AB. There is also an ordering = on &} such
that SB,, equipped with the right divisibility is a lattice, isomorphic to (&7, ).
In particular, simple elements of BB, are exactly the left (or the right) divisors of
AB.

Notation 1.14. For x and y two braids of BB;", we denote by z Ay the left great
common divisor of x and y.

1.3. Left Garside normal form. Let z be a non trivial braid of BB;'". The left
great common divisor z1 of  and AP is a simple element. Since one of the braids
0;’s (which are simple) left divides x, the braid z; is non trivial. We can write = as
x =z -2, with 2’ € BB If the braid z’ is trivial, we are done; else, we restart
the process, replacing x by z’. As the length of the involved braid strictly decrease,
we eventually obtain the trivial braid.

Proposition 1.15. Let x € BB} be a non trivial braid. There exists a unique

integer k > 1 and unique non trivial simple braids x1, ..., x) satisfying
(1) x =m1 - ... Xk
(ii) z; = (w5 - oo - 2p) NAD fori e [1,k—1].
The expression 1 - ... - Ty is called the left Garside normal form of the braid x.

The proof of the previous Proposition is a classic Garside result and can be
found in [9]. Note that in Proposition 1.15, we exclude the trivial braid from the
decomposition. This is done in order to have unicity for the integer k. Indeed, one
can transform a decomposition x = x1-...-xx tox = x1 ... -z - 1 -...- 1 that satisfy
conditions (¢) and (i¢). The price to pay is that the trivial braid must be treated
separately.

Definition 1.16. The integer k introduced in the previous proposition is the Gar-
side length of the braid x. By convention the Garside length of the trivial braid
is 0, corresponding to the empty product of simple braids.
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Example 1.17. Let z = 616160060,60060, be a braid of BB;. The maximal prefix of
the given expression of x that is a word of a simple braid is ;. However, using
relation Ry on the underlined factor of x we obtain:

xr = 919190919090 = 919091909190

The braid y = 0160060109 is then a left divisor of z. As y is equal to the simple braid
AB . we have z; = y and then = x; - 610y. Since y = 6 6, is simple, we have
T9 = 010y. We finally obtain

r =1 Ty — 91909190 . 9190,
establishing that the Garside length of the braid z is 2.

Condition (i) of Proposition 1.15 is difficult to check in practice. However it
can replaced by a local condition, involving only two consecutive terms of the left
Garside normal form. More precisely, (i7) is equivalent to

(7) the pair (z;, z;41) is normal for i € [1,k — 1].

Definition 1.18. A pair (z,y) € SB2 of simple braids is said to be normal if the
relation z = (x - y) A AZ holds.

Since the number of simple elements is finite, there is a finite number of braids
with a given Garside length.

Definition 1.19. For positive integer n and d, we denote by b, 4 the number of
braids of BB;!" which are of Garside length d.

In order to determine b, 4, we will switch to the Coxeter context.

1.4. Combinatorics of normal sequences. We recall that each simple braid
of SB,, can be expressed as r(0c), where o is a signed permutation. From the
definition of normal pair of braids, we obtain a notion of normal pair of signed
permutations. We say that a pair (o,7) of & is normal if (r(c),r(7)) is. Thus
Proposition 1.15 can be reformulated as follow:

Proposition 1.20. Forn > 2 and © € BB;r a non trivial braid, there exists a
unique integer k > 1 and non trivial signed permutations oy, ..., o of & satisfying
the following relations:

() x=r(o1) ... - r(ok);

(7i) the pair (o;,0i41) is normal for i € [1,k — 1].

Instead of counting braids of Garside length d, we will count sequences of signed
permutations of length d which are normal.

Definition 1.21. A sequence (071, ...,0%) of signed permutations is normal if the
pair (0;,0;4+1) is normal for ¢ € [1,k — 1].

The number b, 4 is then the number of length d normal sequences of non trivial
signed permutations of &. We now look for a criterion for a pair to be normal in
the Coxeter context.

Definition 1.22. The descent set of a permutation o € & is defined by
Des (o) ={i € [0,n —1]| L(c s;) < £(0)}
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Example 1.23. Let us compute the descent set of o = (—2,1). A reduced expres-
sion of ¢ is s1 89 and so ¢ has length 2. The expression o sy = $1 sg sg reduce to
s1, which is of length 1. The expression o s; = s1 sg $1 is reduced, and so ¢ s; has
length 3. Therefore the descents set of ¢ is Des (o) = {0}.

Let us start with two intermediate results.

Lemma 1.24. Let o be a signed permutation of &, and i € [0,n — 1]. The braid
r(o)6; is simple if, and only if, i & Des (o).

Proof. Let o be a signed permutation of & and t; ... ty(s) one of its reduced ex-
pression. If i & Des (o) then £(0s;) > £(c) holds. Hence t; ...t s; is a reduced
expression of os;. It follows r(os;) = r(t1...ty0))r(ss) = r(0)0;, and so r(o)0;
is simple. Conversely, let us assume that 7(0)6; is simple. There exists a signed
permutation 7 in & of length £(c) + 1 satisfying 7 (r(c)0;) = 7. As n(r(c)6;) is
os;, we must have £(cs;) = £(c) + 1 and so i & Des (o). O

Lemma 1.25. For 7 a signed permutation of & and i € [0,n — 1], the braids 6;
is a left divisor of r(7) if, and only if, i € Des (77!).

Proof. The braids 6; and r(7) are simple. Thanks to the lattice isomorphism be-
tween SB,, equipped with the left divisibility and (&, <), the braid 6; is a left
divisor of r(7) if and only s; < 7 holds, and so, by definition of < if, and only
if, £(T) = £(s;) + £(s;7), which is equivalent to £(s;7) < £(7). As the length of a
permutation is the length of its inverse, we have £(s;7) < £(7) < £(771s;) < £(771)
which is equivalent to ¢ € Des (7‘_1). O

Proposition 1.26. A pair (o,7) of signed permutations of &F is normal if, and
only if, the inclusion Des(77') C Des(c) holds.

Proof. Let o and T be two signed permutations of &. Assume that (o,7) is not
normal. Then, there exists a simple braid z which is a left divisor of 7(o)r(r) and
greater than r(c), i.e., r(c) left divides z. Hence, there exists ¢ € [0,n], such that
r(0)0; is simple, and 0; left divides (7). Denoting by x the simple braid r(0)0;
and by y the positive braid 6;1r(7), we obtain r(o)r(r) = x y.

By Lemma 1.24, the integer 7 does not belong to Des (o), but in Des (7'_1). To
summarize, we have proved that the pair (o, 7) is not normal if there exists ¢ € [0, n]
such that ¢ € Des () and i € Des (77!). The conversely implication is immediate.
Therefore (o, 7) is normal if, and only if, for all ¢ € [0, n], we have either i € Des (o)
or i & Des (7_1). Since i is or is not in Des (T_l), we obtain that the pair (o,7) is
normal if, and only if, Des (7_1) C Des (o) holds, as expected. O

The descent set of a signed permutation o can be defined directly from the
window notation of o.

Proposition 1.27 (Proposition 8.1.2 of [1]). Forn > 1,0 € & andi € [0,n — 1]
we have i € Des(o) if, and only if, o(i) > o(i + 1).

We denote by Q& the Q-vector space generated by &F. Permutations of G
are then vectors of Q& In this way, the expressions 20 and o + 7 take sense for
o and 7 in QG,
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Definition 1.28. For n > 1, we define a square matrix Adjp, = (ao,-) indexed by

the elements of &;F by

1 for Des (77!) C Des (0);
Ao .+ =
’ 0 otherwise.

Example 1.29. There are 8 signed permutations in GQi. In the above table, we
give them with informations about their inverse and descending sets.

o ot Des (o) | Des (c71)
(1,2) (1,2) 0 0
1 1L,=2) | {1} {1}
2)

{0} {0}

(_1’_2) 0_1’_2) {051} {051}
(2,1) | (21 | {1} {1}
(2,-1) | (=2,1) | {1} 10}
(=2,1) (2‘*15 {0} {1}

(~2,-1)| (=2,-1)| {0} {0}

With the same enumeration of &3, we obtain

10000000
11001010
10100101

.t 11111011
Adig, =11 1 001 0 1 0
11001010
1010010 1
10100 1 0 1]

+

Lemma 1.30. A pair (o, 7) of signed permutation of &
the scalar o Adjp 7 is equal to 1.

~ is normal if, and only if,

Proof. For a pair of signed permutations (o, 7), the scalar ‘o Adjp 7 corresponds
to the coefficient a,  of the matrix Adjp . We conclude by definition of Adjp
and Proposition 1.26. (|

Proposition 1.31. Let o and T be permutations of & \ {1}. For all d > 1, the
number by, q4(o,7) of normal sequences (21, ...,xq) with 7(x1) = o and w(xq) =T is

bn.a(o,7) ="o Adde:L1 T

Proof. By induction on d. For d = 1, such a normal sequence exists if, and only if,
the permutation o is equal to 7. Hence by, 1(0, 7) is §7, which is equal to ‘o - 7.

Assume now d > 2. A sequence s = (z1,%2,...,T4—1,Z4) is normal if, and only
if, the sequence s’ = (x1, xa, ..., £4—1) and the pair (x4—1,24) are normal. Denoting
by k the permutation m(x4_1), we obtain

bn,d(ga T) = Z bn,dfl(o—a ’i)

KGGf
(K, 7) normal
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As, by Lemma 1.30, the rational *x Adjp, 7 is equal to 1 if, and only if, (x,7) is
normal and to 0 otherwise, we obtain

bn,d(o,T) and 1(o, k) /ﬁAijnT.
KEGE
Using induction hypothesis, we get
bp,a(o,T) = Z tO’(Aijn)di%i 'k Adjp T
KEC:t
O’AdeB 2 ‘Adjp, 7= O’AdJB T,
as expected. O

Corollary 1.32. Forn > 1 and d > 1 we have
bpa ="'X Adj§ ' X,
where X is the vector 3 g\ (13 0

Proof. Let n > 1 and d > 1 be two integers. By Proposition 1.20, the integer b, 4
is the number of normal sequences with no trivial entry. As the pair (1,0) is never
normal for o € &, a sequence (z1, ..., 74) is not normal whenever x; = 1 for any i
in [2,d — 1]. Hence, by, 4 is the number of normal sequences (x1, ..., z4) with 21 # 1
and zq4 # 1:

bn,d = Z bnﬁd(O', T).
o, T€GE\{1}
which is equal, by Proposition 1.31, to
bna= o Adipr="X Adi§ ' X,
o, reGE\{1}
as expected. O

Example 1.33. In BB;r the only braid of Garside length 0 is the trivial one, i.e.,
b2,0 = 1. Except the trivial one, all simple braids have length 1, and so by 1 =7,
corresponding to ‘X X. Considering the matrix Adj B, We obtain the following
values of by, 4:

d|baq b3,q by,q
0 1 47 383
11 7 771 35841
2| 25 10413 2686591
3179 134581 193501825
41241 | 1721467 | 13837222655
5| 727 | 21966231 | 988224026497
The generating series Fp, ( Z b, at? is given by tX (I — t Adj BQ) -1X:
d=0
7—3t
Fp,(t) = ——F+——
2 () (Bt —1)(t—1)
—60t* + 149¢3 — 163t2 + 169t — 47
FBs (t) =

(t —1)(3t — 1)(203 — 432 + 16t — 1)
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Developing Fg, (t), we obtain by 4 = 39+1 — 2.

The eigenvalues of the matrix Adjp give informations on the growth of the
function d + by, 4. The first point is to determine if the eigenvalues of Adjp | are
also eigenvalues of Adjg , i.e., to determine if the characteristic polynomial of the
matrix Adjg | divides the one of Adjg . In [3], P. Dehornoy conjectured that this
divisibility result holds for classical braids (Coxeter type A). The conjecture was
proved by F. Hivert, J.-C. Novelli and J.Y. Thibon in [9]. If we denote by x,, the
characteristic polynomial of the matrix Adjp , we obtain:

xi(z) = (z - 1)?

xz(z) = xa(z) 2 (z —1) (z - 3)

x3(x) = xa(x) 237 (23 — 162 4 43z — 20)

xa(z) = x3(x) 232 (2 — 1)3 (2 — 852° 4 100322 — 2291 + 1260)
x5 () = xa(x) 2349 (27 — 5742° 4 393442 — 5761742+

30276632% — 594997222 4 42819842 — 1088640)

As the reader can see, the polynomial y; divides y;41 for i € {1,2,3,4}. The aim
of the paper is to prove the following theorem:

Theorem 1.1. For all n € N, the characteristic polynomial of the matriz Adjp_
divides the characteristic polynomial of the matrix Aijn+1'

For this, we interpret the matrix Adjgz as the matrix of an endomorphism ®,,
of Q& In order to prove the main theorem we equip the vector space Q& with
a structure of Hopf algebra.

2. THE HopPF ALGEBRA BFQSym.

We describe in this section an analogous of the Hopf algebra FQSym for the
signed permutation group &;F. We denote by Q& the Q-vector space @:ﬁ QG+t

2.1. Signed permutation words. We have shown in Section 1.1 that a signed
permutation can be uniquely determined by its window notation. In order to have
a simple definition for the notions attached to the construction of the Hopf algebra
BFQSym, we describe a one-to-one construction between signed permutations and
some specific words associated to the window notation.

Definition 2.1. For n > 1, we define W,il to be the set of words w = w1 ... w, on
the alphabet [—n,n] satisfying {|w1], ..., |wn|} = [1,n].

If w is an element of W,jf, then (wq,...,wy) is the window notation of some
signed permutation of &. For n > 1, we define two maps w : & — Wf and
p: WE = &% by w(o) =o(1)...0(n) and, for i € [—n,n),

0 ifi=0,
pw)(i) = < w; ifi >0,
—w_; ifi<0.
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Definition 2.2. For i € Z \ {0} and k € Z, we define the integers i[x] and i(k)
(whenever i # +k) by

i+1 ifi<—k,
i+ k ifi>0
ik = Z.Jr ll ’ i(k) =<1 if —k<i<k,
1—k if1<0. 1 ik
1—1 ifs )

For w = w; ... wy a word on the letters [—n,n] \ {0}, we define w[k] to be the word
wi k] ... welk] and w(k) to be the word wi(k) ... we(k) if w; # £k for all j. We also
extend these notations to sets of integers.

Example 2.3. If w is the word 1- —5-3-—2-6, we have w21 =3-—-7-5-—-4-8
and w(4) =1-—4-3.-2.5.

2.2. Shuffle product.

Definition 2.4. For k,¢ > 1, we denote by Shy ¢ all the subsets of [1,k + ¢] of

cardinality k. For X € Shy ¢, we write X = {x1 < ... < x4} to specify that the z;’s
are the elements of X in increasing order.

For example, we have

Sh2,3 = {{17 2}a {17 3}a {17 4}7 {17 5}7 {27 3}7 {2a 4}a {25 5}5 {35 4}5 {3, 5}5 {45 5}}
Definition 2.5. Let £k, > 1 be two integers. For two words u € Wki, v E Wét and
X ={z < .. <z} € Shg, we define the X -shuffle word of u and v by

w X v = 0Ok uy v [E] ... 0% K] ug o [E]
where vY...vF = v and E(Ui) = x;+1 — x; — 1, with the conventions zy = 0 and
.’L'k_;,_l = k + E
One remarks that letters coming from u are in positions belonging to X in the

final word.

Example 2.6. Let u be the word —2-1 and v be the word 3-—1-2. We then have
k =2 and ¢ = 3. The word vix] is 5- —3 - 4. The {2,4}-shuffle of v and v is the
word 5+ —2-—3-1-4 while the {4, 5}-shuffle of vw and v is 5-—3-4-—2- 1; letters
in gray are these coming from the word u.

Definition 2.7. For ¢ € (‘5% and 7 € (‘53t two signed permutations, we define the
shuffle product of o and 7 is the signed permutation oLL7T of Giré defined by

ot = Z p (w(o) L w(r))
X€Shy,e

Example 2.8. Considering the signed permutations ¢ = (—=2,1) and 7 = (3, -1, 2),
we obtain

olr= (-2,1,5,-3,4)+(—-2,5,1,-3,4) + (—2,5,-3,1,4) + (—2,5,—-3,4, 1)
+(5,-2,1,-3,4)+(5, —2,-3,1,4) + (5, -2, -3,4,1) + (5, -3, -2, 1,4)
+(5,-3,-2,4,1)+(5, 3,4, 2, 1).

Let x1,...,x, be n distinct integers. For every sequence 1, ...,&, of {—1,+1},

we define Std(e; x1 ...e,2,) to be the word &1 f(x1)...€, f(x,), where f is the

unique increasing map from {z1,...,x,} to [1,n]. Apart from the ¢;, this notion of
standardization of word coincides with the one used on permutations of &;t.



12 LOIC FOISSY AND JEAN FROMENTIN

We define a coproduct on Q&+ by
Vo€ &, A(o) = Zp(Std(a(l), w0y 0(k))) ® p(Std(c(k + 1), ...,0(n)))

For example the coproduct of (4,—2,3,—1) is
A(4,-2,3,1)=0® (4,-2,3,1)+ (1) ® (—2,3,1)
+(2,-1)@2,1)+3,-L,2)® 1)+ (4,-2,3,1) 20
Equipped with the shuffle product LI and the coproduct A, the vector space Q&
is a Hopf algebra denoted BFQSym. Details are omitted in this paper and can

be found in [12]. Indeed, BFQSym corresponds to the Hopf algebra of decorated
permutations FQSym?” with D = {—1,1}.

2.3. The dual structure. Thanks to the non degenerating coupling (o, 7) = 07,
we identify BFQSym with its dual. The Hopf algebra structure of the dual is given
by the product * and the coproduct ¢ defined by:

(ox1,k) = (0 @71, A(K)) and (0(0), T ®@K) = (0, TLUK).

The map ¢ of Q&* that maps o to o~ ! is a Hopf algebra isomorphism be-
tween (BFQSym, L, A) and (BFQSym, *,0). The following proposition gives a
concrete description of .

Proposition 2.9. Let o € (‘Ski and T € Gei be two permutations. We have

oxT = Z p(u)
ue Wgu
Std(u,...,ux)=w(o)
Std(Uk41,.-rUk4e)=w(T)
Example 2.10. For the signed permutations o = (2,—1) and 7 = (3,-1,2) we
have

oxT = (2,-1,5,—3,4) + (3, —2,4)+ (4,-1,5,-2,3)+ (5, 1,4, -2,3)
+(3,-2,5,—1,4) + (4, f2,5 ~1,3)+ (5, -2,4,—1,3) + (4, -3,5,-1,2)
+(5,-3,4,-1,2) + (5, -1,2).

Definition 2.11. For n > 1, we denote by I,,, J,,, P, and Q,, the elements of Q&
defined by I, = (1,...,n), J, = (—n,...,—1), and

P, = Z o, Qn = Z o.

ceet ceet
Des(a’fl)g{o} Des(a)C{O}

Example 2.12. We have P, = (1,2) 4+ (—1,2) + (2, -1) + (-2, -1), Q2 = (1,2) +
(-1,2) 4+ (—2,1) 4+ (=2, —1) and, for example:
Py =(1,2,3,4)+(—-1,2,3,4) + (2,-1,3,4) + (—2,-1,3,4) + (2,3, —1,4)
4 (=2,3,-1,4) + (2,3,4, ~1) + (=2,3,4, —1) + (3, -2, —1,4)
(3,2, -1, 4) + (3, -2,4, —1) + (=3, —2,4,—1) + (3,4, -2, ~1)
+(-3,4,-2,-1)+ (4,-3,-2,-1)+ (—4,-3,-2,-1)

In general, P, and @Q,, are linear combinations of 2" permutations.
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Vectors P, and @,, are used to describe permutations of Gril whose descent sets
are included in a given subset. The following Lemma exhibits these connections.

Lemma 2.13. Let kq, ..., k¢ > 1 be integers. Denoting by n the integer k1 + ... + k¢
and by D the set {ki,k1 + ko, ...,k1 + ... + k¢—1}, we have the following relations:

Qi * ... x Qp, = Z o, Iy, * Qpy * oo x Qr, = Z o,
cc&t ocest
Des(o)C{0}uD Des(o)CD
PleI_I...LLIPk[ = Z o, IleLIPkZLI_I...LI_IPk[ = Z o.
oceE oceE
Des(o™')C{0}UD Des(o™')CD

Proof. For i € [1,¢] we put d; = k1 + ... + k;. By very definition of Qy, we have

Qk = Z ag.
aEGki

o(1)<...<o(k)

Then, by Proposition 2.9, we obtain
Qp, * ... *Qr, = Z o.

06621”
o(1)<...<o(d1),

o(de—1+1)<...<o(ds)
Permutations occurring in the previous sum are exactly these having descents in
the set {0,dy, ...,d¢—1}. Similarly, as Ij, is the only permutation o of (‘Skil satisfying
0<o(l) <..<o(ky), we have

Iy % Qpy * . * Qp, = E o,
G’GGki+€,

0<o(1)<...<o(d1),
o(di+1)<...<o(dz),

o(do_1+1)<...<o(de)

which is the sum of permutations of &F with descent set in {di,...,d¢_1}.
Applying the isomorphism ¢ between (BFQSym, LI, A) and (BFQSym, *,d)
to the previous expression of Q, * ... * Qk,, we obtain

Qe )W e(@r,) = Y ot = > o

gegf Uer
Des(c)e{0}UD Des(o~')e{0}uD

The expected relation appears, remarking that ¢(Qy) is equal to P;. The second
relation involving the shuffle product is obtain similarly from ¢(Iy,) = I, . O

The vector P, of Q& can also be defined using the shuffle product as suggested
by Example 2.12.

Lemma 2.14. For all n > 1, we have P, = ZZ:O J W, .
Proof. By definition of @,,, we have

Qn:za:kio Y o

ceGE, oe6E,
o(1)<...<o(n) o(1)<...<o(k)<0
0<o(k+1)<...<0o(n)
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By Proposition 2.9, we have

Jk *Infk = Z g = Z g.

cect oeet,
Std(o(1),...,0(k))=(—k,...,—1) o(1)<...<o(k)<0
Std(o(k+1),...,0(n))=(1,....n—k) 0<o(k+1)<...<o(n)
We have then established @, = ZZ:O Jr * I,_. We obtain the expected result
applying the isomorphism ¢ since Ji and I are fixed by . [

3. THE DIVISIBILITY RESULT.

For n € N, we define ®,, to be the endomorphism of Q& whose representative
matrix is ¢ Adj B, - We denote by ® the endomorphism @ ®,, of Q6&*. By very
definition of Adjg , for all o € &, we have

O(0) =Pu(0) = > T.
TGGf
Des(ril)QDes(a)
For n € N, we denote by D,, the set of all subsets of [0,n — 1]. The descent
map from & to D,, can be extended to a unique linear map, also denoted by Des,
from Q& to QD,,. We denote by 5,, the map from QD,, to Q& defined by

(AI;H(I) = Z T,

'I'EG;t
Des('ril)gl

for any element I of D,,. For all o € &, we have ®,,(c) = &, (Des (0)).
A direct consequence of Lemma 2.13 is :

Proposition 3.1. For every D = {d; < ... < d¢} element of D,, with 0 < dy, we
have the relations

B, (D) = Iy, Wi Py, L. LU Py,
$,({0} U D) = Py, WPy, ... LI P,
where k; = diy1 — d; for i € [1,n] and with the convention d¢y1 = n.

Definition 3.2. An endomorphism ¥ of Q&* is a surjective derivation if
— (i) U(zWy) = ¥(x) Wy + xW¥(y) holds for all z, y of Q&T;
— (i) U(Q&F) = Q&L | holds for all n > 1.

Proposition 3.3. If there exists a surjective derivation ¥ of Q&* commuting
with ®, then, for n > 1, the characteristic polynomial of ®,,_1 divides the one
of ®,,.

Proof. Let ¥ be a derivation of Q&% commuting with ¥, and n be an integer
greater than 1. Let us denote by Wy the restriction of ¥ to QG% for k € N. We
fix a basis B = By LU By of Q&, such that By is a basis of ker(V,,). Restricting

the relation Vo ® = ® o U to (@6%, we obtain ¥,, o ®,, = ®&,,_1 o ¥,,. For z in
ker(¥,,), we have ¥, (P, (z)) = @p—1(Vp(z)) = ®,-1(0) = 0. Hence, ker(¥,,) is
stable under the map ®,,. In particular, the representative matrix of ®,, in the

basis B is the upper triangular matrix

A, B,
v [ 2
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Denoting by x(.) the characteristic polynomial of a matrix or an endomorphism,
we obtain

(1) X(q)n) = X(Mn) = X(An)X(Cn)

The matrix of the restriction ®,, of ®, to Q& /ker(¥,) is C,, and so x(®,,) is
equal to x(Cy). From the surjectivity of ¥, we have the following commutative
diagram:

Q& / ker(V,,) —2> Q& / ker(¥,,)
U, U,

P
Qs ————>Q6;_,

implying that the endomorphism ®,,_; is conjugate to ®,. Therefore Equation (1)
becomes x(P,,) = x(A4n)x(Prn-1), and so x(P,_1) divides x(P,). O

As the reader can check, the property (i) of a derivation is not used in the proof,
but will be fundamental in order to establish the commutativity with ®.
It remains to construct a surjective derivation ¥ which commutes with &.

3.1. A derivation of BFQSym. In order to describe our derivation, we have to
introduce some notations.

Definition 3.4. For a and b two distinct integers, we define £(a, b) by

(a,b) 1 if a < b,
ela,b) = )
—1 ifa>b.

1
For a, b, ¢ three distinct integers, we write £(a, b, ¢) = 3 (e(a,b) +e(b,c)) € {-1,0,1}.
Definition 3.5. Let u = u; ... u, be a word of W and i € [1,n]. We define
sign, (u) = e(uj—1, 15, ujt1),

where j is the unique integer satisfying |u;| = ¢, with the conventions uo = 0 and
Up+1 = —OQ.

Example 3.6. Considering the word u = —1-2-—4-—5-3 -6, augmented to the
word0-—1-2-4.--5-3-6-—00, we obtain

sign, (u) = €(0,-1,2) =0, signy(u) = e(—1,2,—4) = 0,
signs(u) = e(—5,3,6) = 1, signg(u) = (2, -4, -5) = —1,
signg (u) = e(—4,-5,3) =0, signg(u) = (3,6, —o0) = 0.

Lemma 3.7. Let n > 1 and ¢ € &. For j € [1,n — 1], we have
1 for {j—1,7} NDes(c) = 0;
sign oy (w(0)) = § =1 for {j — 1,5} C Des(0);
0  otherwise.

Moreover, the value of sign,(, (w(o)) is —1 if n — 1 belongs to Des (), and is 0
otherwise.
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Proof. Let o be a permutation of & and j be an integer of [1,n — 1]. We denote
by i the integer |o(j)]. Assume first j € [1,n — 1]. By definition of sign, we have
sign; (¢) = 1if, and only if, o(j — 1) < 0(j) < o(j + 1), wich is equivalent to j — 1 &
Des (o) and j & Des (o). Always by definition of sign, we have sign,;(c) = —1 if,
and only if, o(j — 1) > o(j) > o(j + 1), i.e., 7 — 1 and j belong to Des (o).

Let us now prove the result for i = n. As the relation o(n) > —oo is always true,
the value of sign,;(w(u)) is —1 if o(n — 1) > o(n) and 0 otherwise, corresponding to
the statement. O
Example 3.8. The descent set of o = (—1,2,—4,-5,3,6) is {0,2,3}. Hence, the
non zero values of sign|, ;) are obtained for j = 3 and j = 5, more precisely, we
have sign|,(3)|(0) = signy(0) = —1 and sign, (5 (0) = signg (o) = 1, corresponding
to Example 3.6.

Definition 3.9. For v € W and i € [1,n], we denote by del;(u) the word
wp () wowj—1(3) wjr1(i) ..un(i) of WE_ | where j is the unique integer satisfying
the relation |u;| = 1.

Example 3.10. Considering u = —1-2-—-4-—-5-3 -6, we obtain

dely(u) =1-—3-—4-2-5 dely(u) = —1-—3-—4-2-5
dels(u)=-1-2--3-—4-5 dely(u) =-1-2--4-3-5
dels(u)=-1-2--4-3-5 delg(u) =—-1-2-—-4--5-3.

Definition 3.11. Let n and ¢ be two integers such that ¢ € [1,n]. We define a
linear map 9% of Q& to Q&L | by

9,,(0) = sign;(w()) p(del;(w(0))),
where ¢ € G£. Then we define a map 8, from QGE to Q&L | by

On(0) = Z 9! (o) for o € G,
k=1

and a map 9 of Q&+ by 8 = @ 9.

Example 3.12. Considering the permutation o = (—1,2,—4,-5,3,6), we have
(o) = 03(0) = 03 (o) = 9§(0) = 0, while we have

03(0) = signg(o)p(delz(w(o))) = (—1,2, -3, —4,5)
03 () = signy (o)p(dela(w(0))) = —(~1,2,-4,3,5)
Finally we obtain d(c) = (-1,2,-3,-4,5) — (—1,2,—4,3,5).

Example 3.13. The map 0 sends @(‘SQi to Q(‘Sli. The matrix of this map, with
the enumeration of &3 of Example 1.29 and the enumeration (1), (—1) of &7, is:
1 -1 0 0 -1 -1 00
0o 0 0 -2 0 0 00O

We now prove that 0 is a surjective derivation of Q&*, compatible with the
shuffle product.
Lemma 3.14. Let 0 € (‘Bki and 7 € Gzt be two signed permutations.

~ (i) For all i € [1, k], we have 9] (o) = 9} (o) LUT;

— (i3) For all i € [k + 1,k + £], we have 9} ,(cLUT) = oL " (7).
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Proof. Let o and 7 be two permutations of (‘5% and 6? and u, v be their respective
words. Let ¢ be an integer of [1, k]. Then, there exists a unique j such that u; = +i.
By definition of del;, we have del;(u) = u1(¢) ... uj—1() uj+1(8) ... up(i). Let

Y={y <..<yp-1}

be an element of Shy_1 . Writing u,, for u,,(i), there exists k words v, ..., vg—1
such that vg...v5—1 = v, £(v;) = yj4+1 —y; — 1 for j € [1,k —2] and

(2) del;(w) WY v = vok—1]u] ... vj_alk—1] Wy Vi1 lk=1] U, Vi[k=1] .. Uy Vg1 [k—1].

We now express vj_1 as the word o ... @y, with m = y;41—y;—1. For a € [0,m],
we define k£ + 1 words wyg, ..., wj by

Up for p < j—2,
Qaq ... Qg forp=j—1,
Qgt1 ..y for p =7,
Up—1 forp>j+1.
Then v is equal to w§ ... wj_; wf ... wy. We define Y;, the refinement of Y, by

Yo={n <. <yj1<yj1+ae+l<y+1<.. <yp_1}

Note that Y, is an element of Shy, ¢ for all values of a € [0,m]. The shuffle product
of u and v relatively to Y is

wlld Yoy = wi K u; ... W _glk] Uj—1 WF_q [k] Uj W [k] Ujp1 WG [R] ... up WK,
Applying del; to the previous relation gives that del; (ULI_IY“’U) is equal to
WG k=1] U] o WG _g[k—1]Uj_q - WG [k=1) W] (k1] - )y g Wiy [k—1] .0y wi[k-1],

which, by definition of the words wy, is exactly the expression of del;(u) WwYv given
in (2). We then obtain

Z sign; (ul¥ev) del; (ul¥v) = (Z sign; (uLI_IY”v)> del; (u) LY .
a=0 a=0

By definition of sign; and € together with the conventions cvg = uj_1, am41 = ujy1,

and the conventions ug = 0, ug1 = —oo used in definition of sign, we obtain
m k k
. Y, 1
ngni (u¥ev) = Zs(aa,uj, Qgt1) = 3 Ze(aa,uj) + e(uj, ag1)
a=0 a=0 a=0

k
1
=3 Z (e(ova, uj) — e(aati, uy)) = e(ao, uj, Qme1),
and the latter is equal to e(uj_1,u;j,uj41) which is sign;(u). We have then proved

Z sign; (ull¥*v) del; (ul¥v) = sign, (u)del;(u) LU v.
a=0
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From the relation Shy ¢ = {Y, |Y € Shy_1 ¢anda € [0,y;4+1 — y; — 1]}, we get

O (o)t = Z sign, (u) del;(u) WY v
YeShy_ 1.
Yi+1 =Y —1

= Z Z sign; (uLLIY“v) del; (uLI_IY“ v)
YeShy_1. a=0

= Z sign; (uLI_IXU) del; (uLI_IXv)
X€Shy,e

=0, (owr).

We prove (ii) with a similar argument, exchanging the role of u and v. O

From the compatibility of @ whith the shuffle product L, we determine the
image of P, under the derivation 0.

Lemma 3.15. For all n > 1, we have 9(I,) = (n — 1)I,,—1, 0(J,) = (n — 2)Jn—1
and 9(P,) = (n — 2)P,_1, with the conventions Iy = Jy = Py = 0.

Proof. For n > 1, we have

By definition of sign, we have sign, (I,,) = ... = sign,,_;(I,) =
These imply 9(I,) = (n — 1)I,—1. Similary, since sign;(J,) = —1, sign,(J,) is 1
for k € [2,n —1] and sign,(J,) = 0, we obtain del;(J,) = J,—1. This implies
O(Jn) = (n —2)Jp—1 for n > 1. Let us now prove 9(P,,) = (n —2)Pp_1.

By convention, we have 9(Iy) = 9(Jy) = 0. Using Lemma 2.14 and the compat-
ibility of @ and LU given in Lemma 3.14, we obtain

k=0

O(Je) Wk + Y Jid(In i)
k=0

1 and sign,, (I,,) = 0.

9(Pp)

[
M=

=~
Il
=]

(k= 2)Jx Wl g+ Y (n—k—1)JgWl gy

I
NIE

k=1 k=0
n—1 n
=3 (k=S yx+ Y (n—k—1)JxlWI, 1
k=0 k=0
n—1
=(n—2)Y JeWl 1= (n—2)P, 1.
k=0

O

The proof of the surjectivity of 9, given in Proposition 3.17 uses a triangular
argument that we illustrate on an example:

Example 3.16. Let 0 = o1 be the permutation (2,—1,4,5, —3) of 6?. We look
after the maximal sequence of the form k... 5 or —k ... —5 in the word w(o). In our
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example, this sequence is 4,5. We define 71 to be the permutation (2, —1,4, 5,6, —3)
obtained form o7 by replacing 4,5 by 4,5,6. A direct computation gives 9¢(71) =
201 — 09 with 09 = (2,—1,3,4,5). Hence, we obtain

1 1
(3) o1 = 86 <§7’1) + 50'2.

The maximal sequence of the desired form in o9 is 3,4,5, which is longer than
this of o;. We then define 72 to be (2,—1,3,4,5,6) and we compute Js(m2) = 302.
Hence o3 is equal to Jg (%TQ) and, eventually, substituting this to (3), we obtain

1 1 1 1
o1 = 0g (57'1) + Og (67'2> = 0 <§(2,1,4,5,6, *3)+ 6(2,1,3,4,5,6)) .

Proposition 3.17. For alln € N, the map On41 : QGfH — Q& is surjective.

Proof. Let o be a permutation of &. We denote the word w(o) by u. We have
two cases, depending if n or —n appears in u.

Case n appears in u: we define i(o) to be the minimal integer such that u can
be written as v - [ ... n] - w. We use an induction on i(o). If i(c) is 1 then o = I,.
As Lemma 3.15 gives

an-l—l(ln—i-l) = nIna
we obtain 0 = Op41(2Ih41). Assume now i = i(o) > 1. Let u’ be the word
v-[i..n+ 1] w. Since each letter of v and w are smaller than ¢ — 1, the word v’
belongs to Wffﬂ. We denote by 7 the permutation of Giﬂ attached to u’. For
J € {i,...,n} we have del;j(u’) = u and sign;(u’) = 1. As the first letter of w is
smaller than n + 1, we obtain sign,, ,; (u") = 0, and so

n+1

S On(r) = (=it 1o,

withn—i+1# 0, since i < n. Let j bein {1,...,4 — 1}. Since the letter 5 appears
only in v or in w and |j| < ¢, we have
del;(u") =v(j) - i =1 ... n] - w(j).

We then obtain that 0,,41(7) is the sum of (n — i+ 1)o and a linear combination of
permutations oy, ..., ay of & satisfying i(a;) =i — 1 < i = i(0). By the induction
hypothesis, the a;’s belong to Im(8,,41), which implies o € Im(9y,+1).

Case n does not appear in w: hence, —n appears in u. We now define i(o)
to be the minimal integer such that u can be written as v - [—i ... —n]-w. We use

also an induction on i(¢). For k € N, we denote by Ji the permutation (—1, ..., —k)
of GF. If i(0) = 1, then ¢ = J,,. By Lemma 3.15 we have

an-l—l(Jn—i-l) = —(TL + 1)Jna

we obtain o = 8n+1(—n#+1Jn+1). Assume now ¢ = i(og) > 1. We denote by v’ the

word v - [~i ... —(n+1)]-w of Wi, and by 7 the corresponding permutation
of Gfﬂ. For j < i, we have

dely(u) = v(j) - [~(i = 1) . — 1] wij).
Hence a = Z;;ll 8£+1(7') is a linear combination of permutations o, ...., ax € &

satisfying i(a;) < ¢ = i(o) which, by induction hypothesis, implies o € Im(9y,11).
It remains to establish that 8 = Z?Jril 9} 1(7) is a multiple of o. For j € {i,...,n},
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we have del;(u') = v and sign;(u') = —1. If w empty, then sign,,,;(7) = —1 and
del,,+1(u') = u. So, in this case, 3 is equal to —(n+2—i)o with n+2—4i # 0, since
i < n. If wis not empty, then its first letter is greater than —(n + 1), implying
sign,,;1(7) = 0. Then, 8 = —(n+ 1 —i)o with n +1 — i # 0, since i < n. In all
cases, we obtain that o belongs to the image of 0,41. ]

Corollary 3.18. The map 9 is a surjective derivation of (BFQSym, LLI).

Proof. Let ¢ and T be two signed permutations of 6,? and Gf By definition of 0,
we have the relation

n k k+¢
Aowr) = Ok (owr) = dhyowr)+ Y Ohy(owr).
1=1 =1 i=k+1

Thus, by Lemma 3.14, we obtain

k ¢
d(owr) = Z@,i(o)l_l_lT + ZULU@;(T),
i=1 i=1
and so d(oLlT) = O(o)WT + olld(7). The surjectivity statement is given by
Proposition 3.17. O

3.2. Commutation of 0 and ®. We shall now prove that 9 and ® commutes.
We start with two intermediate results.

Lemma 3.19. For all 0 € & and i € [1,7n], we have

D; for o(i — 1) < o(i+1);

Des (del|,; _
s (delio(o (7)) {Diu{i—l} for o(i — 1) > o(i + 1),
where D; = Des (0)N[0,i—2]U{d — 1|d € Des (o) N[i + 1,n]} and the convention
o(0) =0.

Proof. Let u be the word of a permutation o € & and i in [1,n]. We denote by j
the unique positive integer such that o(j) = |i| holds, by v the word del;(u) and
by 7 the permutation p(v). The word v = v1 ... v,,—1 is then defined by

(i) for k<i—1,

N ug1(f) for k > 1.
where uy, and vy, are the k-th letter of u and v respectively. For k € [0,n — 1], we
have ug (i) > ug41(i) if, and only if, up > ug4+1 holds (always with the convention
ug = 0). Hence, k € [0,7 — 2] is a descent of 7 if, and only if, &k is a descent of o.

Similarly, &k in [i,n — 2] is a descent of 7 if, and only if, k + 1 is a descent of o.
Considering the set D; defined in the proposition, we have

Des (1) N ([0,n — 2]\ {i — 1}) = D;.

We cannot determine if ¢ — 1 is a descent of 7 from Des (o). We only remark that
the integer ¢« — 1 is a descent of 7 if, and only if, v;_1 > v;, hence if, and only if, we
have w;—1 > u;4+1, as expected. O
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Lemma 3.20. Let o be a permutation of & and {d; < ... < di.} be the set of its
non-zero descents. For 7 in [1, k], we have

dit1

(4) Des Z Oo(e) (@) | = (dix1 — di — 2)Des (0)(di+1)
e=d;+1

with the convention di+1 = n. Moreover,for d; > 0, i.e., 0 & Des (¢), we have

. :
1 _ ) (d1 = 1)Des (0)(d1) if 0 & Des (o),
(5) Des <§ 5|o<e>(“)> B {(d1 —2)Des (0){d1) if 0 € Des (o).

Proof. Let o be a permutation of & and {d; < ... < di} the set of its positive
descents. Let ¢ be an integer in [1, k£ — 1]. We start proving (4) using three subcases
Case d;1 > d; + 2: we have

O'(dz) > O’(dZ + 1) << O'(diJrl — 1) < O—(di+1) > U(di+1 + 1)

By definition of sign, the terms 0j5(4,41)|(¢) and Jj(4,,,)|(0) are equal to 0. Let e

be an element of [d; + 2,d;+1 — 1]. Then sign .y (o) is 1. By Lemma 3.19, the

descent set of del|(c)| is Des (0)(d;11), since o(e —1) < o(e+1). We conclude this

case by remarking that the cardinality of [d; 4+ 2, d; 1 — 1] is exactly d;j41 — d; — 2.
Case d;1 = d; + 2: we have

O’(dl) > O’(dl + 1) < O’(dH_l) > O’(dH_l + 1).

As for e € [d; + 1, d;11], we have sign,(.y (o) = 0, the left hand side of (4) is 0.
Case d;y1 = d; + 1: we have o(d;) > o(di+1) > o(d;41 + 1). In this case,
sigh|o(a;,,) 18 —1. By Lemma 3.19, the positive descents of dels(a,11)| (o) are

{dl, ---7di—1;di+1 — 1, ,dk — 1} U {dl} = {dl, ---7di7di+1 — 1, ...,dk — 1}

since o(d;) > o(d; + 2) holds. We conclude by remarking that d;y; —d; — 2= —1
occurs in this case.
Relation (5) is proved similarly, with a particular attention on 0. O

Theorem 3.1. The endomorphisms ® and 0 commudte.

Proof. Let o be a permutation of &F. Let us denote by {d; < ... < dy} the set of
non-zero descents of o. For i € [1, (] we denote by k; the integer d; 1 — d;, with the
convention dg = 0 and dyy1 = n. For k € N, we define X and x; by

I, for 0 & Des (o), k—1 for 0 ¢ Des(o),
Xy = and x5 =
P, for 0 € Des (0); k—2 for 0 € Des (o).

By Proposition 3.1, we have ®(0) = Xy, LU Py, LLl...LLI Py,. Since 9 is a derivation,
by Corollary 3.18, the previous relation gives

(60 (I))(O’) :8(Xk1)|_|_|Pk2 LLI...LI_IP]W
4
+ ZXkl LLI...LLIP]CF1 LLIa(Pki)LI_IPkHl...LLIPkZ.
1=2
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and so, using Lemma 3.15, we obtain

(60 (I))(O’) = -Tlekl—l LI.IP]CZ Ll ... LI_IP;W
4
+ > (ki — 2)Xp, WPy, W .. WPk, WP, WP
1=2

i L LI_IP}W.

In other hand, by Lemma 3.20, we have

¢
Des (0(0)) = zx, Des (o){d1) + Z(kz — 2)Des (0){d;)

=2

By Proposition 3.1 we obtain

@n(Des (O’)<d1>) = Xk1,1 LI_IP]c2 L|_|...L|_|Pk[,

and for ¢ in [2,n] we have

®,,(Des (0)(d;)) = Xgy W Py LI .o WPy, W Py, 1 W Py, LU L LU P,

i1

Since (®0d)(0) = (P, (Des (9(0)))), we have established (Pod)(c) = (90®)(c). O
We can now prove the main theorem.

Proof of Theorem 1.1. Let n be an integer. By Corollary 3.18, the map 0 is a
surjective derivation of Q&*, which, by Theorem 3.1, commutes with ®. Proposi-
tion 3.3 guarantees that the characteristic polynomial of ®,, divides the one of ®,, 1.
Since the characteristic polynomial of ®,, is the one of Adjf , we have established
the expected divisibility result. (I

4. OTHER TYPES

In this section, we discuss about the becoming of the divisibility result for other
infinite Coxeter families, and we describe the combinatorics of normal sequences of
braids for some exceptionnal types.

Let T be a finite connected Coxeter graph. From a computational point of view
the matrix Adjp is too huge, as its size is exactly the number of elements in Wr,
whose growth in an exponential in n for the family A,,, B, and D,,.

The definition of the descent set given in Definition 1.22 has a counterpart in Wr
for every Coxeter graph I" (the reader can consult [1] for more details on the subject).

Definition 4.1. For T' a Coxeter graph we define a square matrix Adjp = (af ;)
indexed by the subset of vertices of I' by:

ay ;= card{w € Wr |Des (w™') =1 and J C Des (w)}

For I' a graph of the family A,, B, and D, the size of Adj; is 2", which is
smaller than n!,2"n! and 27~ 1n! respectively.

For any subset J of T', we denote by b{(J), the numbers of positive braids
of BY(Wr) whose Garside normal form is (wq,...,wg) with Des(wy) C J. An
immediate adaptation of Lemma 2.12 of [3] gives:
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Lemma 4.2. For I a finite connected Coxeter graph, there exists an integer k such
that the characteristic polynomial xr(x) of Adjp is equal to z*x}.(x) where x| ()
is the one of Adjp.. Moreover, for d > 1 and J C I, we have

0 ifI=40,

bA(J) ="'Y (Adj;)*'J  where Y7 = _
1 otherwise.

In order to determine the numbers b of braids of B (Wr) whose Garside length
is d form Adjp., we use an inclusion exclusion principle.

Corollary 4.3. For I' a finite connected Coxeter graph and d > 1, we have:

0 if I =90,

bt ="'Y (Adjp)""'Z  where Z; =
r (Adjr) where 21 (—1)erdD+1 otherwise.

and Y as in Lemma 4.2.

4.1. Braids of type D. For n > 4, the Coxeter graph of type D and rank n is

/

S0

3

So 83 S4 Sn—2 Sn—1
*——O0
3 3 3

3

S1

and the associated Coxeter group is isomorphic to the subgroup of Gril 1 consisting
of all signed permutations with an even number of negative entries. Its generators
are the signed permutations s; for ¢ € [1,n — 1], plus the signed permutation s =
(-2,-1,3,...,n). We extend the family D,, defined for n > 4 to include D; = A,

= Ay x Ay and D3 = A3. Note that we usually only consider n > 4 in order to
have a classification of irreducible Coxeter groups without redundancy.

Denoting by xp,, the characteristic polynomial of the adjacent matrix Adjp, —of
normal sequences of positive braid of type D and rank n we obtain:
XDy () = (¢ —1)°
X Do (‘T) (:E - 1
py(2) =2 (= 1)* (x - 2) (2” — 62 +3)
xp,(z) = 2" (x —1)% (2° — 442" + 4022° — 108427 + 9892 — 360)

(z) = 299 (2 — 1)? (2'? — 302! 4 1707020 — 3284262 4 30778002°

— 1642403027 + 407279425 — 1139216862° + 1545596552

— 1325336362 + 6837260022 — 18880000 4 2016000)

xT

>

XDs\T

As the reader can check, there is no hope to have a divisibility of xp,_ ., by xp.,
except for n = 1. The associated generating series are:

3—t
==y
Fp. (1) = —6t3 + 15¢2 — 20t + 23
P T DRt — 1) (32 — 6t — 1)
—360t> 4+ 1709¢* — 22462 + 852t2 + 430t + 191
FD4 (t) =

(t —1)(—1 + 44t — 4022 4 1084¢3 — 989t4 4 360¢°
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which give the following values for the number of D-braids of rank n and of Garside
length d:

d | bp,(d) | bp,(d) bp, (d)
0 1 23 191
1 3 187 9025
2 5 1169 321791
3 7 6697 10737025
4 9 37175 352664255
5 11 | 203971 | 11540908225

4.2. Braids of type I. For n > 2, the Coxeter graph I, is

s n 1
I'yr: e—e

which gives the following presentation for the Coxeter group Wy, :

s2=1,t2=1
Wi, = <S’t prod(s,t;n) = prod(t,s;n) /-

Proposition 4.4. Forn > 2, we have

1 0 O
n—1 b, a,
n—1 a, by,

n 1 1

Adj}n =

_— o O O

with an, = |25+ and b, = | %]

Proof. The elements of Wy, are 1, w, = prod(s,t;n) = prod(t, s;n) and prod(s, t; k)
with prod(t, s; k) for k in [1,n — 1]. For k in [1,n — 1], we have

prod(t,s; k) for k even,

od(s, t: k)"t =
prod(s ) {prod(S,ﬁ; k) otherwise.

t for k
Des (prod(s, t; k)) = o e\'/en,
s otherwise.
From the relation prod(s,t;n) = prod(t,s;n) we have w, = prod(s,t;n)~! =
prod(s,t;n) and so Des (wy,) = {s,t}. We organize the elements of Wy, \ {1, w,}
in 4 sets:

X1 = {prod(s,t; k) for k even}, Xs = {prod(s,t; k) for k odd},
X5 = {prod(t, s; k) for k even}, X4 = {prod(t, s; k) for k odd}.
From the previous study of descents, we obtain
ce  |{}]| X1 | Xo| X5 | X4 | {wn}]
Des (o) | 0 | {t} | {s} | {s}|{t}|{s:0}
Des (oY) | 0 | {s}|{s}|{t} | {t}|{s.t}

Denoting by a,, and b, the integers |251] and | 2] respectively, we obtain that
card(X;) = card(X3) = a, and card(X3) = card(X4) = b,. For I,J subsets
of {s,t} we define A} ; to be the set {o € Wy, [Des (¢7') = I and J C Des (w)}.
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For all K C {s,t} we have A7, = {wn}. We have Aj , = {1} and 4}, ; = 0 for

K # (. From the X;’s we get
/ _ / _ / — / —
Ao =X1UXs, Al = Xo, Ay =X, Ay on =0
/ _ / _ / _ / —
o = XsUXa, Ay =Xs Ay g = Xao Ay oy =0,

Using the enumeration {0, {s},{t},{s,t}} of subsets of {s,t} together with the
relation a,, + b,, = n — 1 we obtain:

1 0 0 O 1 0 0 O

g |lap+by bp a, 0]  [n—=1 b, a, O
Adjy, = an+b, an b, 0 |n—=1 a, b, O
1 1 1 1 1 1 1 1

Corollary 4.5. The characteristic polynomial of Adj; is
2"z - 13 —n+1) if 2 is even,
xi (@) = {,7:2"_3(90 —1)%(x —n+1) otherwise.
and the generating series of normal sequence of I,,-braids is
(n—1)t+1
(n—Dt-1)(t—-1)
Proof. From the expression of Adj’ln given in Proposition 4.4 we obtain
Xady,, (@) = (1= 2)*((bp — 2)* — a3)
=(1—2)*(bp + an — x)(bp — a,, — )
= (z — 1)2(z = (bn +an))(x — (bn — an))

Fr(t) =

From the relations

) 1 b 1 if n is even,
a =n-—1, -y = .
e " " 0 otherwise.

we obtain
(r —1)3(x—n+1) ifxis even,
Xaqj, (r) = 5 .
= z(x —1)*(x —n+1) otherwise,

Adding the missing powers of x to obtain a degree of 2n we obtain the expected
value for xi, .
For generating series results, Corollary 4.3 gives

0
o1 |1
Fr,(t)=1[0 1 1 1] (I, —t Adj;,)"" )

-1
By a direct computation (or a use of Sage [14] for example) we obtain

(n—1t+1
Fr, (1) = (n—1t—1)(E—1)
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4.3. Exceptional Coxeter groups. Using Adjp, we can study the combinatorics
of normal sequence of braids of type Fy, H3, Hy, Eg and E7. The matrices Adjp.
were obtained using Sage [14], while the characteristic polynomials and generating
series was obtained using the C library flint [8].

The group W, has 1152 elements. The characteristic polynomial of Adjp, is

xr, () =zt (2 — 1)3 (2 — 4) (2 — 252 + 10)
(2% — 274 2° + 9194 2* — 77096 2° + 250605 2% — 324870 x + 138600)

and the generating series Ff, is given by

1386005 — 187350 > — 32055 t* + 879703 — 15504 ¢2 — 876t — 1

Fr, (t) = .
a (¢) (138600 ¢6 — 324870 t5 + 250605 t* — 77096 t3 + 91942 — 274t + 1)(t — 1)

The group Wy, has 120 elements. The characteristic polynomial of Adjy, is
X, (2) = oM (x — 1)? (2% — 422° + 22922 — 244 2 + 72),
and the generating series Fjy, is given by

T2t1 — 1963 + TTt2 + 76t + 1
(724 — 24443 + 22912 — 42t + 1)(t — 1)’

FH3(t) ==

The group Wy, has 14400 elements. The characteristic polynomial of Adj, is

xa, (z) = 21399 (2 — 1)% (2® — 3436 27 + 565470 25 — 11284400 2° + 81322353 2*
— 246756500 2° + 305430848 2% — 157717504 x + 27929088),

Nm, (1)

and the generating series Fy, (t) = PRGN
4

is given by

Ny, (t) = 27929088 t® — 147220480 t7 4 2472584321° — 138197780 t°
+ 465433 t* 4 10247814 t3 — 1205944 % — 10962 ¢ — 1,

Dy, (t) = 27929088 8 — 157717504 7 + 305430848 t° — 246756500 t°
+ 81322353 t* — 11284400 ¢ + 565470 ¢* — 3436 ¢ + 1.

The group Wg, has 51840 elements. The characteristic polynomial of Adjg, is

XEs (x) :$51823 (.Z' _ 1)2
(2" — 5454 21 + 3391893 '3 — 424089882 ' + 19590731031 !
— 417118001254 2'° 4+ 4673188683575 7 — 29907005656510 x°
+ 115900067128500 7 — 282097630883500 2° + 439789995997000 =
— 441496921502000 z* + 282303310340000 2> — 110981554480000 2
+ 24563716800000  — 2328480000000),
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NEG (t)

and the generating series Fg,(t) = o (i(—T) is given by
6

Ng, (t) =2328480000000 ¢ — 19422916800000 ¢** + 59384818480000 ¢
— 64287293380000 t'? — 64835775106000 ' 4 254118878161000 ¢'°
— 284082015723500 t° + 148526420487700 t° — 32460183476310 "
— 327255378405 15 4+ 1042966224156 t° — 93297805141 t*
+ 479267710 t3 4+ 40099205 t2 + 46384t + 1,

D, (t) =2328480000000 5 — 24563716800000 ¢4 + 110981554480000 ¢
— 282303310340000 12 4 441496921502000 ' — 439789995997000 ¢'°
+ 282097630883500 ¢ — 115900067128500 % + 29907005656510 7
— 46731886835755 4+ 417118001254 t° — 19590731031 ¢*
+ 424089882 t* — 3391893t + 5454t — 1.

The previous generating series gives the following values for by (d), the numbers
of W-braids of Garside length d:

d bF4 (d) sz (d) bH4 (d) bEe (d)
0 1 1 1 1
1 1151 119 14399 51839
2 322561 4923 50126401 319483603
3 77804927 179717 164094364799 1567574732717
4 18441371521 6449741 535645654732801 7487770421878165
5 | 4362177487103 | 230926603 | 1748252504973355199 | 35655729684940971035

The characteristic polynomial and the generating series for braids of type E7 are
available at http://www.lmpa.univ-littoral.fr/~fromentin/combi.html.
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