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For every finite Coxeter group Γ, each positive braids in the corresponding braid group admits a unique decomposition as a finite sequence of elements of Γ, the so-called Garside-normal form. The study of the associated adjacency matrix Adj(Γ) allows to count the number of Garside-normal form of a given length. In this paper we prove that the characteristic polynomial of Adj(Bn) divides the one of Adj(B n+1 ). The key point is the use of a Hopf algebra based on signed permutations. A similar result was already known for the type A. We observe that this does not hold for type D. The other Coxeter types (I, E, F and H) are also studied.

Introduction

Let S be a set. A Coxeter matrix on S is a symmetric matrix M = (m s,t ) whose entries are in N ∪ {+∞} and such that m s,t = 1 if, and only if, s = t. A Coxeter matrix is usually represented by a labelled Coxeter graph Γ whose vertices are the elements of S; there is an edge between s and t labelled m s,t if, and only if, m s,t 3. From such a graph Γ, we define a group W Γ by the presentation W Γ = S s 2 = 1 for s ∈ S prod(s, t; m s,t ) = prod(t, s; m t,s ) for s, t ∈ S and m s,t = +∞ .

where prod(s, t; m s,t ) is the product s t s... with m s,t terms. The pair (W Γ , S) is called a Coxeter system, and W Γ is the Coxeter group of type Γ. Note that two elements s and t of S commute in W Γ if, and only if, s and t are not connected in Γ. Denoting by Γ 1 , ..., Γ k the connected components of Γ, we obtain that W Γ is the direct product W Γ1 × ... × W Γ k . The Coxeter group W Γ is said to be irreducible if the Coxeter graph Γ is connected. We say that a Coxeter graph is spherical if the corresponding group W Γ is finite. There are four infinite families of connected spherical Coxeter graph: A n (n 1), B n (n 2), D n (n 4), I 2 (p) (p 5), and six exceptional graphs E 6 , E 7 , E 8 , F 4 , H 3 and H 4 . For Γ = A n , the group W Γ is the symmetric group S n+1 . For a Coxeter graph Γ, we define the braid group B(W Γ ) by the presentation B(W Γ ) = S prod(s, t; m s,t ) = prod(t, s; m t,s ) for s, t ∈ S and m s,t = +∞ .

and the positive braid monoid to be the monoid presented by B + (W Γ ) = S prod(s, t; m s,t ) = prod(t, s; m t,s ) for s, t ∈ S and m s,t = +∞ + .

The groups B(W Γ ) are known as Artin-Tits groups; they have been introduced in [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF][START_REF] Brieskorn | Artin-gruppen und Coxeter-gruppen[END_REF] and in [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF] for spherical type. The embedding of the monoid B + (W Γ ) in the corresponding group B(W Γ ) was established by L. Paris in [START_REF] Paris | Artin monoids inject in their groups[END_REF]. For Γ = A n , the braid group B(W An ) is the Artin braid group B n and B + (W An ) is the monoid of positive Artin braids B + n . We now suppose that Γ is a spherical Coxeter graph. The Garside normal form allows us to express each braid β of B + (W Γ ) as a unique finite sequence of elements of W Γ . This defines an injection Gar form B + (W Γ ) to W (N) Γ . The Garside length of a braid β ∈ B + (W Γ ) is the length of the finite sequence Gar(β). If, for all ℓ ∈ N, we denote by B ℓ (W Γ ) the set of braids whose Garside length is ℓ, the map Gar defines a bijection between B ℓ (W Γ ) and Gar(B

+ (W Γ )) ∩ W ℓ Γ . A sequence (s, t) ∈ W 2
Γ is said normal if (s, t) belongs to B 2 (W Γ ). From the local characterization of the Garside normal form, for ℓ 2 the sequence (w 1 , ..., w ℓ ) of W ℓ Γ belongs to Gar(B + (W Γ )) if, and only if, (w i , w i+1 ) is normal for all i = 1, ..., ℓ -1. Roughly speaking, in order to recognize the elements of Gar(B + (W Γ )) among thus of W (N) Γ it is enough to recognize the elements of B 2 (W Γ ) among thus of W 2 Γ . We define a square matrix Adj Γ = (a u,v ) indexed by the elements of W Γ by

a u,v = 1 if (u, v) is normal, 0 otherwise.
For ℓ 1, the number of positive braids whose Garside length is ℓ is then

card(B ℓ (W Γ )) = t X Adj ℓ-1 Γ X,
where X u = 0 if u = 1 WΓ 1 otherwise .

Therefore the eigenvalues of Adj Γ give informations on the growth of card(B ℓ (W Γ )) relatively to ℓ. Assume that Γ is a connected spherical type graph of one of the infinite family A n , B n or D n . We define χ A n , χ B n and χ D n to be the characteristic polynomials of Adj An , Adj Bn and Adj Dn respectively. In [START_REF] Dehornoy | Combinatorics of normal sequences of braids[END_REF], P. Dehornoy conjectures that χ A n is a divisor of χ A n+1 . This conjecture was proved by F. Hivert, J.C. Novelli and J.Y. Thibon in [START_REF] Hivert | Sur une conjecture de Dehornoy[END_REF]. To prove that χ A n divides χ A n+1 , they see Adj An as the matrix of an endomorphism Φ A n of the Malvenuto-Reutenauer Hopf algebra FQSym [START_REF] Malvenuto | Duality between quasi-symmetric functions and the Solomon descent algebra[END_REF][START_REF] Duchamp | Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras[END_REF]. We recall that FQSym is a connected graded Hopf algebra whose a basis in degree n is indexed by the element of S n ≃ W An-1 . The authors of [START_REF] Hivert | Sur une conjecture de Dehornoy[END_REF] then construct a surjective derivation ∂ of degree -1 satisfying ∂ • Φ A n = Φ A n-1 • ∂, and eventually prove the divisibility result. A combinatorial description of Adj An can be found in [START_REF] Dehornoy | Combinatorics of normal sequences of braids[END_REF] and in [START_REF] Gebhardt | Counting vertex-labelled bipartite graphs and computing growth functions of braid monoids[END_REF], with a more algorithmic approach.

The aim of this paper is to prove that the polynomial χ B n divides the polynomial χ B n+1 . The first step is to construct a Hopf algebra BFQSym from W Bn which plays the same role for the type B as FQSym for the type A; this is a special case of a general construction for families of wreath products, see [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF]. We then interpret Adj Bn as the matrix of an endomorphism Φ B n of the Hopf algebra BFQSym. The next step is to construct a derivation ∂ on BFQSym satisfying the relation

∂ • Φ B n = Φ B n-1
• ∂ and establish the divisibility result. Unfortunately there is no such a result for the Coxeter type D n : the polynomial χ D 4 is not a divisor of χ D 5 neither of χ D 6 . The paper is divided as follows. The first section is an introduction to Coxeter groups and braid monoids of type B. The adjacency matrix Adj Bn is introduced here. Section 2 is devoted to the Hopf algebra BFQSym. In Section 3, we prove the divisibility result using a derivation on the Hopf algebra BFQSym. Conclusions and characteristic polynomials of type D, I, E, F and H are in the last section.

1. Coxeter groups and braid groups of type B.

The following notational convention will be useful in the sequel: if p q in Z, we denote by [p, q] the subset {p, ..., q} of Z.

1.1. Signed permutation groups. Definition 1.1. A signed permutation of rank n is a permutation σ of [-n, n] satisfying σ(-i) = -σ(i) for all i ∈ [-n, n].
We denote by S ± n the group of signed permutations.

In the literature, the group of signed permutations S ± n is also known as the hyperoctahedral group of rank n. We note that, by very definition, all signed permutations send 0 to itself. Always by definition, a signed permutation is entirely defined by its values on [1, n]. In the sequel, a signed permutation σ of rank n will consequently be written as (σ(1), ..., σ(n)). This notation is often called the window notation of the permutation σ. Definition 1.2. For σ a signed permutation of S ± n , the word of σ, denoted by w(σ) is the word σ(1) ... σ(n) on the alphabet [-n, n] \ {0}.

Example 1.3. Signed permutations of rank 2 are

S ± 2 = {(1, 2), (-1, 2), (1, -2), (-1, -2), (2, 1), (-2, 1), (2, -1) 
, (-2, -1)}. One remarks that for any signed permutation σ of S ± n , the map |σ| defined on [1, n] 

by |σ|(i) = |σ(i)| is a permutation of S n .
Among the signed permutations, we isolate a generating family s i 's which eventually equips S ± n with a Coxeter structure. Definition 1.4. Let n 1. We define a permutation s

(n) i of S ± n by s (n) 0 = (-1, 2, ..., n) and s (n) i = (1, ..., i + 1, i, ..., n) for i ∈ [1, n].
From the natural injection of S ± n to S ± n+1 we can write s i instead of s

(n) i
without ambiguity. The following proposition is a direct consequence of the previous definition.

Proposition 1.5. For all n 1, the permutations S n = {s 0 , ..., s n } are subject to the relations:

-R 1 (S n ):

s 2 i = 1 for all i ∈ [0, n]; -R 2 (S n ): s 0 s 1 s 0 s 1 = s 1 s 0 s 1 s 0 ; -R 3 (S n ): s i s j = s j s i for i, j ∈ [0, n] with |i -j| 2; -R 4 (S n ): s i s j s i = s j s i s j for 1 i, j n with |i -j| = 1.
Each signed permutation σ of S ± n can be represented as a product of the s i 's. Some of these representations are shorter than the others. The minimal numbers of s i 's required is then a parameter of the signed permutation. Definition 1.6. Let σ a signed permutation of S ± n . The length of σ denoted by ℓ(σ) is the minimal integer k such that there exists x 1 , ..., x k in S n satisfying σ = x 1 • ... • x k . An expression of σ in terms of S n is said to be reduced if it has length ℓ(σ).

Example 1.7. Permutations of S ± 3 admit the following decompositions in terms of permutations in s i 's:

(1, 2) = ∅ (2, 1) = s 1 (-1, 2) = s 0 (-2, 1) = s 1 • s 0 (1, -2) = s 1 • s 0 • s 1 (2, -1) = s 0 • s 1 (-1, -2) = s 0 • s 1 • s 0 • s 1 (-2, -1) = s 0 • s 1 • s 0
Each given expression is reduced. In particular, the length of (-1, -2) is 4, while the length of (-2, 1) is 2.

Among all the signed permutations of S ± n , there is a unique one with maximal length called Coxeter element of S ± n and denoted by w B n :

w B n = (-1, ..., -n). A presentation of S ±
n is given by relations R 1 , R 2 , R 3 and R 4 on S n . More precisely the group of signed permutations S ± n is isomorphic to the Coxeter group W Bn with generator set S n and relations given by the following graph:

B n :

4 3 3 3 s0 s1 s2 s3 sn-2 sn-1
For more details the reader can consult [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF]. Thanks to this isomorphism, we identify the group S ± n with W Bn for n 1.

1.2. Braid monoids of type B. Putting Θ B n = {θ 0 , ..., θ n-1 }, the braid monoid of type B and of rank n is the monoid BB + n whose presentation is

BB + n = B + S ± n = B + (W Bn ) = Θ B n | R 2 Θ B n , R 3 Θ B n and R 4 Θ B n + .
The group of signed permutations S ± n is a quotient of BB + n by θ 2 i = 1. We denote by π the natural surjective homomorphism defined by:

π : BB + n → S ± n θ i → s i .
The following result is fundamental in the study of Coxeter groups, and is known as the Exchange Lemma.

Lemma 1.8 (Theorem 1.4.3 of [1]). Let x 1 ... x k be a reduced expression of a signed permutation σ ∈ S ± n and i ∈ [0, ..., n -1]. If ℓ(σ s i ) < ℓ(σ), then there exists j ∈ [1, k] such that σs i is equal to x 1 ... x j ... x k .
A consequence of the Exchange Lemma is that we can go from a reduced expression of a signed permutation to another only by applying relations of type R 2 , R 3 and R 4 ; in other words, relation s 2 i = 1 can be avoided, see [START_REF] Digne | Cours de DEA, Groupes de tresses[END_REF] for more details. Definition 1.9. For σ in S ± n we define r(σ) to be the braid θ i1 ... θ i k where s i1 ... s i k is a reduced expression of σ.

Since relations R 2 , R 3 and R 4 are also verified by the θ i 's, the braid r(σ) is well defined for every signed permutation σ. Proposition 1.10. For n 0, the map r : S ± n → BB + n is injective. This is a direct consequence of the definition of r. 

2 = {1, θ 0 , θ 1 , θ 0 θ 1 , θ 1 θ 0 , θ 1 θ 0 θ 1 , θ 1 θ 0 θ 1 , θ 0 θ 1 θ 0 θ 1 } The Coxeter element of SB 2 is w B 2 = (-1, -2), whose a decomposition in terms of the s i 's is w B 2 = s 0 s 1 s 0 s 1 and so ∆ B 2 = θ 0 θ 1 θ 0 θ 1 .
Definition 1.13. Let x and y be two braids of BB + n . We say that x left divides y or that y is a right multiple of x if there exists z ∈ BB + n satisfying x.z = y. The Coxeter group S ± n is equipped with a lattice structure via the relation defined by σ τ iff ℓ(τ ) = ℓ(σ) + ℓ(σ -1 τ ). Equipped with the left divisibility, the set SB n is a lattice which is isomorphic to (S ± n , ). The maximal element of

S ± n is w B n , while the one of SB n is ∆ B n .
There is also an ordering on S ± n such that SB n equipped with the right divisibility is a lattice, isomorphic to (S ± n , ). In particular, simple elements of BB + n are exactly the left (or the right) divisors of ∆ B n .

Notation 1.14. For x and y two braids of BB + n , we denote by x ∧ y the left great common divisor of x and y.

1.3. Left Garside normal form. Let x be a non trivial braid of BB + n . The left great common divisor x 1 of x and ∆ B n is a simple element. Since one of the braids θ i 's (which are simple) left divides x, the braid x 1 is non trivial. We can write x as x = x 1 • x ′ , with x ′ ∈ BB + n . If the braid x ′ is trivial, we are done; else, we restart the process, replacing x by x ′ . As the length of the involved braid strictly decrease, we eventually obtain the trivial braid.

Proposition 1.15. Let x ∈ BB + n be a non trivial braid. There exists a unique integer k 1 and unique non trivial simple braids x 1 , ..., x k satisfying

(i) x = x 1 • ... • x k ; (ii) x i = (x i • ... • x k ) ∧ ∆ B n for i ∈ [1, k -1]. The expression x 1 • ... • x k is called the left Garside normal form of the braid x.
The proof of the previous Proposition is a classic Garside result and can be found in [START_REF] Hivert | Sur une conjecture de Dehornoy[END_REF]. Note that in Proposition 1.15, we exclude the trivial braid from the decomposition. This is done in order to have unicity for the integer k. Indeed, one can transform a decomposition

x = x 1 • ... • x k to x = x 1 • ... • x k • 1 • ... • 1 that
satisfy conditions (i) and (ii). The price to pay is that the trivial braid must be treated separately.

Definition 1.16. The integer k introduced in the previous proposition is the Garside length of the braid x. By convention the Garside length of the trivial braid is 0, corresponding to the empty product of simple braids.

Example 1.17. Let x = θ 1 θ 1 θ 0 θ 1 θ 0 θ 1 be a braid of BB + 2 . The maximal prefix of the given expression of x that is a word of a simple braid is θ 1 . However, using relation R 2 on the underlined factor of x we obtain:

x = θ 1 θ 1 θ 0 θ 1 θ 0 θ 0 = θ 1 θ 0 θ 1 θ 0 θ 1 θ 0
The braid y = θ 1 θ 0 θ 1 θ 0 is then a left divisor of x. As y is equal to the simple braid ∆ B 2 , we have x 1 = y and then x = x 1 • θ 1 θ 0 . Since y = θ 1 θ 0 is simple, we have x 2 = θ 1 θ 0 . We finally obtain

x = x 1 • x 0 = θ 1 θ 0 θ 1 θ 0 • θ 1 θ 0 ,
establishing that the Garside length of the braid x is 2.

Condition (ii) of Proposition 1.15 is difficult to check in practice. However it can replaced by a local condition, involving only two consecutive terms of the left Garside normal form. More precisely, (ii) is equivalent to

(ii ′ ) the pair (x i , x i+1 ) is normal for i ∈ [1, k -1].
Definition 1.18. A pair (x, y) ∈ SB 2 n of simple braids is said to be normal if the relation x = (x • y) ∧ ∆ B n holds. Since the number of simple elements is finite, there is a finite number of braids with a given Garside length. 1.4. Combinatorics of normal sequences. We recall that each simple braid of SB n can be expressed as r(σ), where σ is a signed permutation. From the definition of normal pair of braids, we obtain a notion of normal pair of signed permutations. We say that a pair (σ, τ ) of S ± n is normal if (r(σ), r(τ )) is. Thus Proposition 1.15 can be reformulated as follow: Proposition 1.20. For n 2 and x ∈ BB + n a non trivial braid, there exists a unique integer k 1 and non trivial signed permutations σ 1 , ..., σ k of S ± n satisfying the following relations:

(i) x = r(σ 1 ) • ... • r(σ k ); (ii) the pair (σ i , σ i+1 ) is normal for i ∈ [1, k -1].
Instead of counting braids of Garside length d, we will count sequences of signed permutations of length d which are normal.

Definition 1.21. A sequence (σ 1 , ..., σ k ) of signed permutations is normal if the pair (σ i , σ i+1 ) is normal for i ∈ [1, k -1].
The number b n,d is then the number of length d normal sequences of non trivial signed permutations of S ± n . We now look for a criterion for a pair to be normal in the Coxeter context.

Definition 1.22. The descent set of a permutation σ ∈ S ± n is defined by Des (σ) = {i ∈ [0, n -1] | ℓ(σ s i ) < ℓ(σ)}
Example 1.23. Let us compute the descent set of σ = (-2, 1). A reduced expression of σ is s 1 s 0 and so σ has length 2. The expression σ s 0 = s 1 s 0 s 0 reduce to s 1 , which is of length 1. The expression σ s 1 = s 1 s 0 s 1 is reduced, and so σ s 1 has length 3. Therefore the descents set of σ is Des (σ) = {0}.

Let us start with two intermediate results.

Lemma 1.24. Let σ be a signed permutation of S ± n , and i ∈ [0, n -1]. The braid r(σ)θ i is simple if, and only if, i ∈ Des (σ).

Proof. Let σ be a signed permutation of S ± n and t

1 ... t ℓ(σ) one of its reduced ex- pression. If i ∈ Des (σ) then ℓ(σs i ) > ℓ(σ) holds. Hence t 1 ... t ℓ(σ) s i is a reduced expression of σs i . It follows r(σs i ) = r(t 1 ... t ℓ(σ) )r(s i ) = r(σ)θ i , and so r(σ)θ i is simple. Conversely, let us assume that r(σ)θ i is simple. There exists a signed permutation τ in S ± n of length ℓ(σ) + 1 satisfying π(r(σ)θ i ) = τ . As π(r(σ)θ i ) is σs i , we must have ℓ(σs i ) = ℓ(σ) + 1 and so i ∈ Des (σ). Lemma 1.25. For τ a signed permutation of S ± n and i ∈ [0, n -1], the braids θ i is a left divisor of r(τ ) if, and only if, i ∈ Des τ -1 .
Proof. The braids θ i and r(τ ) are simple. Thanks to the lattice isomorphism between SB n equipped with the left divisibility and (S ± n , ), the braid θ i is a left divisor of r(τ ) if and only s i τ holds, and so, by definition of if, and only if, ℓ(τ ) = ℓ(s i ) + ℓ(s i τ ), which is equivalent to ℓ(s i τ ) < ℓ(τ ). As the length of a permutation is the length of its inverse, we have ℓ(

s i τ ) < ℓ(τ ) ⇔ ℓ(τ -1 s i ) < ℓ(τ -1 ) which is equivalent to i ∈ Des τ -1 .
Proposition 1.26. A pair (σ, τ ) of signed permutations of S ± n is normal if, and only if, the inclusion Des τ -1 ⊆ Des (σ) holds.

Proof. Let σ and τ be two signed permutations of S ± n . Assume that (σ, τ ) is not normal. Then, there exists a simple braid z which is a left divisor of r(σ)r(τ ) and greater than r(σ), i.e., r(σ) left divides z. Hence, there exists i ∈ [0, n], such that r(σ)θ i is simple, and θ i left divides r(τ ). Denoting by x the simple braid r(σ)θ i and by y the positive braid θ i -1 r(τ ), we obtain r(σ)r(τ ) = x y. By Lemma 1.24, the integer i does not belong to Des (σ), but in Des τ -1 . To summarize, we have proved that the pair (σ, τ ) is not normal if there exists i ∈ [0, n] such that i ∈ Des (σ) and i ∈ Des τ -1 . The conversely implication is immediate. Therefore (σ, τ ) is normal if, and only if, for all i ∈ [0, n], we have either i ∈ Des (σ) or i ∈ Des τ -1 . Since i is or is not in Des τ -1 , we obtain that the pair (σ, τ ) is normal if, and only if, Des τ -1 ⊆ Des (σ) holds, as expected.

The descent set of a signed permutation σ can be defined directly from the window notation of σ.

Proposition 1.27 (Proposition 8.1.2 of [1]). For n 1, σ ∈ S ± n and i ∈ [0, n -1] we have i ∈ Des (σ) if, and only if, σ(i) > σ(i + 1).
We denote by QS ± n the Q-vector space generated by S ± n . Permutations of S ± n are then vectors of QS ± n . In this way, the expressions 2σ and σ + τ take sense for σ and τ in QS ± n .

Definition 1.28. For n 1, we define a square matrix Adj Bn = (a σ,τ ) indexed by the elements of S ± n by a σ,τ = 1 for Des τ -1 ⊆ Des (σ); 0 otherwise.

Example 1.29. There are 8 signed permutations in S ± 2 . In the above table, we give them with informations about their inverse and descending sets.

σ σ -1 Des (σ) Des σ -1 (1, 2) (1, 2) ∅ ∅ (1, -2) (1, -2) {1} {1} (-1, 2) (-1, 2) {0} {0} (-1, -2) (-1, -2) {0, 1} {0, 1} (2, 1) (2, 1) {1} {1} (2, -1) (-2, 1) {1} {0} (-2, 1) (2, -1) {0} {1} (-2, -1) (-2, -1) {0} {0}
With the same enumeration of S ± 2 , we obtain

Adj B2 =             1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1            
Lemma 1.30. A pair (σ, τ ) of signed permutation of S ± n is normal if, and only if, the scalar t σ Adj Bn τ is equal to 1.

Proof. For a pair of signed permutations (σ, τ ), the scalar t σ Adj Bn τ corresponds to the coefficient a σ,τ of the matrix Adj Bn . We conclude by definition of Adj Bn and Proposition 1.26. Proposition 1.31. Let σ and τ be permutations of

S ± n \ {1}. For all d 1, the number b n,d (σ, τ ) of normal sequences (x 1 , ..., x d ) with π(x 1 ) = σ and π(x d ) = τ is b n,d (σ, τ ) = t σ Adj d-1
Bn τ.

Proof. By induction on d. For d = 1, such a normal sequence exists if, and only if, the permutation

σ is equal to τ . Hence b n,1 (σ, τ ) is δ τ σ , which is equal to t σ • τ . Assume now d 2. A sequence s = (x 1 , x 2 , ..., x d-1 , x d ) is normal if,
and only if, the sequence s ′ = (x 1 , x 2 , ..., x d-1 ) and the pair (x d-1 , x d ) are normal. Denoting by κ the permutation π(x d-1 ), we obtain

b n,d (σ, τ ) = κ∈S ± n (κ, τ ) normal b n,d-1 (σ, κ)
As, by Lemma 1.30, the rational t κ Adj Bn τ is equal to 1 if, and only if, (κ, τ ) is normal and to 0 otherwise, we obtain

b n,d (σ, τ ) = κ∈S ± n b n,d-1 (σ, κ) • t κ Adj Bn τ.
Using induction hypothesis, we get

b n,d (σ, τ ) = κ∈S ± n t σ(Adj Bn ) d-2 κ • t κ Adj Bn τ = t σ Adj d-2 Bn • Adj Bn τ = t σ Adj d-1
Bn τ, as expected.

Corollary 1.32. For n 1 and d 1 we have

b n,d = t X Adj d-1
Bn X, where X is the vector σ∈S ± n \{1} σ. Proof. Let n 1 and d 1 be two integers. By Proposition 1.20, the integer b n,d is the number of normal sequences with no trivial entry. As the pair (1, σ) is never normal for σ ∈ S ± n , a sequence (x 1 , ..., x d ) is not normal whenever

x i = 1 for any i in [2, d -1]. Hence, b n,d is the number of normal sequences (x 1 , ..., x d ) with x 1 = 1 and x d = 1: b n,d = σ,τ ∈S ± n \{1} b n,d (σ, τ ).
which is equal, by Proposition 1.31, to The generating series

b n,d = σ,τ ∈S ± n \{1} t σ Adj d-1 Bn τ = t X Adj d-1 Bn X,
F Bn (t) = +∞ d=0 b n,d t d is given by t X I -t Adj B2 -1 X: F B2 (t) = 7 -3t (3t -1)(t -1) F B3 (t) = -60t 4 + 149t 3 -163t 2 + 169t -47 (t -1)(3t -1)(20t 3 -43t 2 + 16t -1) Developing F B2 (t), we obtain b 2,d = 3 d+1 -2.
The eigenvalues of the matrix Adj Bn give informations on the growth of the function d → b n,d . The first point is to determine if the eigenvalues of Adj Bn-1 are also eigenvalues of Adj Bn , i.e., to determine if the characteristic polynomial of the matrix Adj Bn-1 divides the one of Adj Bn . In [START_REF] Dehornoy | Combinatorics of normal sequences of braids[END_REF], P. Dehornoy conjectured that this divisibility result holds for classical braids (Coxeter type A). The conjecture was proved by F. Hivert, J.-C. Novelli and J.Y. Thibon in [START_REF] Hivert | Sur une conjecture de Dehornoy[END_REF]. If we denote by χ n the characteristic polynomial of the matrix Adj Bn , we obtain:

χ 1 (x) = (x -1) 2 χ 2 (x) = χ 1 (x) x 4 (x -1) (x -3) χ 3 (x) = χ 2 (x) x 37 (x 3 -16x 2 + 43x -20) χ 4 (x) = χ 3 (x) x 329 (x -1) 3 (x 4 -85x 3 + 1003x 2 -2291x + 1260) χ 5 (x) = χ 4 (x) x 3449 (x 7 -574x 6 + 39344x 5 -576174x 4 + 3027663x 3 -5949972x 2 + 4281984x -1088640)
As the reader can see, the polynomial χ i divides χ i+1 for i ∈ {1, 2, 3, 4}. The aim of the paper is to prove the following theorem: Theorem 1.1. For all n ∈ N, the characteristic polynomial of the matrix Adj Bn divides the characteristic polynomial of the matrix Adj Bn+1 .

For this, we interpret the matrix Adj Bn as the matrix of an endomorphism Φ n of QS ± n . In order to prove the main theorem we equip the vector space QS ± n with a structure of Hopf algebra.

The Hopf algebra BFQSym.

We describe in this section an analogous of the Hopf algebra FQSym for the signed permutation group S ± n . We denote by QS ± the Q-vector space +∞ n=1 QS ± n .

2.1. Signed permutation words. We have shown in Section 1.1 that a signed permutation can be uniquely determined by its window notation. In order to have a simple definition for the notions attached to the construction of the Hopf algebra BFQSym, we describe a one-to-one construction between signed permutations and some specific words associated to the window notation. If w is an element of W ± n , then (w 1 , ..., w n ) is the window notation of some signed permutation of S ± n . For n 1, we define two maps w :

S ± n → W ± n and ρ : W ± n → S ± n by w(σ) = σ(1) ... σ(n) and, for i ∈ [-n, n], ρ(w)(i) =      0 if i = 0, w i if i > 0, -w -i if i < 0.
Definition 2.2. For i ∈ Z \ {0} and k ∈ Z, we define the integers i[k] and i k (whenever i = ±k) by

i[k] = i + k if i > 0, i -k if i < 0. i k =      i + 1 if i < -k, i if -k < i < k, i -1 if i > k.
For w = w 1 ... w ℓ a word on the letters [-n, n] \ {0}, we define w[k] to be the word

w 1 [k] ... w ℓ [k]
and w k to be the word w 1 k ... w ℓ k if w j = ±k for all j. We also extend these notations to sets of integers.

Example 2.3. If w is the word 1 • -5 • 3 • -2 • 6, we have w[2] = 3 • -7 • 5 • -4 • 8 and w 4 = 1 • -4 • 3 • -2 • 5. 2.2. Shuffle product. Definition 2.4. For k, ℓ
1, we denote by Sh k,ℓ all the subsets of [1, k + ℓ] of cardinality k. For X ∈ Sh k,ℓ , we write X = {x 1 < ... < x k } to specify that the x i 's are the elements of X in increasing order.

For example, we have

Sh 2,3 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}. Definition 2.5. Let k, ℓ 1 be two integers. For two words u ∈ W ± k , v ∈ W ± ℓ and X = {x 1 < ... < x k } ∈ Sh k,ℓ we define the X-shuffle word of u and v by u X v = v 0 [k] u 1 v 1 [k] ... v k-1 [k] u k v k [k] where v 0 ... v k = v and ℓ(v i ) = x i+1 -x i -1, with the conventions x 0 = 0 and x k+1 = k + ℓ.
One remarks that letters coming from u are in positions belonging to X in the final word. Let x 1 , ..., x n be n distinct integers. For every sequence ε 1 , ..., ε n of {-1, +1}, we define Std(ε 1 x 1 ... ε n x n ) to be the word ε 1 f (x 1 ) ... ε n f (x n ), where f is the unique increasing map from {x 1 , ..., x n } to [1, n]. Apart from the ε i , this notion of standardization of word coincides with the one used on permutations of S ± n .

We define a coproduct on QS ± by

∀σ ∈ S ± n , ∆(σ) = n k=0 ρ(Std(σ(1), ..., σ(k))) ⊗ ρ(Std(σ(k + 1), ..., σ(n)))
For example the coproduct of (4, -2, 3, -1) is ∆(4, -2, 3, 1) =∅ ⊗ (4, -2, 3, 1) + ( 1) ⊗ (-2, 3, 1)

+ (2, -1) ⊗ (2, 1) + (3, -1, 2) ⊗ (1) + (4, -2, 3, 1) ⊗ ∅
Equipped with the shuffle product and the coproduct ∆, the vector space QS is a Hopf algebra denoted BFQSym. Details are omitted in this paper and can be found in [START_REF] Novelli | Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions[END_REF]. Indeed, BFQSym corresponds to the Hopf algebra of decorated permutations FQSym D with D = {-1, 1}.

2.3. The dual structure. Thanks to the non degenerating coupling σ, τ = δ τ σ , we identify BFQSym with its dual. The Hopf algebra structure of the dual is given by the product * and the coproduct δ defined by:

σ * τ, κ = σ ⊗ τ, ∆(κ) and δ(σ), τ ⊗ κ = σ, τ κ .
The map ι of QS ± that maps σ to σ -1 is a Hopf algebra isomorphism between (BFQSym, , ∆) and (BFQSym, * , δ). The following proposition gives a concrete description of * . Definition 2.11. For n 1, we denote by I n , J n , P n and Q n the elements of QS ± n defined by I n = (1, ..., n), J n = (-n, ..., -1), and

P n = σ∈S ± n Des(σ -1 )⊆{0} σ, Q n = σ∈S ± n Des(σ)⊆{0}
σ.

Example 2.12. We have

P 2 = (1, 2) + (-1, 2) + (2, -1) + (-2, -1), Q 2 = (1, 2) + (-1, 2) + (-2, 1
) + (-2, -1) and, for example: In general, P n and Q n are linear combinations of 2 n permutations.

P 4 =(1, 2, 3, 4) + (-1, 2, 3, 4) + (2, -1, 3, 4) + (-2, -1, 3, 4) + (2, 3, -1, 4) + (-2, 3, -1, 4) + (2,
Vectors P n and Q n are used to describe permutations of S ± n whose descent sets are included in a given subset. The following Lemma exhibits these connections. Lemma 2.13. Let k 1 , ..., k ℓ 1 be integers. Denoting by n the integer k 1 + ... + k ℓ and by D the set {k 1 , k 1 + k 2 , ..., k 1 + ... + k ℓ-1 }, we have the following relations:

Q k1 * ... * Q k ℓ = σ∈S ± n Des(σ)⊆{0}∪D σ, I k1 * Q k2 * ... * Q k ℓ = σ∈S ± n Des(σ)⊆D σ, P k1 ... P k ℓ = σ∈S ± n Des(σ -1 )⊆{0}∪D σ, I k1 P k2 ... P k ℓ = σ∈S ± n Des(σ -1 )⊆D σ. Proof. For i ∈ [1, ℓ] we put d i = k 1 + ... + k i . By very definition of Q k , we have Q k = σ∈S ± k σ(1)<...<σ(k) σ.
Then, by Proposition 2.9, we obtain

Q k1 * ... * Q k ℓ = σ∈S ± k+ℓ , σ(1)<...<σ(d1), ... σ(d ℓ-1 +1)<...<σ(d ℓ ) σ.
Permutations occurring in the previous sum are exactly these having descents in the set {0, d 1 , ..., d ℓ-1 }. Similarly, as I k1 is the only permutation σ of S ± k1 satisfying 0 < σ(1) < ... < σ(k 1 ), we have 

I k1 * Q k2 * ... * Q k ℓ = σ∈S ± k+ℓ , 0<σ ( 
* ... * Q k ℓ , we obtain ι(Q k1 ) ... ι(Q k ℓ ) = σ∈S ± n Des(σ)∈{0}∪D σ -1 = σ∈S ± n Des(σ -1 )∈{0}∪D σ
The expected relation appears, remarking that ι(Q k ) is equal to P k . The second relation involving the shuffle product is obtain similarly from ι(I k1 ) = I k1 .

The vector P n of QS ± n can also be defined using the shuffle product as suggested by Example 2.12.

Lemma 2.14. For all n 1, we have

P n = n k=0 J k I n-k . Proof. By definition of Q n , we have Q n = σ∈S ± n , σ(1)<...<σ(n) σ = n k=0 σ∈S ± n , σ(1)<...<σ(k)<0 0<σ(k+1)<...<σ(n)
σ By Proposition 2.9, we have

J k * I n-k = σ∈S ± n Std(σ(1),...,σ(k))=(-k,...,-1) Std(σ(k+1),...,σ(n))=(1,...,n-k) σ = σ∈S ± n , σ(1)<...<σ(k)<0 0<σ(k+1)<...<σ(n) σ.
We have then established Q n = n k=0 J k * I n-k . We obtain the expected result applying the isomorphism ι since J k and I k are fixed by ι.

The divisibility result.

For n ∈ N, we define Φ n to be the endomorphism of QS ± n whose representative matrix is t Adj Bn . We denote by Φ the endomorphism Φ n of QS ± . By very definition of Adj Bn , for all σ ∈ S ± n , we have

Φ(σ) = Φ n (σ) = τ ∈S ± n Des(τ -1 )⊆Des(σ) τ.
For n ∈ N, we denote by D n the set of all subsets of [0, n -1]. The descent map from S ± n to D n can be extended to a unique linear map, also denoted by Des, from QS ± n to QD n . We denote by Φ n the map from QD n to QS ± n defined by Φ n (I) = Proof. Let Ψ be a derivation of QS ± commuting with Ψ, and n be an integer greater than 1. Let us denote by Ψ k the restriction of Ψ to

QS ± k for k ∈ N. We fix a basis B = B 0 ⊔ B 1 of QS ± n , such that B 0 is a basis of ker(Ψ n ). Restricting the relation Ψ • Φ = Φ • Ψ to QS ± n , we obtain Ψ n • Φ n = Φ n-1 • Ψ n . For x in ker(Ψ n ), we have Ψ n (Φ n (x)) = Φ n-1 (Ψ n (x)) = Φ n-1 (0) = 0.
Hence, ker(Ψ n ) is stable under the map Φ n . In particular, the representative matrix of Φ n in the basis B is the upper triangular matrix

M n = A n B n 0 C n
Denoting by χ(.) the characteristic polynomial of a matrix or an endomorphism, we obtain

(1)

χ(Φ n ) = χ(M n ) = χ(A n )χ(C n ).
The matrix of the restriction Φ n of Φ n to QS ± n / ker(Ψ n ) is C n and so χ(Φ n ) is equal to χ(C n ). From the surjectivity of Ψ, we have the following commutative diagram:

QS ± n / ker(Ψ n ) Φn / / _ Ψn QS ± n / ker(Ψ n ) _ Ψn QS ± n-1 Φn-1 / / QS ± n-1 implying that the endomorphism Φ n-1 is conjugate to Φ n . Therefore Equation (1) becomes χ(Φ n ) = χ(A n )χ(Φ n-1
), and so χ(Φ n-1 ) divides χ(Φ n ).

As the reader can check, the property (i) of a derivation is not used in the proof, but will be fundamental in order to establish the commutativity with Φ.

It remains to construct a surjective derivation Ψ which commutes with Φ.

3.1.

A derivation of BFQSym. In order to describe our derivation, we have to introduce some notations. 

ε(a, b) = 1 if a < b, -1 if a > b.
= -1 • 2 • -4 • -5 • 3 • 6, augmented to the word 0 • -1 • 2 • 4 • -5 • 3 • 6 • -∞, we obtain sign 1 (u) = ε(0, -1, 2) = 0, sign 2 (u) = ε(-1, 2, -4) = 0, sign 3 (u) = ε(-5, 3, 6) = 1, sign 4 (u) = ε(2, -4, -5) = -1, sign 5 (u) = ε(-4, -5, 3) = 0, sign 6 (u) = ε(3, 6, -∞) = 0. Lemma 3.7. Let n 1 and σ ∈ S ± n . For j ∈ [1, n -1], we have sign |σ(j)| (w(σ)) =      1 for {j -1, j} ∩ Des (σ) = ∅; -1 for {j -1, j} ⊆ Des (σ); 0 otherwise.
Moreover, the value of sign |σ(n)| (w(σ)) is -1 if n -1 belongs to Des (σ), and is 0 otherwise.

Proof. Let σ be a permutation of S ± n and j be an integer of [1, n -1]. We denote by i the integer |σ(j)|. Assume first j ∈ [1, n -1]. By definition of sign, we have sign i (c) = 1 if, and only if, σ(j -1) < σ(j) < σ(j + 1), wich is equivalent to j -1 ∈ Des (σ) and j ∈ Des (σ). Always by definition of sign, we have sign i (σ) = -1 if, and only if, σ(j -1) > σ(j) > σ(j + 1), i.e., j -1 and j belong to Des (σ).

Let us now prove the result for i = n. As the relation σ(n) > -∞ is always true, the value of sign i (w(u)) is -1 if σ(n -1) > σ(n) and 0 otherwise, corresponding to the statement. 

u 1 i ... u j-1 i u j+1 i ... u n i of W ± n-1
, where j is the unique integer satisfying the relation

|u j | = i. Example 3.10. Considering u = -1 • 2 • -4 • -5 • 3 • 6, we obtain del 1 (u) = 1 • -3 • -4 • 2 • 5 del 2 (u) = -1 • -3 • -4 • 2 • 5 del 3 (u) = -1 • 2 • -3 • -4 • 5 del 4 (u) = -1 • 2 • -4 • 3 • 5 del 5 (u) = -1 • 2 • -4 • 3 • 5 del 6 (u) = -1 • 2 • -4 • -5 • 3.
Definition 3.11. Let n and i be two integers such that i ∈ [1, n]. We define a linear map

∂ i n of QS ± n to QS ± n-1 by ∂ i n (σ) = sign i (w(σ)) ρ(del i (w(σ)))
, where σ ∈ S ± n . Then we define a map ∂ n from QS ± n to QS ± n-1 by 1), (-1) of S ± 1 , is:

∂ n (σ) = n k=1 ∂ i n (σ) for σ ∈ S ± n ,
1 -1 0 0 -1 -1 0 0 0 0 0 -2 0 0 0 0
We now prove that ∂ is a surjective derivation of QS ± , compatible with the shuffle product. Lemma 3.14. Let σ ∈ S ± k and τ ∈ S ± ℓ be two signed permutations.

-(i) For all i ∈ [1, k], we have ∂ i k+ℓ (σ τ ) = ∂ i k (σ) τ ; -(ii) For all i ∈ [k + 1, k + ℓ], we have ∂ i k+ℓ (σ τ ) = σ ∂ i-k ℓ (τ ).
Proof. Let σ and τ be two permutations of S ± k and S ± ℓ and u, v be their respective words. Let i be an integer of [1, k]. Then, there exists a unique j such that u j = ±i. By definition of del i , we have del i (u) = u 1 i ... u j-1 i u j+1 i ... u k i . Let

Y = {y 1 < ... < y k-1 } be an element of Sh k-1,ℓ . Writing u ′ m for u m i , there exists k words v 0 , ..., v k-1 such that v 0 ... v k-1 = v, ℓ(v j ) = y j+1 -y j -1 for j ∈ [1, k -2] and (2) del i (u) Y v = v 0 [k-1] u ′ 1 ... v j-2 [k-1] u ′ j-1 v j-1 [k-1] u ′ j+1 v j [k-1] ... u ′ k v k-1 [k-1].
We now express v j-1 as the word α 1 ... α m , with m = y j+1 -y j -1. For a ∈ [0, m], we define k + 1 words w a 0 , ..., w a k by

w a p =          v p for p j -2, α 1 ... α a for p = j -1, α a+1 ... α m for p = j, v p-1 for p j + 1.
Then v is equal to w a 0 ... w a j-1 w a j ... w a k . We define Y a , the refinement of Y , by

Y a = {y 1 < ... < y j-1 < y j-1 + a + 1 < y j + 1 < ... < y k-1 }.
Note that Y a is an element of Sh k,ℓ for all values of a ∈ [0, m]. The shuffle product of u and v relatively to Y a is

u Ya v = w a 0 [k] u 1 ... w a j-2 [k] u j-1 w a j-1 [k] u j w a j [k] u j+1 w a j+1 [k] ... u k w a k [k],
Applying del i to the previous relation gives that del i u Ya v is equal to

w a 0 [k-1] u ′ 1 ... w a j-2 [k-1] u ′ j-1 • w a j-1 [k-1] w a j [k-1] • u ′ j+1 w a j+1 [k-1] ...u ′ k w a k [k-1],
which, by definition of the words w a p , is exactly the expression of del i (u) Y v given in [START_REF] Brieskorn | Artin-gruppen und Coxeter-gruppen[END_REF]. We then obtain

m a=0 sign i u Ya v del i u Ya v = m a=0 sign i u Ya v del i (u) Y v.
By definition of sign i and ε together with the conventions α 0 = u j-1 , α m+1 = u j+1 , and the conventions u 0 = 0, u k+1 = -∞ used in definition of sign, we obtain

m a=0 sign i u Ya v = k a=0 ε(α a , u j , α a+1 ) = 1 2 k a=0 ε(α a , u j ) + ε(u j , α a+1 ) = 1 2 k a=0 ε(α a , u j ) -ε(α a+1 , u j ) = ε(α 0 , u j , α m+1 ),
and the latter is equal to ε(u j-1 , u j , u j+1 ) which is sign i (u). We have then proved

m a=0 sign i u Ya v del i u Ya v = sign i (u)del i (u) Y v.

From the relation Sh

k,ℓ = {Y a | Y ∈ Sh k-1,ℓ and a ∈ [0, y j+1 -y j -1]}, we get ∂ i k (σ) τ = Y ∈Sh k-1,ℓ sign i (u) del i (u) Y v = Y ∈Sh k-1,ℓ yj+1-yj -1 a=0 sign i u Ya v del i u Ya v = X∈Sh k,ℓ sign i u X v del i u X v = ∂ i k+ℓ (σ τ ) .
We prove (ii) with a similar argument, exchanging the role of u and v.

From the compatibility of ∂ whith the shuffle product , we determine the image of P n under the derivation ∂. Lemma 3.15. For all n 1, we have

∂(I n ) = (n -1)I n-1 , ∂(J n ) = (n -2)J n-1 and ∂(P n ) = (n -2)P n-1 , with the conventions I 0 = J 0 = P 0 = ∅.
Proof. For n 1, we have

∂(I n ) = n i=1 ∂ i (I n ) = n i=1 sign i (I n )I n-1
By definition of sign, we have sign

1 (I n ) = ... = sign n-1 (I n ) = 1 and sign n (I n ) = 0. These imply ∂(I n ) = (n -1)I n-1 . Similary, since sign 1 (J n ) = -1, sign k (J n ) is 1 for k ∈ [2, n -1] and sign n (J n ) = 0, we obtain del i (J n ) = J n-1 . This implies ∂(J n ) = (n -2)J n-1 for n 1. Let us now prove ∂(P n ) = (n -2)P n-1 .
By convention, we have ∂(I 0 ) = ∂(J 0 ) = 0. Using Lemma 2.14 and the compatibility of ∂ and given in Lemma 3.14, we obtain

∂(P n ) = ∂ n k=0 J k I n-k = n k=0 ∂(J k ) I n-k + n k=0 J k ∂(I n-k ) = n k=1 (k -2)J k-1 I n-k + n k=0 (n -k -1)J k I n-k-1 = n-1 k=0 (k -1)J k I n-1-k + n k=0 (n -k -1)J k I n-1-k = (n -2) n-1 k=0 J k I n-1-k = (n -2)P n-1 .
The proof of the surjectivity of ∂ n given in Proposition 3.17 uses a triangular argument that we illustrate on an example: Example 3.16. Let σ = σ 1 be the permutation (2, -1, 4, 5, -3) of S ± 5 . We look after the maximal sequence of the form k ... 5 or -k ... -5 in the word w(σ). In our example, this sequence is 4, 5. We define τ 1 to be the permutation (2, -1, 4, 5, 6, -3) obtained form σ 1 by replacing 4, 5 by 4, 5, 6. A direct computation gives ∂ 6 (τ 1 ) = 2σ 1σ 2 with σ 2 = (2, -1, 3, 4, 5). Hence, we obtain (3)

σ 1 = ∂ 6 1 2 τ 1 + 1 2 σ 2 .
The maximal sequence of the desired form in σ 2 is 3, 4, 5, which is longer than this of σ 1 . We then define τ 2 to be (2, -1, 3, 4, 5, 6) and we compute ∂ 6 (τ 2 ) = 3σ 2 . Hence σ 2 is equal to ∂ 6 1 3 τ 2 and, eventually, substituting this to (3), we obtain

σ 1 = ∂ 6 1 2 τ 1 + ∂ 6 1 6 τ 2 = ∂ 6 1 2 (2, -1, 4, 5, 6, -3) + 1 6 (2, -1, 3, 4, 5, 6) . 
Proposition 3.17. For all n ∈ N, the map ∂ n+1 : QS ± n+1 → QS ± n is surjective. Proof. Let σ be a permutation of S ± n . We denote the word w(σ) by u. We have two cases, depending if n or -n appears in u.

Case n appears in u: we define i(σ) to be the minimal integer such that u can be written as v

• [i ... n] • w. We use an induction on i(σ). If i(σ) is 1 then σ = I n . As Lemma 3.15 gives ∂ n+1 (I n+1 ) = nI n , we obtain σ = ∂ n+1 ( 1 n I n+1 ). Assume now i = i(σ) > 1. Let u ′ be the word v • [i ... n + 1] • w.
Since each letter of v and w are smaller than i -1, the word u ′ belongs to W ± n+1 . We denote by τ the permutation of S ± n+1 attached to u ′ . For j ∈ {i, ..., n} we have del j (u ′ ) = u and sign j (u ′ ) = 1. As the first letter of w is smaller than n + 1, we obtain sign n+1 (u ′ ) = 0, and so

n+1 j=i ∂ j n+1 (τ ) = (n -i + 1)σ,
with ni + 1 = 0, since i n. Let j be in {1, ..., i -1}. Since the letter ±j appears only in v or in w and |j| < i, we have

del j (u ′ ) = v j • [i -1 ... n] • w j .
We then obtain that ∂ n+1 (τ ) is the sum of (ni + 1)σ and a linear combination of permutations α 1 , ..., α k of S ± n satisfying i(α j ) = i -1 < i = i(σ). By the induction hypothesis, the α j 's belong to Im(∂ n+1 ), which implies σ ∈ Im(∂ n+1 ).

Case n does not appear in u: hence, -n appears in u. We now define i(σ) to be the minimal integer such that u can be written as v • [-i ...n] • w. We use also an induction on i(σ). For k ∈ N, we denote by J k the permutation (-1, ..., -k) of S ± k . If i(σ) = 1, then σ = J n . By Lemma 3.15 we have n+1 (J n+1 ) = -(n + 1)J n ,

we obtain σ = ∂ n+1 (-1 n+1 J n+1 ). Assume now i = i(σ) > 1. We denote by u ′ the word v • [-i ... -(n + 1)] • w of W ±
n+1 and by τ the corresponding permutation of S ± n+1 . For j < i, we have we have del j (u ′ ) = u and sign j (u ′ ) = -1. If w empty, then sign n+1 (τ ) = -1 and del n+1 (u ′ ) = u. So, in this case, β is equal to -(n + 2i)σ with n + 2i = 0, since i n. If w is not empty, then its first letter is greater than -(n + 1), implying sign n+1 (τ ) = 0. Then, β = -(n + 1i)σ with n + 1i = 0, since i n. In all cases, we obtain that σ belongs to the image of ∂ n+1 .

del j (u ′ ) = v j • [-(i -1) ... -n] • w j . Hence α = i-1 j=1 ∂ j n+1 ( 
Corollary 3.18. The map ∂ is a surjective derivation of (BFQSym, ).

Proof. Let σ and τ be two signed permutations of S ± k and S ± ℓ . By definition of ∂, we have the relation

∂(σ τ ) = n i=1 ∂ i k+ℓ (σ τ ) = k i=1 ∂ i k+ℓ (σ τ ) + k+ℓ i=k+1 ∂ i k+ℓ (σ τ ).
Thus, by Lemma 3.14, we obtain

∂(σ τ ) = k i=1 ∂ i k (σ) τ + ℓ i=1 σ ∂ i ℓ (τ ),
and so ∂(σ τ ) = ∂(σ) τ + σ ∂(τ ). The surjectivity is given by Proposition 3.17.

3.2.

Commutation of ∂ and Φ. We shall now prove that ∂ and Φ commutes. We start with two intermediate results. Proof. Let u be the word of a permutation σ ∈ S ± n and i in [1, n]. We denote by j the unique positive integer such that σ(j) = |i| holds, by v the word del j (u) and by τ the permutation ρ(v). The word v = v 1 ... v n-1 is then defined by

v k = u k i for k i -1, u k+1 i for k i.
where u k and v k are the k-th letter of u and v respectively. For k ∈ [0, n -1], we have u k i > u k+1 i if, and only if, u k > u k+1 holds (always with the convention u 0 = 0). Hence, k ∈ [0, i -2] is a descent of τ if, and only if, k is a descent of σ. Similarly, k in [i, n -2] is a descent of τ if, and only if, k + 1 is a descent of σ. Considering the set D i defined in the proposition, we have

Des (τ ) ∩ ([0, n -2] \ {i -1}) = D i .
We cannot determine if i -1 is a descent of τ from Des (σ). We only remark that the integer i -1 is a descent of τ if, and only if, v i-1 > v i , hence if, and only if, we have u i-1 > u i+1 , as expected. Lemma 3.20. Let σ be a permutation of S ± n and {d 1 < ... < d k } be the set of its non-zero descents. For i in [1, k], we have Proof. Let σ be a permutation of S ± n and {d 1 < ... < d k } the set of its positive descents. Let i be an integer in [ 

i + 2, d i+1 -1] is exactly d i+1 -d i -2. Case d i+1 = d i + 2: we have σ(d i ) > σ(d i + 1) < σ(d i+1 ) > σ(d i+1 + 1).
As and so, using Lemma 3.15, we obtain

(∂ • Φ)(σ) = x k1 X k1-1 P k2 ... P k ℓ + ℓ i=2 (k i -2)X k1 P k2 ... P ki-1 P ki-1 P ki+1 ... P k ℓ .
In other hand, by Lemma 3.20, we have

Des (∂(σ)) = x k1 Des (σ) d 1 + ℓ i=2 (k i -2)Des (σ) d i By Proposition 3.1 we obtain Φ n (Des (σ) d 1 ) = X k1-1 P k2 ... P k ℓ , and for i in [2, n] we have Φ n (Des (σ) d i ) = X k1 P k2 ... P ki-1 P ki-1 P ki+1 ... P k ℓ Since (Φ•∂)(σ) = ( Φ n (Des (∂(σ)))), we have established (Φ•∂)(σ) = (∂ •Φ)(σ).
We can now prove the main theorem.

Proof of Theorem 1.1. Let n be an integer. By Corollary 3.18, the map ∂ is a surjective derivation of QS ± , which, by Theorem 3.1, commutes with Φ. Proposition 3.3 guarantees that the characteristic polynomial of Φ n divides the one of Φ n+1 . Since the characteristic polynomial of Φ n is the one of Adj B n , we have established the expected divisibility result.

Other types

In this section, we discuss about the becoming of the divisibility result for other infinite Coxeter families, and we describe the combinatorics of normal sequences of braids for some exceptionnal types.

Let Γ be a finite connected Coxeter graph. From a computational point of view the matrix Adj Γ is too huge, as its size is exactly the number of elements in W Γ , whose growth in an exponential in n for the family A n , B n and D n .

The definition of the descent set given in Definition 1.22 has a counterpart in W Γ for every Coxeter graph Γ (the reader can consult [START_REF] Bjorner | Combinatorics of Coxeter groups[END_REF] for more details on the subject). Definition 4.1. For Γ a Coxeter graph we define a square matrix Adj ′ Γ = (a ′ I,J ) indexed by the subset of vertices of Γ by:

a ′ I,J = card{w ∈ W Γ | Des w -1 = I and J ⊆ Des (w)}
For Γ a graph of the family A n , B n and D n , the size of Adj ′ Γ is 2 n , which is smaller than n!, 2 n n! and 2 n-1 n! respectively.

For any subset J of Γ, we denote by b d Γ (J), the numbers of positive braids of B + (W Γ ) whose Garside normal form is (w 1 , ..., w d ) with Des (w d ) ⊂ J. An immediate adaptation of Lemma 2.12 of [START_REF] Dehornoy | Combinatorics of normal sequences of braids[END_REF] gives: Lemma 4.2. For Γ a finite connected Coxeter graph, there exists an integer k such that the characteristic polynomial χ Γ (x) of Adj Γ is equal to x k χ ′ Γ (x) where χ ′ Γ (x) is the one of Adj ′ Γ . Moreover, for d 1 and J ⊂ Γ, we have

b d Γ (J) = t Y (Adj ′ Γ ) d-1 J where Y I = 0 if I = ∅, 1 otherwise. 
In order to determine the numbers b d Γ of braids of B + (W Γ ) whose Garside length is d form Adj ′ Γ , we use an inclusion exclusion principle. Corollary 4.3. For Γ a finite connected Coxeter graph and d 1, we have: , and the associated Coxeter group is isomorphic to the subgroup of S ± n+1 consisting of all signed permutations with an even number of negative entries. Its generators are the signed permutations s i for i ∈ [1, n -1], plus the signed permutation s ′ 0 = (-2, -1, 3, ..., n). We extend the family D n defined for n 4 to include D 1 = A 1 , D 2 = A 1 × A 1 and D 3 = A 3 . Note that we usually only consider n 4 in order to have a classification of irreducible Coxeter groups without redundancy.

b d Γ = t Y (Adj ′ Γ ) d-1 Z where Z I = 0 if I = ∅, ( - 
Denoting by χ Dn the characteristic polynomial of the adjacent matrix Adj Dn of normal sequences of positive braid of type D and rank n we obtain:

χ D1 (x) = (x -1) 2 χ D2 (x) = (x -1) 4 χ D3 (x) = x 19 (x -1) 2 (x -2) (x 2 -6x + 3) χ D4 (x) = x 181 (x -1) 6 (x 5 -44x 4 + 402x 3 -1084x 2 + 989x -360) χ D5 (x) = x 1906 (x -1) 2 (x 12 -302x 11 + 17070x 10 -328426x 9 + 3077800x 8 -16424030x 7 + 4072794x 6 -113921686x 5 + 154559655x 4 -132533636x 3 + 68372600x 2 -18880000x + 2016000)
As the reader can check, there is no hope to have a divisibility of χ Dn+1 by χ Dn except for n = 1. The associated generating series are: 

F D2 (t) = 3 -t (t -1) 2 F D3 (t) = -6t 3 + 15t 2 -20t + 23 (t -1)(2t -1)(3t 2 -6t -1) F D4 (t) = -360t 5 + 1709t 4 -2246t 3 + 852t 2 + 430t + 191 (t -1)(-1 + 44t -402t 2 + 1084t 3 -989t 4 + 360t
Adj ′ In =     1 0 0 0 n -1 b n a n 0 n -1 a n b n 0 n 1 1 1    
with a n = ⌊ n-1 2 ⌋ and b n = ⌊ n 2 ⌋ Proof. The elements of W In are 1, w n = prod(s, t; n) = prod(t, s; n) and prod(s, t; k) with prod(t, s; k) for k in [1, n -1]. For k in [1, n -1], we have prod(s, t; k) -1 = prod(t, s; k) for k even, prod(s, t; k) otherwise.

Des (prod(s, t; k)) = t for k even, s otherwise.

From the relation prod(s, t; n) = prod(t, s; n) we have w n = prod(s, t; n) -1 = prod(s, t; n) and so Des (w n ) = {s, t}. We organize the elements of W In \ {1, w n } in 4 sets: X 1 = {prod(s, t; k) for k even}, X 2 = {prod(s, t; k) for k odd}, X 3 = {prod(t, s; k) for k even}, X 4 = {prod(t, s; k) for k odd}.

From the previous study of descents, we obtain σ ∈ {1} X 1 X 2 X 3 X 4 {w n } Des (σ) ∅ {t} {s} {s} {t} {s, t} Des σ -1 ∅ {s} {s} {t} {t} {s, t}

Denoting by a n and b n the integers ⌊ n-1 2 ⌋ and ⌊ n 2 ⌋ respectively, we obtain that card(X 1 ) = card(X 3 ) = a n and card(X 2 ) = card(X 4 ) = b n . For I, J subsets of {s, t} we define A ′ I,J to be the set {σ ∈ W In | Des σ -1 = I and J ⊆ Des (w)}.

For all K ⊂ {s, t} we have A ′ {s,t},K = {w n }. We have A ′ ∅,∅ = {1} and A ′ ∅,K = ∅ for K = ∅. From the X i 's we get (x -1) 3 (xn + 1) if x is even, x(x -1) 2 (xn + 1) otherwise, Adding the missing powers of x to obtain a degree of 2n we obtain the expected value for χ In .

A ′ {s},∅ = X 1 ⊔ X 2 , A ′ {s},
For generating series results, Corollary 4.3 gives

F In (t) = 0 1 1 1 (I 4 -t Adj ′ In ) -1     0 1 1 -1     .
By a direct computation (or a use of Sage [START_REF] Stein | Sage Mathematics Software (Version 6.5)[END_REF] for example) we obtain F In (t) = (n -1)t + 1 ((n -1)t -1)(t -1) .

4.3. Exceptional Coxeter groups. Using Adj ′ Γ , we can study the combinatorics of normal sequence of braids of type F 4 , H 3 , H 4 , E 6 and E 7 . The matrices Adj ′ Γ were obtained using Sage [START_REF] Stein | Sage Mathematics Software (Version 6.5)[END_REF], while the characteristic polynomials and generating series was obtained using the C library flint [START_REF] Hart | FLINT: Fast Library for Number Theory[END_REF].

The group W F4 has 1152 elements. The characteristic polynomial of Adj F4 is χ F4 (x) =x 1140 (x -1) + 115900067128500 x 7 -282097630883500 x 6 + 439789995997000 x 5

-441496921502000 x 4 + 282303310340000 x 3 -110981554480000 x 2

+ 24563716800000 x -2328480000000),

Definition 1 .

 1 19. For positive integer n and d, we denote by b n,d the number of braids of BB + n which are of Garside length d. In order to determine b n,d , we will switch to the Coxeter context.

  as expected. Example 1.33. In BB + 2 the only braid of Garside length 0 is the trivial one, i.e., b 2,0 = 1. Except the trivial one, all simple braids have length 1, and so b 2,1 = 7, corresponding to t XX. Considering the matrix Adj Bn we obtain the following values of b n,d : d b 2,d b 3,d b 4

Definition 2 . 1 .

 21 For n 1, we define W ± n to be the set of words w = w 1 ... w n on the alphabet [-n, n] satisfying {|w 1 |, ..., |w n |} = [1, n].

Example 2 . 6 .Example 2 . 8 .

 2628 Let u be the word -2 • 1 and v be the word 3 • -1 • 2. We then have k = 2 and ℓ = 3. The word v[k] is 5 • -3 • 4. The {2, 4}-shuffle of u and v is the word 5 • -2 • -3 • 1 • 4 while the {4, 5}-shuffle of u and v is 5 • -3 • 4 • -2 • 1; letters in gray are these coming from the word u. Definition 2.7. For σ ∈ S ± k and τ ∈ S ± ℓ two signed permutations, we define the shuffle product of σ and τ is the signed permutation σ τ of S ± k+ℓ defined by σ τ = X∈Sh k,ℓ ρ w(σ) X w(τ ) Considering the signed permutations σ = (-2, 1) and τ = (3, -1, 2), we obtain σ τ = (-2, 1, 5, -3, 4)+(-2, 5, 1, -3, 4) + (-2, 5, -3, 1, 4) + (-2, 5, -3, 4, 1) +(5, -2, 1, -3, 4)+(5, -2, -3, 1, 4) + (5, -2, -3, 4, 1) + (5, -3, -2, 1, 4) +(5, -3, -2, 4, 1)+(5, -3, 4, -2, 1).

Proposition 2 . 9 .

 29 Let σ ∈ S ± k and τ ∈ S ± ℓ be two permutations. We have σ * τ = u∈W ± k+ℓ Std(u1,...,u k )=w(σ) Std(u k+1 ,...,u k+ℓ )=w(τ ) ρ(u) Example 2.10. For the signed permutations σ = (2, -1) and τ = (3, -1, 2) we have σ * τ = (2, -1, 5, -3, 4) + (3, -1, 5, -2, 4) + (4, -1, 5, -2, 3) + (5, -1, 4, -2, 3) +(3, -2, 5, -1, 4) + (4, -2, 5, -1, 3) + (5, -2, 4, -1, 3) + (4, -3, 5, -1, 2) +(5, -3, 4, -1, 2) + (5, -4, 3, -1, 2).

3 , 4 ,

 34 -1) + (-2, 3, 4, -1) + (3, -2, -1, 4) + (-3, -2, -1, 4) + (3, -2, 4, -1) + (-3, -2, 4, -1) + (3, 4, -2, -1) + (-3, 4, -2, -1) + (4, -3, -2, -1) + (-4, -3, -2, -1)

  1)<...<σ(d1), σ(d1+1)<...<σ(d2), ... σ(d ℓ-1 +1)<...<σ(d ℓ ) σ, which is the sum of permutations of S ± n with descent set in {d 1 , ..., d ℓ-1 }. Applying the isomorphism ι between (BFQSym, , ∆) and (BFQSym, * , δ) to the previous expression of Q k1

Proposition 3 . 1 .

 31 any element I of D n . For all σ ∈ S ± n , we have Φ n (σ) = Φ n (Des (σ)). A direct consequence of Lemma 2.13 is : For every D = {d 1 < ... < d ℓ } element of D n , with 0 < d 1 , we have the relationsΦ n (D) = I k1 P k2 ... P k ℓ Φ n ({0} ∪ D) = P k1 P k2 ... P k ℓ where k i = d i+1d i for i ∈ [1, n] and with the convention d ℓ+1 = n. Definition 3.2. An endomorphism Ψ of QS ± is a surjective derivation if -(i) Ψ(x y) = Ψ(x) y + x Ψ(y) holds for all x, y of QS ± ; -(ii) Ψ(QS ± n ) = QS ± n-1holds for all n 1. Proposition 3.3. If there exists a surjective derivation Ψ of QS ± commuting with Φ, then, for n 1, the characteristic polynomial of Φ n-1 divides the one of Φ n .

Definition 3 . 4 .

 34 For a and b two distinct integers, we define ε(a, b) by

ForDefinition 3 . 5 .

 35 a, b, c three distinct integers, we write ε(a, b, c) = 1 2 (ε(a, b) + ε(b, c)) ∈ {-1, 0, 1}. Let u = u 1 ... u n be a word of W ± n and i ∈ [1, n]. We define sign i (u) = ε(u j-1 , u j , u j+1 ), where j is the unique integer satisfying |u j | = i, with the conventions u 0 = 0 and u n+1 = -∞. Example 3.6. Considering the word u

Example 3 . 8 . 6 . 3 . 9 .

 38639 The descent set of σ = (-1, 2, -4, -5, 3, 6) is {0, 2, 3}. Hence, the non zero values of sign |σ(j)| are obtained for j = 3 and j = 5, more precisely, we have sign |σ(3)| (σ) = sign 4 (σ) = -1 and sign |σ(5)| (σ) = sign 3 (σ) = 1, corresponding to Example 3.Definition For u ∈ W ± n and i ∈ [1, n], we denote by del i (u) the word

  and a map ∂ of QS ± by ∂ = +∞ n=1 ∂ n . Example 3.12. Considering the permutation σ = (-1, 2, -4, -5, 3, 6), we have∂ 1 6 (σ) = ∂ 2 6 (σ) = ∂ 5 6 (σ) = ∂ 6 6 (σ) = 0, while we have ∂ 3 6 (σ) = sign 3 (σ)ρ(del 3 (w(σ))) = (-1, 2, -3, -4, 5) ∂46 (σ) = sign 4 (σ)ρ(del 4 (w(σ))) = -(-1, 2, -4, 3, 5) Finally we obtain ∂(σ) = (-1, 2, -3, -4, 5) -(-1, 2, -4, 3, 5). Example 3.13. The map ∂ sends QS ± 2 to QS ± 1 The matrix of this map, with the enumeration of S ± 2 of Example 1.29 and the enumeration (

  τ ) is a linear combination of permutations α 1 , ...., α k ∈ S ± n satisfying i(α j ) < i = i(σ) which, by induction hypothesis, implies α ∈ Im(∂ n+1 ). It remains to establish that β = n+1 j=i ∂ j n+1 (τ ) is a multiple of σ. For j ∈ {i, ..., n},

Lemma 3 .

 3 19. For all σ ∈ S ± n and i ∈ [1, n], we haveDes del |σ(i)| (σ) = D i for σ(i -1) < σ(i + 1); D i ∪ {i -1} for σ(i -1) > σ(i + 1).whereD i = Des (σ) ∩ [0, i -2] ∪ {d -1 | d ∈ Des (σ) ∩ [i + 1, n]} and the convention σ(0) = 0.

∂

  d i+1d i -2)Des (σ) d i+1 with the convention d k+1 = n. Moreover,for d 1 > 0, i.e., 0 ∈ Des (σ)|σ(e)| (σ) = (d 1 -1)Des (σ) d 1 if 0 ∈ Des (σ), (d 1 -2)Des (σ) d 1 if 0 ∈ Des (σ).

Theorem 3 . 1 .

 31 for e ∈ [d i + 1, d i+1 ], we have sign |σ(e)| (σ) = 0, the left hand side of (4) is 0. Case d i+1 = d i + 1: we have σ(d i ) > σ(d i+1 ) > σ(d i+1 + 1). In this case, sign |σ(di+1)| is -1. By Lemma 3.19, the positive descents of del |σ(di+1)| (σ) are {d 1 , ..., d i-1 , d i+1 -1, ..., d k -1} ∪ {d i } = {d 1 , ..., d i , d i+1 -1, ..., d k -1} since σ(d i ) > σ(d i + 2) holds. We conclude by remarking that d i+1d i -2 = -1 occurs in this case. Relation (5) is proved similarly, with a particular attention on 0. The endomorphisms Φ and ∂ commute. Proof. Let σ be a permutation of S ± n . Let us denote by {d 1 < ... < d ℓ } the set of non-zero descents of σ. For i ∈ [1, ℓ] we denote by k i the integer d i+1d i , with the convention d 0 = 0 and d ℓ+1 = n. For k ∈ N, we define X k and x k by X k = I k for 0 ∈ Des (σ), P k for 0 ∈ Des (σ); and x k = k -1 for 0 ∈ Des (σ), k -2 for 0 ∈ Des (σ). By Proposition 3.1, we have Φ(σ) = X k1 P k2 ... P k ℓ . Since ∂ is a derivation, by Corollary 3.18, the previous relation gives (∂ • Φ)(σ) =∂(X k1 ) P k2 ... P k ℓ + ℓ i=2 X k1 ... P ki-1 ∂(P ki ) P ki+1 ... P k ℓ .

  1) card(I)+1 otherwise. and Y as in Lemma 4.2. 4.1. Braids of type D. For n 4, the Coxeter graph of type D and rank n is Γ Dn :

Corollary 4 . 5 .

 45 {s} = X 2 , A ′ {s},{t} = X 1 , A ′ {s},{s,t} = ∅, A ′ {t},∅ = X 3 ⊔ X 4 , A ′ {t},{s} = X 3 , A ′ {t},{t} = X 4 , A ′{t},{s,t} = ∅, Using the enumeration {∅, {s}, {t}, {s, t}} of subsets of {s, t} together with the relationa n + b n = n -1 we obtain: n + b n b n a n 0 a n + b n a n b n 0 The characteristic polynomial of Adj In is χ In (x) = x 2n-4 (x -1) 3 (xn + 1) if x is even, x 2n-3 (x -1) 2 (xn + 1) otherwise.and the generating series of normal sequence of I n -braids isF In (t) = (n -1)t + 1 ((n -1)t -1)(t -1).Proof. From the expression of Adj ′ In given in Proposition 4.4 we obtainχ Adj ′ In (x) = (1x) 2 ((b nx) 2a 2 n ) = (1x) 2 (b n + a nx)(b na nx) = (x -1) 2 (x -(b n + a n ))(x -(b na n ))From the relationsa n + b n = n -1,b na n = 1 if n is even, 0 otherwise.we obtainχ Adj ′ In (x) =

  Definition 1.11. A braid x of BB + n is simple if it belongs to r (S ± n ). We denote by SB n the set of all simple braids. The element ∆ B

	element of BB + n .	n = r(w B n ) is the Garside
	In particular, there are 2 n n! simple braids in BB + n . Simple braids are used to describe the structure of the braid monoid BB + n from the one of the Coxeter group S ± n ≃ W Bn .
	Example 1.12. Using Example 1.7 we have that the simple braids of BB + 2 are
	SB	

  1, k -1]. We start proving (4) using three subcases Case d i+1 > d i + 2: we haveσ(d i ) > σ(d i + 1) < ... < σ(d i+1 -1) < σ(d i+1 ) > σ(d i+1 +1) By definition of sign, the terms ∂ |σ(di+1)| (σ) and ∂ |σ(di+1)| (σ) are equal to 0. Let e be an element of [d i + 2, d i+1 -1]. Then sign |σ(e)| (σ) is 1. By Lemma 3.19, the descent set of del |σ(e)| is Des (σ) d i+1 , since σ(e -1) < σ(e + 1). We conclude this case by remarking that the cardinality of [d

5

  which give the following values for the number of D-braids of rank n and of Garside which gives the following presentation for the Coxeter group W In :W In = s, t s 2 = 1, t 2 = 1 prod(s, t; n) = prod(t, s; n) .

	length d:				
	d b D2 (d) b D3 (d)			b D4 (d)
	0	1	23			191
	1	3	187			9025
	2	5	1169			321791
	3	7	6697		10737025
	4	9 37175		352664255
	5	11 203971 11540908225
	4.2. Braids of type I. For n 2, the Coxeter graph I n is
		Γ In :	s	n	t	,

Proposition 4.4. For n 2, we have

  3 (x -4) (x 2 -25 x + 10) (x 6 -274 x 5 + 9194 x 4 -77096 x 3 + 250605 x 2 -324870 x + 138600) and the generating series F F4 is given byF F4 (t) = 138600 t 6 -187350 t 5 -32055 t 4 + 87970 t 3 -15504 t 2 -876 t -1 (138600 t 6 -324870 t 5 + 250605 t 4 -77096 t 3 + 9194 t 2 -274 t + 1)(t -1).The group W H3 has 120 elements. The characteristic polynomial of Adj H3 isχ H3 (x) = x 114 (x -1) 2 (x 4 -42 x 3 + 229 x 2 -244 x + 72),and the generating series F H3 is given byF H3 (t) = -72 t 4 -196 t 3 + 77 t 2 + 76 t + 1 (72 t 4 -244 t 3 + 229 t 2 -42 t + 1)(t -1).The group W H4 has 14400 elements. The characteristic polynomial of Adj H4 isχ H4 (x) = x 14390 (x -1)2 (x 8 -3436 x 7 + 565470 x 6 -11284400 x 5 + 81322353 x 4 -246756500 x 3 + 305430848 x 2 -157717504 x + 27929088), and the generating series F H4 (t) = H4 (t) = 27929088 t 8 -147220480 t 7 + 247258432 t 6 -138197780 t 5 + 465433 t 4 + 10247814 t 3 -1205944 t 2 -10962 t -1, D H4 (t) = 27929088 t 8 -157717504 t 7 + 305430848 t 6 -246756500 t 5 + 81322353 t 4 -11284400 t 3 + 565470 t 2 -3436 t + 1. The group W E6 has 51840 elements. The characteristic polynomial of Adj E6 is χ E6 (x) =x 51823 (x -1) 2 (x 15 -5454 x 14 + 3391893 x 13 -424089882 x 12 + 19590731031 x 11 -417118001254 x 10 + 4673188683575 x 9 -29907005656510 x 8

NH 4 (t) DH 4 (t)(t-1) is given by N

and the generating series F E6 (t) = NE 6 (t) DE 6 (t)(t-1) is given by N E6 (t) =2328480000000 t 15 -19422916800000 t The characteristic polynomial and the generating series for braids of type E 7 are available at http://www.lmpa.univ-littoral.fr/ ~fromentin/combi.html.