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Abstract. Among the many possible ways to study the right tail of a real-valued random

variable, a particularly general one is given by considering the family of its Wang distortion risk

measures. This class of risk measures encompasses various interesting indicators, such as the widely

used Value-at-Risk and Tail Value-at-Risk, which are especially popular in actuarial science, for

instance. In this paper, we first build simple extreme analogues of Wang distortion risk measures

and we show how this makes it possible to consider many standard measures of extreme risk, in-

cluding the usual extreme Value-at-Risk or Tail-Value-at-Risk, as well as the recently introduced

extreme Conditional Tail Moment, in a unified framework. We then introduce adapted estimators

when the random variable of interest has a heavy-tailed distribution and we prove their asymptotic

normality. The finite sample performance of our estimators is assessed on a simulation study and

we showcase our techniques on two sets of real data.

AMS Subject Classifications: 62G05, 62G30, 62G30, 62G32.

Keywords: asymptotic normality, conditional tail moment, distortion risk measure, extreme-

value statistics, heavy-tailed distribution.

1 Introduction

Understanding the extremes of a random phenomenon is a major question in various areas of sta-

tistical application. The first motivating problem for extreme value theory is arguably to determine
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how high the dykes surrounding the areas below sea level in the Netherlands should be so as to

protect these zones from flood risk in case of extreme storms affecting Northern Europe, see de Haan

and Ferreira (2006). Further climate-related examples are the estimation of extreme rainfall at a

given location (Koutsoyiannis, 2004), the estimation of extreme daily wind speeds (Beirlant et al.,

1996) or the modeling of large forest fires (Alvarado et al., 1998). Another stimulating topic comes

from the fact that extreme phenomena may have strong adverse effects on financial institutions or

insurance companies, and the investigation of those effects on financial returns makes up a large

part of the recent extreme value literature. Examples of such studies include the analysis of extreme

log-returns of financial time series (Drees, 2003) or the study of extreme risks related to large losses

for an insurance company (Rootzén and Tajvidi, 1997). A further application in actuarial science

is, for insurance companies operating in Europe, the computation of their own solvency capital so as

to fulfill the European Union Solvency II directive requirement that an insurance company should

be able to survive the upcoming calendar year with a probability not less than 0.995.

A commonly encountered problem when analyzing the extremes of a random variable is that the

straightforward empirical estimator of the quantile function is not consistent at extreme levels, that

is, when the true quantile at the chosen level exceeds the range covered by the available data, and

this makes beyond-the-sample estimation impossible. In many of the aforementioned applications,

this issue can actually be bypassed because the problem can be accurately modeled using univariate

heavy-tailed distributions. Roughly speaking, a distribution is said to be heavy-tailed if and only

if its related survival function decays like a power function with negative exponent at infinity; its

so-called tail index is then the parameter which controls its rate of convergence to 0 at infinity. A

heuristic consequence of this is, if q denotes the underlying quantile function:

q(δ) ≈
(
1− β

1− δ

)γ
q(β)

when β, δ are close to 1 and γ is the tail index of the distribution. The quantile function at an

arbitrarily high extreme level can then be consistently deduced from its value at a typically much

smaller level provided γ can be consistently estimated; the estimation of the tail index γ, an excellent

overview of which is given in the recent monograph by de Haan and Ferreira (2006), is therefore a

crucial step to gain understanding of the extremes of a random variable whose distribution is heavy-

tailed. In concrete terms, on an n−sample of data, after a consistent estimator γ̂ of γ has been

computed, the quantile function is first consistently estimated by the empirical quantile function at

an intermediate level βn, i.e. such that n(1− βn) → ∞, and then estimated at an arbitrarily high

extreme level δn by plugging the two aforementioned estimators in the right-hand side of the above

relationship warranted by the heavy-tailed framework. This procedure, suggested by Weissman
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(1978), is arguably the simplest and most popular device as far as extreme quantile estimation is

concerned.

Of course, the estimation of a single extreme quantile, or Value-at-Risk (VaR) as it is known

in the actuarial and financial literature, only gives incomplete information on the extremes of a

random variable. To put it differently, it may well be the case that a light-tailed distribution (e.g.

a Gaussian distribution) and a heavy-tailed distribution share a quantile at some common level,

although they clearly do not have the same behavior in their extremes. Besides, the VaR is not a

coherent risk measure in the sense of Artzner et al. (1999), which is an undesirable feature from

the financial point of view. This is why other quantities, which take into account the whole right

tail of the random variable of interest, were developed and studied. Examples of such indicators

include the Tail Value-at-Risk (TVaR), also called Expected Shortfall, and the Stop-loss Premium

for reinsurance problems; we refer to Embrechts et al. (1997) and McNeil et al. (2005) for the study

of such risk measures in an actuarial or financial context. When the related survival function is

continuous, these measures can be obtained by combining the VaR and a Conditional Tail Moment

(CTM) as introduced by El Methni et al. (2014), which is a general notion of moment of a random

variable in its right tail.

One may then wonder if such risk measures may be encompassed in a single, unified class. An

answer, in our opinion, lies in considering Wang distortion risk measures (DRMs), introduced by

Wang (1996). The aforementioned VaR, TVaR and CTM actually are particular cases of Wang

DRMs, and so are many other interesting risk measures such as the Wang transform (Wang, 2000)

which is very popular in finance, the tail standard deviation premium calculation principle (Furman

and Landsman, 2006) and the newly introduced GlueVaR of Belles-Sampera et al. (2014). The

flexibility of this class is a reason why it has received considerable attention recently, see e.g.

Wirch and Hardy (1999, 2002), Cotter and Dowd (2006) who worked with the particular subclass

of spectral risk measures and Sereda et al. (2010), among others. The focus of our paper is to

show that Wang DRMs can be nicely extended to the study of extreme risk. To be specific, we

show how a simple linear transformation allows one to construct an extreme analogue of a Wang

DRM and we consider its estimation under classical conditions in extreme value theory; because

our estimators are suitable linear functionals of the tail quantile process, our extreme versions of

Wang DRMs can be and are estimated here using the Weissman argument outlined above. Our

method, it appears, provides a unified framework for the study of many frequently used extreme

risk metrics, and we shall underline in particular that the asymptotic properties of our estimators

make it possible to recover several results that have been known for some time in the literature.
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To the best of our knowledge, the only comparable study, albeit with different goals, is Vandewalle

and Beirlant (2006), and we shall highlight the differences between our work and their approach.

The outline of our paper is as follows. We first recall the definition of a Wang DRM in Section 2. In

Section 3, we present a simple way to build extreme analogues of Wang DRMs and we consider their

estimation. Section 4 is devoted to the study of the finite-sample performance of our estimators,

and we showcase our method on real data sets in Section 5. Section 6 concludes the paper with a

discussion of our results. The proofs are deferred to the Appendix.

2 Wang risk measures

Let X be a positive random variable. Wang (1996) introduced a family of risk measures called

distortion risk measures (DRMs) by the concept of a distortion function: a function g : [0, 1] → [0, 1]

is a distortion function if it is nondecreasing with g(0) = 0 and g(1) = 1. For ease of exposition,

distortion functions will also be assumed to be right-continuous, a very mild condition which holds

in all usual examples. The Wang DRM of X with distortion function g is then defined by:

Rg(X) :=

∫ ∞

0

g(1− F (x))dx

where F is the cumulative distribution function (cdf) of X . An alternative, easily interpretable

expression of Rg(X) can actually be found. Denote by q the quantile function of X , namely

q(α) = inf{x ≥ 0 |F (x) ≥ α} for all α ∈ (0, 1). In other words, the function q is the left-continuous

inverse of F . Let moreover m = inf{α ∈ [0, 1] | g(α) > 0} and M = sup{α ∈ [0, 1] | g(α) < 1}.
Assume for the moment that q is continuous on U ∩ (0, 1) with U an open interval containing

[1 −M, 1 −m]; an equivalent assumption is that F is strictly increasing on V ∩ (0,∞) with V an

open interval containing [q(1 −M), q(1 −m)]. Noticing that F (x) = inf{α ∈ (0, 1) | q(α) > x} and

thus F is the right-continuous inverse of q, a classical change-of-variables formula and an integration

by parts then entail that Rg(X), provided it is finite, can be written as a Lebesgue-Stieltjes integral:

Rg(X) =

∫ 1

0

g(α)dq(1 − α) =

∫ 1

0

q(1− α)dg(α).

A Wang DRM can thus be understood as a weighted version of the expectation of the random

variable X . Specific examples include:

• the quantile at level β or VaR(β), standing for the level exceeded on average in 100(1− β)%

of cases, obtained by setting g(x) = I{x ≥ 1− β}, with I{·} denoting the indicator function;

• the Tail Value-at-Risk TVaR(β) in the worst 100(1− β)% of cases, namely the average of all

quantiles exceeding VaR(β), is recovered by taking g(x) = min(x/(1 − β), 1).
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In Table 1 we give further examples of classical DRMs and their distortion functions (see e.g. Wang,

1996, Wirch and Hardy, 1999, Wang, 2000, Cherny and Madan, 2009 and Guegan and Hassani,

2014). Broadly speaking, the class of Wang DRMs allows almost total flexibility as far as the weight

function is considered: in particular, choosing a convex (resp. concave) continuously differentiable

function g results in gradually putting more weight towards small (resp. high) quantiles of X .

Besides, any spectral risk measure of X , namely

Sψ(X) =

∫ 1

0

q(1 − α)ψ(α)dα

where ψ is a non-decreasing probability density function on [0, 1], is also a Wang DRM with the

distortion function g being the antiderivative of ψ. An application of such risk measures is considered

in Cotter and Dowd (2006).

Furthermore, we note that if h : [0,∞) → [0,∞) is a strictly increasing, continuously differentiable

function then the Wang DRM of h(X) with distortion function g is

Rg(h(X)) =

∫ 1

0

h ◦ q(1 − α)dg(α). (1)

Of course, the choice h(x) = x yields standard Wang DRMs of X , but we may recover other types

of risk measures by changing the function h. For instance, the choices g(x) = min(x/(1 − β), 1),

β ∈ (0, 1) and h(x) = xa, with a a positive real number, yield after integrating by parts:

Rg(X
a) = CTMa(β) := E(Xa|X > q(β))

provided F is continuous. This is actually the Conditional Tail Moment (CTM) of order a of the

random variable X as introduced in El Methni et al. (2014). Especially, when F is continuous, the

TVaR coincides with the Conditional Tail Expectation of X . Table 2 gives several examples of risk

measures, such as the Conditional Value-at-Risk, Conditional Tail Variance, or Stop-loss Premium

(SP) which can then be obtained by combining a finite number of CTMs and the VaR; see Furman

and Landsman (2006) and El Methni et al. (2014) for further details.

We close this section by mentioning that in an actuarial context, a DRM is a coherent risk measure

(see Artzner et al., 1999), that is, translation invariant, positive homogeneous, monotonic and

subadditive, if and only if the distortion function g is concave, according to Wirch and Hardy (2002).

Coherency of a risk measure is often thought of as a desirable feature from the actuarial point of

view; in particular, it reflects on the diversification principle which asserts that aggregating two

risks cannot be worse than handling them separately (Artzner et al., 1999). A particular corollary

of the result of Wirch and Hardy (2002) is that while the VaR is not a coherent risk measure, the

TVaR is, for instance, and this has already been noted several times in the recent literature. It
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should be acknowledged nonetheless that the VaR is subadditive (and therefore coherent) in the

right tail under certain conditions, see Dańıelsson et al. (2013). More broadly, the result of Wirch

and Hardy (2002) makes it easy to identify the subclass of coherent Wang DRMs such as the Dual

Power or Proportional Hazard transform risk measure, whose respective practical interpretations

can be found in the actuarial science literature (see e.g. Denuit et al., 2005, pp. 94–95).

The discussion about the relative merits of VaR, distortion risk measures and TVaR is not limited to

coherency: although the popular saying in insurance and finance is that TVaR is more conservative

than VaR, Kou and Peng (2014) argue that TVaR should actually be compared to the median

shortfall (see Kou et al., 2013), just as a mean is usually compared to a median, and in this case the

aforementioned conclusion is no longer necessarily true. Cont et al. (2010) show that VaR is more

robust than TVaR against small departures from the model or from the data, although it might

be less aggregation-robust, see Embrechts et al. (2014). Linton and Xiao (2013) argue that the

inference procedure for the extreme VaR is easier than from the extreme TVaR because it does not

depend on tail heaviness (at least theoretically, for heavy-tailed data). There are concerns related

to the actual practical use of the VaR: for instance, in the Basel II and III accords (see Basel

Committee on Banking Supervision, 2006, 2011) the VaR-based risk measure used to compute

capital requirements for trading books, whose relationship to the 99.9% VaR is studied in Gordy

(2003), has been criticized for being procyclical (see Adrian and Brunnermeier, 2008), or, as Kou

and Peng (2014) point out, for being low in booms and high in crises, which is of course a problem

as far as regulation is concerned. Keppo et al. (2010) even show that the Basel accords capital

requirements may sometimes increase the default probability of a bank, contrary to the regulators’

original aim.

Let us finally mention that yet another property of risk measures, namely elicitability (Gneiting,

2011; Ziegel, 2015), has gained prominence in recent years since it has been argued to allow for

correct forecast performance comparisons. A related concept is consistency, introduced by Davis

(2013). While the VaR is an elicitable (and consistent) risk measure, the TVaR is not; more

generally, it has been shown recently by Kou and Peng (2014) and Wang and Ziegel (2015) that

Wang DRMs different from either the VaR or the simple expectation do not satisfy such a property.

An example of a risk measure that is both coherent and elicitable is the expectile (Newey and Powell,

1987; in a financial context, Kuan et al., 2009) when it is larger than the expectation. Studying the

estimation of extreme expectiles, which to the best of our knowledge cannot be written as a simple

combination of extreme Wang DRMs of X , is beyond the scope of this paper.
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3 Framework

3.1 Extreme versions of Wang risk measures and their estimation

Extreme versions of Wang risk measures may be obtained as follows. Let g be a distortion function

and for every β ∈ (0, 1), consider the function gβ which is defined by:

∀y ∈ [0, 1], gβ(y) := g

(
min

[
1,

y

1− β

])
=





g

(
y

1− β

)
if y ≤ 1− β

1 otherwise.

Such a function, which is deduced from g by a simple piecewise linear transform of its argument,

is thus constant equal to 1 on [1 − β, 1]. Moreover, if g is concave then so is gβ : in other words,

if g gives rise to a coherent Wang DRM, so does gβ. We now consider the Wang DRM of X with

distortion function gβ:

Rg,β(X) :=

∫ ∞

0

gβ(1 − F (x))dx.

Because the inequality F (x) ≥ β is equivalent to x ≥ q(β), it is actually straightforward to obtain

from the definition of gβ that

Rg,β(X) =

∫ ∞

0

g(1− Fβ(x))dx with Fβ(x) := max

[
0,
F (x) − β

1− β

]
. (2)

In the case when q is continuous and strictly increasing in a neighborhood of β, then β = F (q(β))

and

Fβ(x) = max

[
0,
F (x)− F (q(β))

1− q(β)

]
= P(X ≤ x|X > q(β))

which makes the interpretation of the risk measure Rg,β(X) clear: it is the Wang DRM of X given

that it lies above the level q(β). In other words, we have shown the following result:

Proposition 1. Assume that for some t > 0, the function q is continuous and strictly increasing

on [t, 1). Then for all β > t and any strictly increasing and continuously differentiable function h

on (0,∞), it holds that:

Rg,β(h(X)) = Rg(h(Xβ)) with P(Xβ ≤ x) = P(X ≤ x|X > q(β)).

When β ↑ 1, we may then think of this construction as a way to consider Wang DRMs of the

extremes of X .

Choosing h(x) = x makes it possible to recover some simple and widely used extreme risk measures:

• the usual extreme VaR is obtained by setting g(x) = I{x = 1},

• an extreme version of the TVaR is obtained by taking g(x) = x,
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and the same idea yields extreme analogues of the various risk measures shown in Table 1. Fur-

thermore, as highlighted in Section 1, choosing g(x) = x and h(x) = xa, a > 0, yields an extreme

version of a CTM of X , and therefore extreme versions of quantities such as those introduced in

Table 2 can be studied.

It is worth noting at this point that the construction presented in this paper is different from that

of Vandewalle and Beirlant (2006). In the latter paper, the authors look at the asymptotic behavior

of the quantity ∫ ∞

R

g(1− F (x))dx =

∫ ∞

0

g(1− F (x+R))dx

as R → ∞. This amounts to considering the Wang DRM Rg of (X−R)I{X > R} = max(X−R, 0)
for large R. Their construction is thus adapted to the examination of excess-of-loss reinsurance

policies for extreme losses, a prominent example of risk premium being then obtained by the Stop-

loss Premium; their work is, by the way, restricted to the case of a concave function g satisfying

a regular variation condition in a neighborhood of 0. It therefore excludes the simple VaR risk

measure, for instance, as well as the Conditional-Value-at-Risk (CVaR) and the GlueVaR of Belles-

Sampera et al. (2014). Our idea is rather to consider a conditional construction in the sense that

we look at the Wang DRMs of X given that it lies above a high level, with conditions as weak as

possible on the function g, in an effort to be able to examine the extremes of X in as unified a way

as possible.

3.2 Estimation using an asymptotic equivalent of a Wang DRM

We now give a first idea to estimate this type of extreme risk measure. Let (X1, . . . , Xn) be a sample

of independent and identically distributed copies of a random variable X having cdf F , and let (βn)

be a nondecreasing sequence of real numbers belonging to (0, 1), which converges to 1. Assume for

the time being that X is Pareto distributed, that is

∀x > 1, P(X ≤ x) = 1− x−1/γ

where γ > 0 is the so-called tail index of X . This is, as we shall recall in a short while, the simplest

example of a heavy-tailed distribution. In this case, the quantile function of X is q(α) = (1−α)−γ

for all α ∈ (0, 1). In particular, q is continuous and strictly increasing on (0, 1) so that using (1) in
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Section 3.1 and a simple change of variables, we get:

Rg,βn
(h(X)) =

∫ 1

0

h ◦ q(1− α)dgβn
(α) =

∫ 1

0

h ◦ q(1 − (1− βn)s)dg(s)

=

∫ 1

0

h((1− βn)
−γs−γ)dg(s)

=

∫ 1

0

h(q(βn)s
−γ)dg(s). (3)

In this case, an estimator of Rg,βn
(h(X)) would then be obtained by plugging estimators of q(βn)

and γ in the right-hand side of (3).

Of course, in general, a strong relationship such as (3) cannot be expected to hold, but it shall

stay true to some extent when X has a heavy-tailed distribution, the rigorous definition of which

we recall now. A function f is said to be regularly varying at infinity with index b ∈ R if f is

nonnegative and for any x > 0, f(tx)/f(t) → xb as t → ∞; the distribution of X is then said to

be heavy-tailed when 1 − F is regularly varying with index −1/γ < 0, the parameter γ being the

so-called tail index of the cdf F . This condition, which is a usual restriction in extreme value theory

(see de Haan and Ferreira, 2006), essentially says that 1−F (x) is in some sense close to x−1/γ when

x is large. In the sequel, we therefore assume that X is heavy-tailed. We also suppose that the

quantile function q of X is continuous and strictly increasing in a neighborhood of infinity, which

shall make possible the use of (1) for n large enough.

Finally, we assume that the function h is a positive power of x: h(x) = xa, where a > 0. This choice

allows us to consider estimators of a large class of risk measures of X , including the aforementioned

CTM. In this case (see Lemma 3 in the Appendix), it holds that

Rg,βn
(Xa) = [q(βn)]

a

∫ 1

0

s−aγdg(s)(1 + o(1)) as n→ ∞

provided
∫ 1

0
s−aγ−ηdg(s) <∞ for some η > 0. This suggests that the above idea for the construction

of the estimator can still be used provided n is large enough. Specifically, if F̂n denotes the empirical

cdf related to this sample and q̂n denotes the empirical quantile function:

F̂n(x) =
1

n

n∑

i=1

I{Xi ≤ x} and q̂n(α) = inf{t ∈ R | F̂n(t) ≥ α} = X⌈nα⌉,n

in which X1,n ≤ · · · ≤ Xn,n are the order statistics of the sample (X1, . . . , Xn) and ⌈·⌉ is the ceiling
function, we set

R̂AEg,βn
(Xa) := Xa

⌈nβn⌉,n

∫ 1

0

s−aγ̂ndg(s) (4)

where γ̂n is any consistent estimator of γ. This estimator shall be called the AE estimator in what

follows; notice that the integrability condition
∫ 1

0
s−aγ−ηdg(s) < ∞, which should be thought of
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as a condition that guarantees the existence of the considered Wang DRM, makes the estimator

introduced here well-defined with probability arbitrarily large when n is large enough because of the

consistency of γ̂n. A related but different idea is used by Vandewalle and Beirlant (2006), although

they work with the expression linking the Wang DRM with the survival function 1 − F , which is

the reason why it is assumed there that g satisfies a regular variation property in a neighborhood of

0, and they finish their construction by plugging in an estimator of small exceedance probabilities

and an external estimator of γ.

An appealing feature of the AE estimator is that it is easy to compute in many cases:

• in the case of the Conditional Tail moment of order a, i.e. g(x) = x, the estimator reads

R̂AEg,βn
(Xa) = Xa

⌈nβn⌉,n

∫ 1

0

s−aγ̂nds =
Xa

⌈nβn⌉,n

1− aγ̂n

when aγ̂n < 1. In particular, this provides an estimator different from the sample average

estimator of El Methni et al. (2014);

• in the case of the Dual Power risk measure, i.e. g(x) = 1 − (1 − x)1/α where 0 < α < 1 and

a = 1, then when r := 1/α is an integer, the estimator is

R̂AEg,βn
(X) = X⌈nβn⌉,n

∫ 1

0

rs−γ̂n(1− s)r−1ds =
r!Γ(1 − γ̂n)

Γ(1− γ̂n + r)
X⌈nβn⌉,n

provided γ̂n < 1. Here Γ is Euler’s Gamma function, namely Γ(x) =
∫∞

0
tx−1e−tdt;

• in the case of the Proportional Hazard transform, i.e. g(x) = xα where 0 < α < 1 and a = 1,

the estimator is

R̂AEg,βn
(X) = X⌈nβn⌉,n

∫ 1

0

αsα−γ̂n−1ds =
αX⌈nβn⌉,n

α− γ̂n

provided γ̂n < α.

The estimator R̂AEg,βn
(Xa) does however require an external estimate of γ, and this should not be

surprising because even in the simple Pareto case, estimating Rg,βn
(Xa) requires in general more

information about the tail of X than the knowledge of the single quantile q(βn). In a nutshell, we

use the fact that the tail behavior of X is essentially known if a high quantile and the tail index

can be consistently estimated simultaneously.

In order to examine the asymptotic properties of our estimator and precisely its asymptotic nor-

mality, it is necessary to compute the order of magnitude of its asymptotic bias. To do so, it

is convenient to use an assumption on the left-continuous inverse U of 1/(1 − F ), defined by

U(t) = inf{x ∈ R | 1/(1 − F (x)) ≥ t} = q(1 − t−1). Specifically, we assume that U is regularly
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varying with index γ and satisfies the following second-order condition (see de Haan and Ferreira,

2006):

Condition C2(γ, ρ, A): for any x > 0, we have

lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ

xρ − 1

ρ

with γ > 0, ρ ≤ 0 and A is a Borel measurable function which converges to 0 and has constant sign.

When ρ = 0, the right-hand side is to be read as xγ log x.

We highlight that in condition C2(γ, ρ, A), the function |A| is necessarily regularly varying at infinity

with index ρ (see Theorem 2.3.3 in de Haan and Ferreira, 2006). Such an assumption, which controls

the rate of convergence of the ratio U(tx)/U(t) to xγ as t→ ∞, is classical when studying the rate

of convergence of an estimator of a parameter describing the extremes of a random variable. All

standard examples of heavy-tailed distributions in extreme-value theory satisfy this condition (see

e.g. the examples pp.61–62 in de Haan and Ferreira, 2006).

The asymptotic properties of our estimator can be stated in this framework, as follows:

Theorem 1. Assume that U is regularly varying with index γ > 0. Assume further that βn → 1

and n(1− βn) → ∞.

1. Pick a distortion function g and a > 0. If there is some η > 0 such that:

∫ 1

0

s−aγ−ηdg(s) <∞

and γ̂n is a consistent estimator of γ, then

R̂AEg,βn
(Xa)

Rg,βn
(Xa)

− 1
P−→ 0 as n→ ∞.

2. Assume moreover that U satisfies condition C2(γ, ρ, A) and
√
n(1− βn)A((1− βn)

−1) → λ ∈
R. Pick a d−tuple of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞,

then, provided we have the joint convergence:

√
n(1− βn)

(
γ̂n − γ,

X⌈nβn⌉,n

q(βn)
− 1

)
d−→ (Γ,Θ)

it holds that the random vector

√
n(1− βn)

(
R̂AEgj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

11



asymptotically has the joint distribution of


aj


−λ

∫ 1

0

s−ajγ
s−ρ − 1

ρ
dgj(s)

∫ 1

0

s−ajγdgj(s)

+

∫ 1

0

s−ajγ log(1/s)dgj(s)

∫ 1

0

s−ajγdgj(s)

Γ + Θ







1≤j≤d

.

It should be noted that Theorem 1 is obtained under the restriction n(1− βn) → ∞. Thus, it only

ensures that the estimator consistently estimates so-called intermediate (i.e. not “too extreme”)

Wang DRMs, in the sense that the order of the smallest quantile that it takes into account must

converge sufficiently slowly to 1. In other words, our first estimator should only be used to estimate

those risk measures above a lower threshold q(βn) that belongs to the range covered by the available

data. This restriction, which is undesirable from the practical point of view but standard nonethe-

less, will be lifted in Section 3.4 by the introduction of an estimator adapted to the extreme-value

framework.

Another condition of this result, specific to the asymptotic normality statement, is that (γ̂n, X⌈nβn⌉,n)

should fulfill a joint convergence property; this is hardly a restrictive requirement in practice. For

instance, if γ̂n = γ̂βn
is the Hill estimator (Hill, 1975):

γ̂βn
= Hn(⌈n(1 − βn)⌉) with Hn(k) =

1

k

k∑

i=1

log (Xn−i+1,n)− log (Xn−k,n) , (5)

then (see Theorem 2.4.8 and the proof of Theorem 3.2.5 in de Haan and Ferreira, 2006) we have the

following joint convergence in distribution, under the bias condition
√
n(1− βn)A((1−βn)−1) → λ:

√
n(1− βn)

(
γ̂n − γ,

X⌈nβn⌉,n

q(βn)
− 1

)
d−→
(
γ

∫ 1

0

[s−1W (s)−W (1)]ds+
λ

1− ρ
, γW (1)

)

where W is a standard Brownian motion, and therefore the right-hand side is a (possibly noncen-

tered) Gaussian random pair. Similar joint convergence results can be found for other estimators

of γ, such as the Pickands estimator (1975), the maximum likelihood estimator (Smith, 1987 and

Drees et al., 2004) and probability-weighted moment estimators (Hosking et al., 1985, Diebolt et

al., 2007); see e.g. Sections 3 and 4 of de Haan and Ferreira (2006).

3.3 Estimation using a functional plug-in estimator

The simple estimator of Section 3.2 is not devoid of drawbacks though. For a start, the fact that

it requires a plugged-in consistent estimator γ̂n of γ satisfying a certain integrability condition can

indeed be a problem in small samples. When estimating an extreme Conditional Tail Expectation,

for instance, the original requirement is γ < 1, and what makes the estimator well-defined on a

given sample is the condition γ̂n < 1. If the true value of γ is close to but below 1, the condition

12



γ̂n < 1, while true with probability arbitrarily close to 1 as n grows to infinity, may fail to hold

in a sizeable proportion of samples especially for small n. Even if the integrability requirement is

fulfilled, if on a given sample the estimate of γ is a poor one then the resulting estimate of the Wang

DRM is almost guaranteed to be a poor one as well even for moderate βn. In theoretical terms,

this means that the two successive approximations warranted by the heavy tails assumption on F ,

q(1− (1 − βn)s) ≈ q(βn)s
−γ ≈ X⌈nβn⌉,ns

−γ̂n ,

which are at the heart of the construction of the AE estimator, may both introduce substantial

errors.

Our idea now is to introduce an alternative estimator obtained by making a single approximation,

which we can expect to perform better than the AE estimator. Recall that

Rg,βn
(h(X)) =

∫ 1

0

h ◦ q(1− (1 − βn)s)dg(s).

We consider the statistic obtained by replacing the function s 7→ q(1 − (1 − βn)s) by its empirical

counterpart s 7→ q̂n(1− (1−βn)s) = X⌈n(1−(1−βn)s)⌉,n. This yields the functional plug-in estimator

R̂PLg,βn
(h(X)) =

∫ 1

0

h ◦ q̂n(1− (1− βn)s)dg(s) (6)

which we call the PL estimator. Contrary to the AE estimator, the PL estimator is well-defined

and finite with probability 1, and does not require an external estimator of γ. Its expression is a

bit more involved though; in the case when n(1 − βn) is actually a positive integer, which is fairly

common in practice (see Sections 4 and 5), the PL estimator can actually be conveniently rewritten

as an L-statistic, namely:

R̂PLg,βn
(h(X)) =

n(1−βn)∑

i=1

h(Xn−i+1,n)

∫ 1

0

I{xi−1,n(βn) ≤ s < xi,n(βn)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
with xi,n(βn) =

i

n(1− βn)

or equivalently

R̂PLg,βn
(h(X)) =

n(1−βn)∑

i=1

h(Xn−i+1,n)


 lim
s→xi,n(βn)
s<xi,n(βn)

g(s)− lim
s→xi−1,n(βn)
s<xi−1,n(βn)

g(s)




+ h(Xnβn,n)

[
1− lim

s→1
s<1

g(s)

]
.

If g is further assumed to be continuous on [0, 1], a summation by parts shows that this L-statistic

takes the simpler form

R̂PLg,βn
(h(X)) = h(Xnβn+1,n) +

n(1−βn)−1∑

i=1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)− h(Xn−i,n)].

13



Our aim is now to examine the asymptotic properties of the PL estimator. A technical complication

comes from the fact that the level βn is assumed to converge to 1 as n goes to infinity, and therefore

our study is essentially different from what can be done for fixed β, see for example Jones and Zitikis

(2003). While the above expressions of the estimator as an L-statistic are undoubtedly of practical

value, we shall actually use in our proofs the basic expression (6) of our estimator as an integral of

the tail quantile process s 7→ q̂n(1− (1−βn)s) and utilize the powerful distributional approximation

of this process stated in Theorem 2.1 of Drees (1998), relating it to a standard Brownian motion

up to a bias term.

Our first result on the PL estimator is the following:

Theorem 2. Assume that U satisfies condition C2(γ, ρ, A). Assume further that βn → 1, n(1 −
βn) → ∞ and

√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick a d−tuple of distortion functions

(g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞,

then:
√
n(1− βn)

(
R̂PLgj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V being the d× d matrix whose (i, j)−th entry is

Vi,j = aiajγ
2

∫
[0,1]2

min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t)
∫ 1

0
s−aiγdgi(s)

∫ 1

0
t−ajγdgj(t)

.

This asymptotic normality result, unsurprisingly, is also restricted to the case n(1 − βn) → ∞, as

Theorem 1 was. We may draw an interesting consequence from Theorem 2 though: it is compelling

that the PL estimator is, for g(x) = x and h(x) = xa, identical to the sample average estimator

introduced in El Methni et al. (2014), so one may wonder if Theorem 2 agrees with their result.

More broadly, for b ∈ R, let us consider the class of functions

Eb([0, 1]) :=
{
g : [0, 1] → R | g continuously differentiable on (0, 1) and lim sup

s→0
s−b|g′(s)| <∞

}
.

Roughly speaking, the classes Eb, b > −1, can be considered as the spaces of those functions g which

are continuously differentiable on (0, 1) and whose first derivative behaves at most like a power of s in

a neighborhood of 0. Especially, any polynomial function belongs to E0([0, 1]), and the Proportional

Hazard (Wang, 1996) distortion function g(s) = sα, α ∈ (0, 1) belongs to Eα−1([0, 1]). For a given

distortion function g, the convergence condition
∫ 1

0
s−aγ−1/2−ηdg(s) <∞ being determined by the

behavior of g in a neighborhood of 0, it is obvious that checking the condition g ∈ Eb([0, 1]) (for

some b) enables one to rewrite such an integrability hypothesis in a simpler fashion. Our next result

focuses on this case:
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Corollary 1. Assume that U satisfies condition C2(γ, ρ, A). Assume further that βn → 1, n(1 −
βn) → ∞ and

√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick a d−tuple of distortion functions

(g1, . . . , gd) and a1, . . . , ad > 0. Assume there are b1, . . . , bd ∈ R such that for all j ∈ {1, . . . , d}, we
have gj ∈ Ebj ([0, 1]). If

∀j ∈ {1, . . . , d}, γ < 2bj + 1

2aj

then:
√
n(1− βn)

(
R̂PLgj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V as in Theorem 2.

In particular, the condition on γ we get for the asymptotic normality of the CTM of order a,

obtained with g(x) = x and thus g ∈ E0([0, 1]), is γ < 1/2a, which is the condition obtained by El

Methni et al. (2014). Since moreover

∀a1, a2 > 0,

∫

[0,1]2
min(s, t)s−a1γ−1t−a2γ−1ds dt =

2− (a1 + a2)γ

(1− a1γ)(1− a2γ)(1− (a1 + a2)γ)

when γ < (2max(a1, a2))
−1, one may also readily check that the asymptotic variance is the same

as in Theorem 1 there. We highlight however that the assumption C2(γ, ρ, A) is somewhat stronger

than the (conditional) assumptions made on F by El Methni et al. (2014). This is because the

proofs of Theorem 2 and Corollary 1 are also designed to address the case of functions gj that may

be much more difficult to handle than the simple identity function, which is the only case addressed

by Theorem 1 of El Methni et al. (2014).

Just like the AE estimator, the PL estimator is only consistent when (βn) is an intermediate

sequence. Our purpose is now to remove this restriction by showing how our extreme-value frame-

work and the expression of our estimators make it possible to use the extrapolation methodology

of Weissman (1978) in order to estimate proper extreme Wang DRMs.

3.4 Estimating extreme risk measures of arbitrary order

In order to design a consistent estimator of an arbitrarily extreme risk measure, we remark that for

any s ∈ (0, 1) and a > 0 we have:

[q(1− (1− δn)s)]
a =

(
1− βn
1− δn

)aγ
[q(1 − (1− βn)s)]

a(1 + o(1))

as n → ∞, as a consequence of the regular variation property of U and provided that (βn) is a

sequence converging to 1 such that (1− δn)/(1− βn) converges to a positive limit. In other words,

the value of the quantile function at an arbitrarily extreme level is essentially its value at a much
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smaller level up to an extrapolation factor that depends on the unknown tail index γ. Integrating

the above relationship with respect to the distortion measure dg therefore suggests that:

Rg,δn(X
a) =

(
1− βn
1− δn

)aγ
Rg,βn

(Xa)(1 + o(1)),

see Lemma 5 for a stronger and rigorous statement. A way to design an adapted estimator of the

extreme risk measure Rg,δn(X
a), when n(1−δn) → c <∞, is thus to take a sequence (βn) such that

n(1− βn) → ∞ and to plug the AE estimator and a consistent estimator γ̂n of γ in the right-hand

side of the above equality: this yields the extrapolated AE estimator

R̂W,AEg,δn
(Xa;βn) :=

(
1− βn
1− δn

)aγ̂n
R̂AEg,βn

(Xa).

This principle can also be applied to the PL estimator, to obtain an extrapolated PL estimator:

R̂W,PLg,δn
(Xa;βn) :=

(
1− βn
1− δn

)aγ̂n
R̂PLg,βn

(Xa).

Both estimators can actually be seen as particular Weissman-type estimators of Rg,δn(X
a) (see

Weissman, 1978):

R̂Wg,δn(X
a;βn) :=

(
1− βn
1− δn

)aγ̂n
R̂g,βn

(Xa)

where R̂g,βn
(Xa) is some relatively consistent estimator of the intermediate Wang DRM Rg,βn

(Xa);

in fact, in both cases, we exactly recover Weissman’s estimator of an extreme quantile by setting

a = 1 and g(x) = 0 if x < 1. Besides, taking g(x) = x, the extrapolated PL estimator becomes the

estimator of the extreme CTM of X introduced in El Methni et al. (2014). All the aforementioned

estimators are based on the same idea: to estimate the quantity of interest at an arbitrarily extreme

level, this quantity is estimated first at an intermediate level where an estimator is known to be

consistent, and then multiplied by an extrapolation factor which depends on a consistent, external

estimator of the tail index γ.

Our second main result examines the asymptotic distribution of this type of estimators.

Theorem 3. Assume that U satisfies condition C2(γ, ρ, A), with ρ < 0. Assume further that

βn, δn → 1, n(1 − βn) → ∞, (1− δn)/(1− βn) → 0 and
√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick

a d−tuple of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞

and
√
n(1− βn)(γ̂n − γ)

d−→ ξ then provided

∀j ∈ {1, . . . , d},
√
n(1− βn)

(
R̂gj ,βn

(Xaj)

Rgj ,βn
(Xaj)

− 1

)
= OP(1)
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we have that

√
n(1− βn)

log([1 − βn]/[1− δn])

(
R̂Wgj ,δn(X

aj ;βn)

Rgj ,δn(X
aj )

− 1

)

1≤j≤d

d−→




a1ξ
...

adξ


 .

Again, in the particular case d = 1, a = 1 and g(x) = 0 if x < 1, we recover the asymptotic result

about Weissman’s estimator, see Theorem 4.3.8 in de Haan and Ferreira (2006); for g(x) = x and

d = 1, we recover a result similar to Theorem 2 of El Methni et al. (2014) if the intermediate

estimator is the PL estimator. As far as practical situations are concerned, the estimation of the

parameter γ is of course a central question, not least because the asymptotic distribution of our

Weissman-type estimators is exactly determined by the estimator of γ which is used. Classical tail

index estimators such as those mentioned at the end of Section 3.2 are computed using a number

k = k(n) → ∞ of order statistics of the sample (with k/n→ 0) and are
√
k−asymptotically normal

under conditions akin to ours. It is then convenient to set k = ⌈n(1 − βn)⌉, which ensures that

the estimator of γ converges at the required rate
√
n(1− βn). The choice of the intermediate level

βn, which is crucial, is a difficult problem however, and we discuss a possible selection rule in our

simulation study below.

4 Simulation study

The finite-sample performance of our estimators is illustrated on the following simulation study,

where we consider a couple of classical heavy-tailed distributions and three different distortion

functions g. The distributions studied are:

• the Fréchet distribution: F (x) = exp(−x−1/γ), x > 0;

• the Burr distribution: F (x) = 1− (1 + x−ρ/γ)1/ρ, x > 0 (here ρ ≤ 0).

Both of these distributions have extreme value index γ and their respective second-order parameters

are −1 and ρ, see e.g. Beirlant et al. (2004). We consider the following distortion functions:

• the Conditional Tail Expectation (CTE) function g(x) = x which weights all quantiles equally;

• the Dual Power (DP) function g(x) = 1− (1−x)1/α with α ∈ (0, 1), which gives higher weight

to large quantiles. When r := 1/α is a positive integer, the related DRM is the expectation

of max(X1, . . . , Xr) for independent copies X1, . . . , Xr of X ;

• the Proportional Hazard (PH) transform function g(x) = xα with α ∈ (0, 1), which gives

higher and unbounded weight to large quantiles in the sense that g′(s) ↑ ∞ as s ↓ 0.
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By Theorem 1, the AE estimator is consistent when γ < 1 for either of the two first distortion

functions, and for γ < α when the Proportional Hazard transform is considered. By contrast,

Theorems 2 and 3 ensure that the PL estimator shall be valid for γ < 1/2 for either of the two first

distortion functions, and when γ < α− 1/2 for the Proportional Hazard transform. In some sense,

a suitable choice of α in the PH transform case will allow us to check if the PL technique is robust

to a violation of the integrability condition of Theorems 2 and 3.

Our estimators being based on a preliminary estimation at level βn where (βn) is some intermediate

sequence, we first discuss the choice of this level. This step is crucial: choosing βn too close to

1 increases the variance of the estimator dramatically, while choosing βn too far from 1 results in

biased estimates. There has been a great amount of research carried out recently on this choice:

an excellent overview of possible techniques, including bootstrap methods, Pareto quantile plots or

procedures based on the analysis of finite-sample bias, is given in Section 5.4 of Gomes and Guillou

(2015). In many practical cases though, the analysis of a data set from the point of view of extremes

starts by drawing a plot of one or several tail index estimators, and then by selecting βn in a region

contained in the extremes of the sample where the estimation is “stable”. Our purpose here is to

suggest an automatic such choice. We work with the popular Hill estimator (Hill, 1975), see (5),

which we shall also use to estimate the extreme value index γ. Our idea is to detect the last stability

region in the Hill plot β 7→ γ̂β ; choosing β in this region most often realizes a decent bias-variance

trade-off. Specifically:

• choose β0 > 0 and a window parameter h > 1/n;

• for β0 < β < 1− h, let I(β, h) = [β, β + h] and compute the standard deviation σ(β, h) of the

set of estimates {γ̂b, b ∈ I(β, h)};

• if β 7→ σ(β, h) is monotonic, let βlm be β0 if it is increasing and 1− h if it is decreasing;

• otherwise, denote by βlm the last value of β such that σ(β, h) is locally minimal and its value

is less than the average value of the function β 7→ σ(β, h);

• choose β∗ such that γ̂β∗ is the median of {γ̂b, b ∈ I(βlm, h)}.

This procedure is somewhat related to others in the extreme value literature (see e.g. Resnick and

Stărică, 1997, Drees et al., 2000, de Sousa and Michailidis, 2004 and Frahm et al., 2005); closely

related procedures when there is random covariate information can be found in Stupfler (2013),

Gardes and Stupfler (2014) and Stupfler (2016). An illustration of this technique on a simulated

data set is given in Figure 1.
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In each case, we carry out our computations on N = 5000 independent samples of n ∈ {100, 300}
independent copies of X ; our choice procedure is conducted with β0 = 0.5 and h = 0.1. We record

relative mean squared errors (MSEs):

MSE(R̂Wg,δ) =
1

N

N∑

i=1

(
R̂Wg,δ(X ;β∗

i )

Rg,δ(X)
− 1

)2

at δ = 0.99, 0.995 and 0.999 (here β∗
i is the chosen intermediate level for the i−th sample). Our

results are reported in Tables 3–5. It appears on these examples that the PL estimator performs

at least as well as the AE estimator, as expected; besides, the PL estimator performs markedly

better than the AE estimator both for smaller samples or when the condition γ tightens, as can be

seen by comparing the results obtained when n = 100 for the DP(1/3) or PH(2/3) risk measure.

Results deteriorate when γ increases: a possible explanation lies in the fact that the asymptotic

distribution of our estimator is essentially that of γ̂n by Theorem 3, which is a Gaussian distribution

with variance proportional to γ2 (see Theorem 3.2.5 in de Haan and Ferreira, 2006). Results however

improve when |ρ| increases, which was expected since the larger is |ρ|, the smaller is the bias in the

estimation.

Besides, the PL estimator seems to be at least somewhat robust to a violation of the integrability

condition in Theorems 2–3, as can be seen on the example of the PH(2/3) risk measure with

γ = 1/4. When comparing the results for the CTE and PH(2/3) risk measures, it can also be seen

that results deteriorate as the limit of g′(s) as s ↓ 0 increases. This likely comes from the fact

that an increasing such limit amplifies the error made by the empirical quantile function, all the

more so as the latter error itself increases when estimating quantiles whose order is very close to

1; to put it differently, sample quantiles at extreme levels do not estimate the corresponding true

quantiles consistently, which is why the most extreme values in a sample tend not to give a fair

picture of the extremes of the underlying distribution (see e.g. Ghosh and Resnick, 2010). The AE

estimator, meanwhile, could have been thought to provide additional robustness against this defect,

since it only depends on a single intermediate order statistic and the Hill estimator, but it actually

fails to improve upon the PL estimator, most likely because the multiplicative factor (2/3− γ̂n)
−1

makes it severely underperform in some cases, see the opening discussion of Section 3.3. In our

opinion, improving the finite-sample performance of the AE and PL estimators in cases when the

integrability condition is close to be violated is an important question and should be part of our

future work.
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5 Real data application

5.1 Analysis of extreme swings of the results curve of a professional

poker player

We apply our method to the study of the results of high-stakes poker player Tom Dwan. The original

data, extracted from results publicly available at http://www.highstakesdb.com, consists in his

cumulative results on the Internet, aggregated over all poker variants and recorded approximately

every five days from mid-October 2008 to April 2011. In this study, we focus on the sub-parts

of the results curve where it is monotonic, namely, the periods of time when this player is either

consistently winning or losing. The analysis of such timeframes, which may last from a few days to

several weeks, is of great value to poker players since it helps them understand their own behavior

(and possibly that of their opponents as well) during winning and losing streaks.

To this end, we record the values of the local minima and maxima of the results curve and we

construct the differences between two such consecutive points. The data is now made of n = 68

observations, alternatively positive and negative, which represent the aggregated results during

alternative winning and losing streaks. Our specific aim here is to analyze the extreme such streaks

(also called“swings” in poker technical terms). Our data Xt, represented in Figure 2, is the absolute

value of the 68 observations at our disposal, and the analysis will thus focus on the magnitude of

the extreme swings of the results curve, irrespective of whether such a swing corresponds to a win

or a loss. Of course, this leads to a loss of information and it would clearly be interesting to analyze

the winning and losing streaks separately. Note though that the data on winning streaks is made

of only 34 observations; the rate of convergence of our technique being only the square-root of a

fraction of the total sample size, we believe that the separate data sets are too small to carry out an

analysis which is interpretable from the extreme-value point of view. It should also be pointed out

that a statistical analysis did not reveal a significant difference between the tail indices of winning

and losing swings at the 5% error rate.

Since we work on time series data, there are particular concerns about independence and stationarity.

In this particular context, these concerns are warranted because high-stakes poker players are part

of a fairly small community (which may impact the independence assumption) and therefore have

to often change their playing style so as to avoid displaying a distinctive playing pattern that makes

them easily readable by experienced opponents (and this could violate the stationarity assumption).

These hypotheses are checked using the turning point test (see Kendall and Stuart, 1968) contained

in the R package randtests; the p−value of this test is 0.278 and thus we cannot reject the i.i.d.
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assumption basing on this procedure. Since such a test is known to be suitable against cyclicity but

poor against trends (Kendall, 1973), we also run the KPSS test for trend stationarity (Kwiatkowski

et al., 1992) contained in the R package tseries, whose p−value is greater than 0.1 for an estimated

trend parameter of m̂ = −15.236 (estimated via a linear regression) and a lag parameter of 1 in

the Newey-West variance estimator. The stationarity assumption can therefore be assumed to be

reasonable on the detrended time seriesXt−m̂t, which is the sample of data we apply our procedures

on in what follows; this idea is confirmed by the KPSS test for level stationarity, also part of the

tseries package, whose p−value is greater than 0.1. Finally, let us note that the plot of the sample

autocorrelation function (see Figure 3) does not indicate significant correlation in the data.

Our next aim is to estimate the extreme value index γ of the detrended sample. Since the sample

size is fairly small, we use the Hill estimator together with a bias-reduced version inspired by the

work of Peng (1998):

γ̂RBβ (τ) =
1

ρ̂β1
(τ)

γ̂β +

(
1− 1

ρ̂β1
(τ)

)
γ̂Sβ
2γ̂β

,

with

γ̂Sβ =
1

⌈n(1− β)⌉

⌈n(1−β)⌉∑

i=1

(
logXn−i+1,n − logXn−⌈n(1−β)⌉,n

)2

and ρ̂β1
(τ) is the consistent estimator of ρ presented in equation (2.18) of Fraga Alves et al. (2003)

which depends on a different sample fraction 1 − β1 and a tuning parameter τ ≤ 0. By Theorem

2.1 in Peng (1998),

√
n(1− βn)(γ̂

RB
βn

(τ) − γ)
d−→ N

(
0, γ2

1− 2ρ+ 2ρ2

ρ2

)
(7)

provided (βn) is an intermediate sequence. The generalized jackknife estimator γ̂RBβ (τ) is thus

essentially a suitably weighted combination of the Hill estimator and a similar estimator, the co-

efficients being estimates of those which make the asymptotic biases cancel out. We take β1 =

1− ⌈n0.975⌉/n ≈ 0.0882, as recommended by Caeiro et al. (2009).

Some estimates of γ are given in Table 6 and Hill plots are represented in Figure 4. The Hill

estimator seems to drift away fairly quickly due to the finite-sample bias, and we decide to drop

it for our analysis. We then estimate γ by the median of the bias-reduced estimates obtained for

τ ∈ {0, 1/4, 1/2, 3/4, 1}: in each case, the estimate is obtained by a straightforward adaptation

of the selection procedure detailed in Section 4. We get γ̂ = 0.158 for β∗ = 0.912 and τ = 1/2;

especially, ρ is estimated by ρ̂ = −1.130. Finally, Table 8 gives estimates of some risk measures for

the detrended data set and Figure 5 represents the estimates of some extreme quantile lines for the

time series Xt, obtained by re-adding the trend component m̂t to our estimates of the VaR. From

these results, it appears in particular that the maximal value in this data set, corresponding to a

21



losing streak costing more than 6.1 million USD, exceeds our estimate of the 99% quantile. It is

also of the same order of magnitude as our estimates of the CTE and DP(1/2) (resp. DP(1/3)) risk

measure in the 1% highest cases, which corresponds to the average value of the maximum of two

(resp. three) consecutive extreme results. In our opinion, this losing streak can thus be regarded

as an extreme period of loss indeed.

5.2 The Secura Belgian Re actuarial data set on automobile claims

We consider here the Secura Belgian Re data set on automobile claims from 1998 until 2001,

introduced in Beirlant et al. (2004) and further analyzed in Vandewalle and Beirlant (2006) from

the extreme-value perspective. The data set consists of n = 371 claims which were at least as large

as 1.2 million Euros and were corrected for inflation. Our aim here is to revisit this data set and

show how we can recover results essentially equivalent to those of Vandewalle and Beirlant (2006)

although they worked in a different context.

We start as in Section 5.1 by estimating the extreme value index γ. We use again the Hill estimator

and some of its bias-reduced versions: Hill plots are represented in Figure 6, on which we can see

that all our selected estimators give very close estimates. Results using our selection procedure are

given in Table 7. Retaining the median estimate of γ yields γ̂ = 0.261 for β∗ = 0.792 and τ = 1/2,

with ρ̂ = −1.064. Table 9 gives estimates of some risk measures for this data set.

The main example of excess-of-loss reinsurance policy that Vandewalle and Beirlant (2006) consid-

ered, namely the net premium principle, can actually be recovered from these estimates. Indeed,

according to Vandewalle and Beirlant (2006), the risk premium for a reinsurance policy in excess of

a high retention level R is
∫∞

R g(1−F (x))dx and the net premium NP(R) is obtained with g(x) = x,

that is

NP(R) =

∫ ∞

R

[1− F (x)]dx.

Besides, we have from equation 2 that

Rg,β(X) = q(β) +

∫ ∞

q(β)

g

(
1− F (x)

1− β

)
dx.

Setting g(x) = x and rearranging gives the identity

NP(q(β)) = (1− β)(Rg,β(X)−VaR(β))

and in particular, the right-hand side is actually SP(β). We can therefore estimate the net premium

above a high level of retention R, provided that we can match the level R with an estimated quantile

of the underlying distribution i.e. estimate the exceedance probability P(X > R). When R is equal
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to 5 million Euros, as considered in Vandewalle and Beirlant (2006), it can be seen that this

exceedance probability 1 − β is estimated to be approximately 0.02, or in other words that R is

the estimated VaR at the 98% level. Estimates of our risk measures at this level are provided in

Table 9; in particular, the net premium is estimated to be approximately 36,000 Euros, which is in

line with the 41,798 Euros that Vandewalle and Beirlant (2006) obtained, with our estimate being

slightly lower partly because a bias-reduced estimate of γ was used in the present work, whereas

Vandewalle and Beirlant (2006) computed a simple Hill estimate.

6 Discussion

In the application of statistics to insurance and finance, the study of extreme risk is of prime

importance, especially in view of the recent European Union Solvency II directive. A way of studying

risk above a high level, by the means of Wang distortion risk measures (DRMs), is introduced here,

and we believe that a major part of the value of our work lies in the flexibility and generality of

the proposed class of extreme Wang DRMs. In addition to the numerous risk measures that it

contains, such as the (extreme versions of) Value-at-Risk or Conditional Tail Moments, it should be

noted that many other interesting quantities such as the Conditional Value-at-Risk, Conditional Tail

Variance or Stop-loss Premium can be obtained by suitable finite linear combinations of elements

of this class.

We also provide two simple classes of estimators to estimate our concept of extreme Wang DRM

when the underlying distribution is heavy-tailed. Because our asymptotic results about our esti-

mators of extreme Wang DRMs are joint convergence results for finitely many of them, our work

makes it theoretically possible to give a detailed picture of extreme risk in practical situations; the

finite-sample procedure we introduce, which is completely data-driven and has decent performance

when the tail index is moderate, is a step towards achieving this goal in practice. Our methodology

is applied to two sets of real data, one financial and one actuarial. Regarding this latter data set,

our results essentially match earlier results of Vandewalle and Beirlant (2006), although our class of

extreme Wang DRMs and our estimation results can arguably be considered as more general than

theirs, not least because we recover the usual Value-at-Risk as a particular case although they do

not.

Because the proposed class of extreme Wang DRMs allows for almost total freedom in choosing how

to weight quantiles above a high level, it should be highlighted that it allows for yet many other

interesting problems to be tackled. A possibility opened by the present study is to look for instance

at extreme conditional versions of Dual Power (DP) distortion risk measures; when the parameter
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of this risk measure is the inverse of a positive integer r, the DP risk measure is actually the

expectation of the maximum Mr = max(X1, . . . , Xr) of independent copies of the random variable

of interest X above a high threshold. This is of course interesting in financial contexts, as our real

data application to the results curve of high-stakes poker player Tom Dwan shows.

As far as actuarial applications are concerned, a possible situation is the following: when insur-

ance firms have to cover against flood risk, then assuming that r floods occur in a given year, a

catastrophic event occurs when the maximum Mr = max(X1, . . . , Xr) of water levels during these

flood episodes exceeds a given extreme level (for instance, one meter plus the height of the dykes

protecting the shores). If flood heights can reasonably be thought to be independent then such a

problem can be examined as a simple application of the devices developed in this paper. Another

appealing perspective lies in the fact that our class of extreme Wang DRMs contains (if finite linear

combinations are allowed) certain reinsurance objects such as the Stop-loss Premium and therefore,

similarly to what is outlined in our application to the Secura Belgian Re data set, our framework

may also be applied to certain reinsurance calculations.
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Resnick, S., Stărică, C. (1997). Smoothing the Hill estimator. Adv. in Appl. Probab. 29, 271–293.

Rootzén, H., Tajvidi, N. (1997). Extreme value statistics and wind storm losses: a case study.

Scand. Actuar. J. 1, 70–94.

Sereda, E.N., Bronshtein, E.M., Rachev, S.T., Fabozzi, F.J., Sun, W., Stoyanov, S.V. (2010).

Distortion risk measures in portfolio optimization, in Handbook of Portfolio Construction (ed. J.B.

Guerard), 649–673.

Smith, R.L. (1987). Estimating tails of probability distributions. Ann. Statist. 15, 1174–1207.

de Sousa, B., Michailidis, G. (2004). A diagnostic plot for estimating the tail index of a distribution.

J. Comput. Graph. Statist. 13(4), 974–995.

Stupfler, G. (2013). A moment estimator for the conditional extreme-value index. Electron. J.

Stat. 7, 2298–2343.

Stupfler, G. (2016). Estimating the conditional extreme-value index under random right-censoring.

J. Multivariate Anal. 144, 1–24.

Vandewalle, B., Beirlant, J. (2006). On univariate extreme value statistics and the estimation of

reinsurance premiums. Insurance Math. Econom. 38, 441–459.

Wang, S.S. (1996). Premium calculation by transforming the layer premium density. ASTIN Bull.

27



26, 71–92.

Wang, S.S. (2000). A class of distortion operators for pricing financial and insurance risks. Journal

of Risk and Insurance 67(1), 15–36.

Wang, R., Ziegel, J.F. (2015). Elicitable distortion risk measures: A concise proof. Statist. Probab.

Lett. 100, 172–175.

Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observa-

tions. J. Amer. Statist. Assoc. 73, 812–815.

Wirch, J.L., Hardy, M. R. (1999). A synthesis of risk measures for capital adequacy. Insurance

Math. Econom. 25(3), 337–347.

Wirch, J.L., Hardy, M. R. (2002). Distortion risk measures: coherence and stochastic dominance,

in International Congress on Insurance: Mathematics and Economics, Lisbon.

Ziegel, J.F. (2015). Coherence and elicitability. Math. Finance, to appear, available at

http://arxiv.org/pdf/1303.1690v3.pdf.

Appendix

Proofs of the main results

Proof of Theorem 1. Write for any j:

R̂AEgj ,βn
(Xaj )

Rgj ,βn
(Xaj )

=

[
X⌈nβn⌉,n

q(βn)

]a
×
∫ 1

0 s
−aj γ̂ndgj(s)∫ 1

0
s−ajγdgj(s)

× [q(βn)]
a
∫ 1

0 s
−ajγdgj(s)

Rgj ,βn
(Xaj )

.

We start by showing the consistency statement: from Lemma 3(i) and the continuity of the maps

t 7→
∫ 1

0 s
−ajtdgj(s), 1 ≤ j ≤ d at the point γ, we obtain

R̂AEgj ,βn
(Xaj )

Rgj ,βn
(Xaj )

=

[
X⌈nβn⌉,n

q(βn)

]a
(1 + oP(1))

Write now X⌈nβn⌉,n = U(Y⌈nβn⌉,n) where Y has a standard Pareto distribution, and use Corollary

2.2.2 in de Haan and Ferreira (2006) together with the regular variation property of U to get

R̂AEgj ,βn
(Xaj )

Rgj ,βn
(Xaj )

P−→ 1.

To show the asymptotic normality of the estimator, use first the hypothesis on X⌈nβn⌉,n and

Lemma 3(ii) together with a Taylor expansion to get

R̂AEgj ,βn
(Xaj )

Rgj ,βn
(Xaj )

=

∫ 1

0 s
−aj γ̂ndgj(s)∫ 1

0
s−ajγdgj(s)

[
1 +

aj√
n(1− βn)

{
Θ− λ

∫ 1

0
s−ajγ s

−ρ−1
ρ dgj(s)

∫ 1

0
s−ajγdgj(s)

+ oP(1)

}]
. (8)

28



Set then κ(x) = ex − 1− x and notice that

∫ 1

0 s
−aj γ̂ndgj(s)∫ 1

0
s−ajγdgj(s)

= 1 + aj(γ̂n − γ)

∫ 1

0 s
−ajγ log(1/s)dgj(s)∫ 1

0
s−ajγdgj(s)

+

∫ 1

0 s
−ajγκ(aj(γ̂n − γ) log(1/s))dgj(s)∫ 1

0
s−ajγdgj(s)

.

A Taylor inequality for the exponential function at order 2 gives |κ(x)| ≤ x2e|x|/2 and thus

∣∣∣∣
∫ 1

0

s−ajγκ(aj(γ̂n − γ) log(1/s))dgj(s)

∣∣∣∣ ≤
a2j
2
(γ̂n − γ)2

∫ 1

0

s−ajγ log2(1/s)s−aj |γ̂n−γ|dgj(s).

Since
∫ 1

0 s
−ajγ−ηdgj(s) <∞, it follows by the

√
n(1− βn)−consistency of γ̂n that

∣∣∣∣
∫ 1

0

s−ajγκ(aj(γ̂n − γ) log(1/s))dgj(s)

∣∣∣∣ = oP

(
1√

n(1− βn)

)

and thus
∫ 1

0 s
−aj γ̂ndgj(s)∫ 1

0
s−ajγdgj(s)

= 1 +
aj√

n(1− βn)

∫ 1

0 s
−ajγ log(1/s)dgj(s)∫ 1

0
s−ajγdgj(s)

Γ + oP

(
1√

n(1− βn)

)
. (9)

Combining (8) and (9) completes the proof.

Proof of Theorem 2. First, recall that for any t ∈ R we have ⌊t⌋+ ⌈−t⌉ = 0, where ⌊·⌋ denotes

the floor function. Whence the equality

R̂gj ,βn
(Xaj) =

∫ 1

0

X
aj
n−⌊ls⌋,n dgj(s)

with l = l(n) = n(1− βn) → ∞. Clearly:

∀s ∈ [0, 1], Xn−⌊(⌊l⌋+1)s⌋,n ≤ Xn−⌊ls⌋,n ≤ Xn−⌊⌊l⌋s⌋,n,

and thus it is enough to prove that, for any sequence of integers k = k(n) such that k(n)/l(n) → 1,

we have:
√
k

(∫ 1

0 X
aj
n−⌊ks⌋,n dgj(s)

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V ).

For any a > 0, let Ua(x) := [U(x)]a denote the left-continuous inverse of 1/(1 − Fa), where Fa is

the cdf of Xa. By Lemma 2:

Rgj ,βn
(Xaj )

Uaj (n/k)
=

∫ 1

0

Uaj (n/ks)

Uaj(n/k)
dgj(s) →

∫ 1

0

s−ajγdgj(s).

It is therefore enough to prove that:

√
k

(∫ 1

0 X
aj
n−⌊ks⌋,n dgj(s)−Rgj ,βn

(Xaj )

Uaj (n/k)

)

1≤j≤d

d−→ N (0,M) (10)

where M is the d× d matrix with (i, j)−th entry

Mi,j = aiajγ
2

∫

[0,1]2
min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t).
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Pick now j ∈ {1, . . . , d} and write
∫ 1

0

X
aj
n−⌊ks⌋,n dgj(s)−Rgj ,βn

(Xaj ) = ζj,n + ξj,n (11)

with ζj,n =

∫ 1

0

Uaj (n/ks)

(
X
aj
n−⌊ks⌋,n

Uaj (n/k)
− s−ajγ

)
sajγdgj(s)

and ξj,n =

∫ 1

0

Uaj (n/ks)
X
aj
n−⌊ks⌋,n

Uaj (n/k)

(
Uaj (n/k)

Uaj (n/ks)
− sajγ

)
dgj(s).

According to Lemma 4, we have:

√
k

(
ζj,n

Uaj (n/k)

)

1≤j≤n

d−→ N (λC,M) (12)

where C is the column vector whose j−th entry is

Cj = aj

∫ 1

0

s−ρ − 1

ρ
s−ajγdgj(s).

To examine the convergence of ξj,n, we note that according to (18), there exists Borel measur-

able functions Ba1 , . . . , Bad , respectively asymptotically equivalent to a1A1, . . . , adAd and having

constant sign, such that for any ε > 0:

∀s ∈ (0, 1],

∣∣∣∣
1

Baj (n/ks)

(
Uaj (n/k)

Uaj(n/ks)
− sajγ

)
− sajγ

sρ − 1

ρ

∣∣∣∣ ≤ εsajγ+ρ−ε (13)

for n sufficiently large. Consider then the following decomposition of ξj,n:

ξj,n = ξ
(1)
j,n + ξ

(2)
j,n (14)

with

ξ
(1)
j,n =

∫ 1

0

Uaj (n/ks)Baj (n/ks)
X
aj
n−⌊ks⌋,n

Uaj (n/k)
sajγ

sρ − 1

ρ
dgj(s),

ξ
(2)
j,n =

∫ 1

0

Uaj (n/ks)Baj (n/ks)
X
aj
n−⌊ks⌋,n

Uaj (n/k)

(
1

Baj (n/ks)

[
Uaj (n/k)

Uaj(n/ks)
− sajγ

]
− sajγ

sρ − 1

ρ

)
dgj(s).

Writing
X
aj
n−⌊ks⌋,n

Uaj (n/k)
sajγ = 1 +

(
X
aj
n−⌊ks⌋,n

Uaj (n/k)
− s−ajγ

)
sajγ ,

we get by Lemma 4:

ξ
(1)
j,n =

∫ 1

0

Uaj (n/ks)Baj (n/ks)
sρ − 1

ρ
dgj(s) + OP

(
Uaj (n/k)Baj (n/k)√

k

)
.

Applying Lemma 2 to the regularly varying functions t 7→ Uaj (t)|Baj (t)| and t 7→ t−ρUaj (t)|Baj (t)|,
which have respective regular variation indices ajγ + ρ and ajγ, we get

√
k

ξ
(1)
j,n

Uaj(n/k)
=

√
kBaj (n/k)

∫ 1

0

s−ajγ
1− s−ρ

ρ
dgj(s) + oP(1)

= −ajλ
∫ 1

0

s−ajγ
s−ρ − 1

ρ
dgj(s) + oP(1) = −λCj + oP(1) (15)
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since Baj is equivalent to ajA. The quantity ξ
(2)
j,n is controlled by applying inequality (13): for any

ε ∈ (0, η), we have for sufficiently large n that:

|ξ(2)j,n| ≤ ε

∫ 1

0

Uaj (n/ks)|Baj (n/ks)|
X
aj
n−⌊ks⌋,n

Uaj (n/k)
sajγ+ρ−εdgj(s).

The ideas used to control ξ
(1)
j,n yield for n large enough:

√
k

∣∣∣∣∣
ξ
(2)
j,n

Uaj(n/k)

∣∣∣∣∣ ≤ εaj|λ|
∫ 1

0

s−ajγ−εdgj(s) + oP(1) ≤ εaj |λ|
∫ 1

0

s−ajγ−ηdgj(s) + oP(1)

which, since ε is arbitrary, entails

√
k

∣∣∣∣∣
ξ
(2)
j,n

Uaj (n/k)

∣∣∣∣∣ = oP(1). (16)

Combining (14), (15) and (16) entails

√
k

(
ξj,n

Uaj (n/k)

)

1≤j≤d

P−→ −λC. (17)

Combine finally (11), (12) and (17) to obtain (10): the proof is complete.

Proof of Theorem 3. We start by writing, for any j:

R̂Wgj ,δn(X
aj ;βn)

Rgj ,δn(X
aj )

=

(
1− βn
1− δn

)aj(γ̂n−γ) R̂gj ,βn
(Xaj )

Rgj ,βn
(Xaj )

× Rgj ,βn
(Xaj )

Rgj ,δn(X
aj)

(
1− βn
1− δn

)ajγ
.

Recall that for any a > 0, Ua satisfies condition C2(aγ, ρ, aA) by Lemma 1. Taking logarithms and

applying Lemma 5 with Y = Xaj , we get

log

(
R̂Wgj ,δn(X

aj ;βn)

Rgj ,δn(X
aj)

)
= aj(γ̂n − γ) log

(
1− βn
1− δn

)
+ log

(
R̂gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

)
+O

(
1√

n(1− βn)

)
.

The
√
n(1− βn)−relative consistency of R̂gj ,βn

(Xaj) entails

log

(
R̂Wgj ,δn(X

aj ;βn)

Rgj ,δn(X
aj)

)
= aj(γ̂n − γ) log

(
1− βn
1− δn

)
+OP

(
1√

n(1− βn)

)
.

Recall that log([1 − βn]/[1− δn]) → ∞; a Taylor expansion and the hypothesis on γ̂n now make it

clear that √
n(1− βn)

log([1 − βn]/[1− δn])

(
R̂Wgj ,δn(X

aj ;βn)

Rgj ,δn(X
aj )

− 1

)
= ajξ(1 + oP(1))

which completes the proof.
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Preliminary results and their proofs

The first result is a very useful fact which we shall use several times in our proofs.

Lemma 1. Assume that condition C2(γ, ρ, A) is satisfied. Pick a > 0 and define Ua(x) := [U(x)]a.

Then Ua satisfies condition C2(aγ, ρ, aA).

Proof of Lemma 1. Pick x > 0. The function U satisfies condition C2(γ, ρ, A) which is equivalent

to:

U(tx) = U(t)

(
xγ + A(t)

[
xγ(xρ − 1)

ρ
+ o(1)

])
as t→ ∞.

Thus

Ua(tx) = Ua(t)x
aγ

(
1 +A(t)

[
xρ − 1

ρ
+ o(1)

])a
as t→ ∞.

Using a Taylor expansion and rearranging terms, we get:

Ua(tx) = Ua(t)

(
xaγ + aA(t)

[
xaγ(xρ − 1)

ρ
+ o(1)

])
as t→ ∞,

which is the result.

This result yields an important inequality which is actually contained in Theorem 2.3.9 in de Haan

and Ferreira (2006): for any a > 0, one may find a Borel measurable function Ba, asymptotically

equivalent to aA and having constant sign, such that for any ε > 0, there is t0 > 0 such that for

t, tx ≥ t0: ∣∣∣∣
1

Ba(t)

(
Ua(tx)

Ua(t)
− xaγ

)
− xaγ

xρ − 1

ρ

∣∣∣∣ ≤ εxaγ+ρmax(xε, x−ε). (18)

The second preliminary result is a technical lemma on some integrals, which we shall use frequently

in our proofs.

Lemma 2. Let g be a nondecreasing right-continuous function on [0, 1]. Assume that f is a Borel

measurable regularly varying function with index b ∈ R. If for some η > 0:

∫ 1

0

s−b−ηdg(s) <∞,

then for any δ ∈ R such that δ < η and any continuous and bounded function ϕ on (0, 1] we have,

provided (un) is a positive sequence tending to infinity:

∫ 1

0

f(un/s)

f(un)
s−δϕ(s)dg(s) →

∫ 1

0

s−b−δϕ(s)dg(s).

Proof of Lemma 2. Pick δ < η and define ε := (η − δ)/2 > 0, so that δ + ε < η. We have

∣∣∣∣
∫ 1

0

f(un/s)

f(un)
s−δϕ(s)dg(s)−

∫ 1

0

s−b−δϕ(s)dg(s)

∣∣∣∣ ≤
∫ 1

0

sb+ε
∣∣∣∣
f(un/s)

f(un)
− s−b

∣∣∣∣ s−b−δ−ε|ϕ(s)|dg(s).
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Notice that the function f1 : y 7→ y−b−εf(y) is regularly varying with index −ε < 0. By a uniform

convergence result for regularly varying functions (see e.g. Theorem 1.5.2 in Bingham et al., 1987):

sup
0<s≤1

sb+ε
∣∣∣∣
f(un/s)

f(un)
− s−b

∣∣∣∣ = sup
0<s≤1

∣∣∣∣
f1(un/s)

f1(un)
− sε

∣∣∣∣ = sup
t≥1

∣∣∣∣
f1(unt)

f1(un)
− t−ε

∣∣∣∣→ 0.

As a consequence
∣∣∣∣
∫ 1

0

f(un/s)

f(un)
s−δϕ(s)dg(s)−

∫ 1

0

s−b−δϕ(s)dg(s)

∣∣∣∣ = O

(
sup

0<s≤1
sb+ε

∣∣∣∣
f(un/s)

f(un)
− s−b

∣∣∣∣
)

and the right-hand side converges to 0. The proof is complete.

The third lemma gives an asymptotic expansion of a Wang DRM that is in particular the key to

the construction of our first family of estimators.

Lemma 3. Let g be a distortion function on [0, 1] and a > 0. Pick a sequence (βn) such that

βn → 1.

(i) If U is regularly varying with index γ > 0 and there is η > 0 such that
∫ 1

0

s−aγ−ηdg(s) <∞

then we have that:
Rg,βn

(Xa)

Ua([1− βn]−1)
→
∫ 1

0

s−aγdg(s) as n→ ∞.

(ii) If furthermore condition C2(γ, ρ, A) is satisfied and n(1 − βn) → ∞,
√
n(1− βn)A((1 −

βn)
−1) → λ ∈ R then provided

∫ 1

0

s−aγ−1/2−ηdg(s) <∞

for some η > 0, we have that:

Rg,βn
(Xa)

Ua([1− βn]−1)
=

∫ 1

0

s−aγdg(s) +
aλ√

n(1 − βn)

∫ 1

0

s−ρ − 1

ρ
s−aγdg(s) + o

(
1√

n(1− βn)

)
.

Proof of Lemma 3. The first statement is proven by applying Lemma 2:

Rg,βn
(Xa)

Ua([1− βn]−1)
=

∫ 1

0

Ua([1 − βn]
−1/s)

Ua([1− βn]−1)
dg(s) =

∫ 1

0

s−aγdg(s)(1 + o(1)). (19)

To show the second statement, use (18) to get:

Rg,βn
(Xa)

Ua([1 − βn]−1)
−

∫ 1

0

(
1 +Ba([1 − βn]

−1)
s−ρ − 1

ρ

)
s−aγdg(s)

= o

(
Ba([1− βn]

−1)

∫ 1

0

s−aγ−ρ−ηdg(s)

)
.

Rearranging and using the convergence
√
n(1− βn)Ba((1− βn)

−1) → aλ ∈ R, we obtain

Rg,βn
(Xa)

Ua([1− βn]−1)
=

∫ 1

0

s−aγdg(s) +
aλ√

n(1− βn)

∫ 1

0

s−ρ − 1

ρ
s−aγdg(s) + o

(
1√

n(1− βn)

)
(20)

which completes the proof.
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The fourth lemma is the key to the proof of Theorem 2. It examines the asymptotic behavior of

some weighted integrals of the empirical tail quantile process.

Lemma 4. Assume that condition C2(γ, ρ, A) is satisfied. Let a1, . . . , ad > 0, f1, . . . , fd be Borel

measurable regularly varying functions with respective indices bj ≤ ajγ and g1, . . . , gd be distortion

functions. Assume that k = k(n) → ∞, k/n→ 0,
√
kA(n/k) → λ ∈ R and for some η > 0:

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞.

Pick δ1, . . . , δd ∈ R such that δj < (ajγ − bj) + η, and set

Ij,n :=
1

fj(n/k)

∫ 1

0

fj(n/ks)
√
k

(
X
aj
n−⌊ks⌋,n

Uaj(n/k)
− s−ajγ

)
sajγ−δjdgj(s).

Then we have:

(I1,n, . . . , Id,n)
d−→ N (λC,Σ)

with C being the column vector with j−th entry

Cj = aj

∫ 1

0

s−ρ − 1

ρ
s−bj−δjdgj(s)

and Σ being the d× d matrix with (i, j)−th entry

Σi,j = aiajγ
2

∫

[0,1]2
min(s, t)s−bi−δi−1t−bj−δj−1dgi(s)dgj(t).

Proof of Lemma 4. Define ε := min1≤j≤d(η − δj)/2 > 0, so that δj + ε < η for all j, and let

ε′ > 0 be so small that

∀j ∈ {1, . . . , d}, ajγ +
1

2
+
ε

2
− 1− ε′

1 + 2ε′

(
ajγ +

1

2
+ ε

)
< 0. (21)

Set sn = k−(1−ε′)/(1+2ε′). Pick j ∈ {1, . . . , d} and use the triangle inequality to get:
∣∣∣∣∣

1

fj(n/k)

∫ sn

0

fj(n/ks)
√
k

(
X
aj
n−⌊ks⌋,n

Uaj(n/k)
− s−ajγ

)
sajγ−δjdgj(s)

∣∣∣∣∣ ≤ E
(1)
j,n + E

(2)
j,n,

with

E
(1)
j,n =

√
k

X
aj
n,n

Uaj (n/k)

∫ sn

0

fj(n/ks)

fj(n/k)
sajγ−δjdgj(s)

and E
(2)
j,n =

√
k

∫ sn

0

fj(n/ks)

fj(n/k)
s−δjdgj(s).

Since the distribution of X is heavy-tailed it follows from Theorem 1.1.6, Theorem 1.2.1 and Lemma

1.2.9 in de Haan and Ferreira (2006) that Xn,n = OP(U(n)). Thus

E
(1)
j,n = OP

(√
k
Uaj (n)

Uaj(n/k)

∫ sn

0

fj(n/ks)

fj(n/k)
sajγ−δjdgj(s)

)
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Use now Potter bounds for U (see e.g. Theorem 1.5.6 in Bingham et al., 1987) to get

E
(1)
j,n = OP

(
kajγ+1/2+ε/2

∫ sn

0

fj(n/ks)

fj(n/k)
sajγ−δjdgj(s)

)

= OP

(
kajγ+1/2+ε/2sajγn

∫ sn

0

fj(n/ks)

fj(n/k)
s−δjdgj(s)

)
.

Besides, note that
∫ sn

0

fj(n/ks)

fj(n/k)
s−δjdgj(s) ≤ s1/2+εn

∫ sn

0

fj(n/ks)

fj(n/k)
s−1/2−δj−εdgj(s) = o

(
s1/2+εn

)
,

by Lemma 2. Thus

E
(1)
j,n = oP(k

ajγ+1/2+ε/2sajγ+1/2+ε
n ) = oP(1) and E

(2)
j,n = oP(k

1/2+ε/2s1/2+εn ) = oP(1)

by (21) and the fact that sn = k−(1−ε′)/(1+2ε′). From this we deduce that for any j ∈ {1, . . . , d}:

Ij,n =
1

fj(n/k)

∫ 1

sn

fj(n/ks)
√
k

(
X
aj
n−⌊ks⌋,n

Uaj (n/k)
− s−ajγ

)
sajγ−δjdgj(s) + oP(1).

Now, by Theorem 2.4.8 in de Haan and Ferreira (2006), we may find a Borel measurable function A0

which has constant sign and is asymptotically equivalent to A at infinity such that for any ε′ > 0,

we have

sup
0<s≤1

sγ+1/2+ε′
∣∣∣∣
√
k

(
Xn−⌊ks⌋,n

U(n/k)
− s−γ

)
− γs−γ−1Wn(s)−

√
kA0(n/k)s

−γ s
−ρ − 1

ρ

∣∣∣∣
P−→ 0 (22)

where Wn is an appropriate sequence of standard Brownian motions. In other words:

Xn−⌊ks⌋,n

U(n/k)
= s−γ

(
1 +

1√
k
γs−1Wn(s) +A0(n/k)

s−ρ − 1

ρ
+

1√
k
s−1/2−ε′ oP(1)

)

with the oP(1) being uniform in s ∈ (0, 1]. Now for any n, Wn
d
= W where W is a standard

Brownian motion, and the random process W has continuous sample paths and s−1/2+ε′W (s) → 0

almost surely as s → 0. Moreover, for s ∈ [sn, 1], s
−1/2−ε′ ≤ s

−1/2−ε′

n =
√
k1−ε′ = o(

√
k). Finally,

(s−ρ − 1)/ρ is bounded by a constant on [sn, 1] when ρ < 0, and is equal to − log(s) for ρ = 0 and

thus dominated by s−1/2−ε′ in a neighborhood of 0. A Taylor expansion therefore yields:

X
aj
n−⌊ks⌋,n

Uaj(n/k)
= s−ajγ

(
1 +

1√
k
γs−1Wn(s) +A0(n/k)

s−ρ − 1

ρ
+

1√
k
s−1/2−ε′ oP(1)

)aj

= s−ajγ
(
1 +

1√
k
ajγs

−1Wn(s) + ajA0(n/k)
s−ρ − 1

ρ
+

1√
k
s−1/2−ε′ oP(1)

)

where the oP(1) is uniform in s ∈ [sn, 1]. We deduce from this convergence that

Ij,n = ζj,n + ξj,n + oP

(∫ 1

0

fj(n/ks)

fj(n/k)
s−1/2−δj−ε

′

dgj(s)

)
+ oP(1)

with ζj,n = ajγ

∫ 1

0

fj(n/ks)

fj(n/k)
s−1−δjWn(s)dgj(s)

and ξj,n = aj
√
kA0(n/k)

∫ 1

0

fj(n/ks)

fj(n/k)

s−ρ − 1

ρ
s−δjdgj(s).
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By Lemma 2, we obtain

Ij,n = ζj,n + ξj,n + oP(1). (23)

The bias term ξj,n is controlled by applying Lemma 2:

ξj,n = ajλ

∫ 1

0

s−ρ − 1

ρ
s−bj−δjdgj(s) + o(1) → λCj . (24)

Notice now that

(ζ1,n, . . . , ζd,n)
d
=

(
ajγ

∫ 1

0

fj(n/ks)

fj(n/k)
s−1−δjW (s)dgj(s)

)

1≤j≤d

whereW is a standard Brownianmotion. SinceW has continuous sample paths and s−1/2+ε′W (s) →
0 almost surely as s→ 0, we get by Lemma 2 that

(ζ1,n, . . . , ζd,n)
d
=

(
ajγ

∫ 1

0

fj(n/ks)

fj(n/k)
s−1/2−δj−ε

′

(s−1/2+ε′W (s))dgj(s)

)

1≤j≤d

d−→
(
ajγ

∫ 1

0

s−1−bj−δjW (s)dgj(s)

)

1≤j≤d

.

The entries of this random vector are almost surely finite. Let us recall thatW is a centered Gaussian

process with covariance function Cov(W (s),W (t)) = min(s, t); consequently, for all (u1, . . . , ud) ∈
Rd, the random variable

d∑

j=1

ujajγ

∫ 1

0

s−1−bj−δjW (s)dgj(s)

is Gaussian centered and has variance

γ2Var




d∑

j=1

ujaj

∫ 1

0

s−1−bj−δjW (s)dgj(s)


 =

d∑

i,j=1

uiujΣi,j (25)

by Fubini’s theorem. It remains to combine Equations (23), (24) and (25), and to use the Cramér-

Wold theorem to complete the proof.

The fifth and final lemma shall be useful to control the bias term in Theorem 3.

Lemma 5. Assume that Yi, i ≥ 1 are independent random variables with common cdf FY , such

that the left-continuous inverse UY of 1/(1 − FY ) satisfies condition C2(γY , ρY , AY ), with ρY < 0.

Assume further that βn, δn → 1, n(1 − βn) → ∞, (1 − δn)/(1 − βn) → 0 and
√
n(1− βn)AY ((1 −

βn)
−1) → λ ∈ R. Pick a distortion function g. If for some η > 0,

∫ 1

0

s−γY −ηdg(s) <∞,

then

Rg,δn(Y )

Rg,βn
(Y )

(
1− βn
1− δn

)−γY

= 1− λ/ρY√
n(1− βn)

∫ 1

0
s−γY −ρY dg(s)
∫ 1

0 s
−γY dg(s)

+ o

(
1√

n(1− βn)

)
.
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Proof of Lemma 5. Set k1 = k1(n) = n(1 − βn), rn = (1 − βn)/(1 − δn), k2 = k2(n) = k1/rn.

Since for any b ∈ (0, 1),

Rg,b(Y ) =

∫ 1

0

UY ([(1 − b)s]−1)dg(s),

we may write

Rg,δn(Y ) = rγYn Rg,βn
(Y ) + u1,n + u2,n (26)

where

u1,n = rγYn
rρYn − 1

ρY

∫ 1

0

UY (n/k1s)A0(n/k1s)dg(s)

and u2,n =

∫ 1

0

UY (n/k1s)A0(n/k1s)

(
1

A0(n/k1s)

[
UY (n/k2s)

UY (n/k1s)
− rγYn

]
− rγYn

rρYn − 1

ρY

)
dg(s)

with the notation of (22). By Lemma 2 and the convergence
√
k1A0(n/k1) → λ,

√
k1

u1,n
UY (n/k1)

= λrγYn
rρYn − 1

ρY

∫ 1

0

s−γY −ρY dg(s) + o(rγYn )

= − λ

ρY
rγYn

∫ 1

0

s−γY −ρY dg(s) + o(rγYn ) (27)

because rn → ∞ and ρY < 0. The sequence u2,n is controlled by using first inequality (18) and

Lemma 2: for any ε ∈ (0,−ρY ), we have if n is large enough,

√
k1

|u2,n|
UY (n/k1)

≤ εrγY +ρY +ε
n |

√
k1A0(n/k1)|

∫ 1

0

UY (n/k1s)|A0(n/k1s)|
UY (n/k1)|A0(n/k1)|

dg(s)

= ε|λ|rγY +ρY +ε
n

∫ 1

0

s−γY −ρY dg(s) + o(rγY +ρY +ε
n )

= o(rγYn ). (28)

Combining (27) and (28) entails

√
k1

UY (n/k1)
(u1,n + u2,n) = − λ

ρY
rγYn

∫ 1

0

s−γY −ρY dg(s) + o(rγYn ).

Use once more Lemma 2 to get

Rg,βn
(Y )

UY (n/k1)
=

∫ 1

0

UY (n/k1s)

UY (n/k1)
dg(s) →

∫ 1

0

s−γY dg(s),

which yields √
k1

Rg,βn
(Y )

(u1,n + u2,n) = − λ

ρY
rγYn

∫ 1

0 s
−γY −ρY dg(s)

∫ 1

0
s−γY dg(s)

+ o(rγYn ). (29)

Combining (26) and (29) completes the proof.
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Risk measure Rg(X) Distortion function g

VaR at level β g(x) = I{x ≥ 1− β} where 0 ≤ β < 1

TVaR above level β g(x) = min

{
x

1− β
, 1

}
where 0 ≤ β < 1

Proportional Hazard transform g(x) = xα where 0 < α < 1

Dual Power g(x) = 1− (1− x)1/α where 0 < α < 1

MAXMINVAR g(x) = (1− (1 − x)α)1/α where 0 < α < 1

MINMAXVAR g(x) = 1− (1 − x1/α)α where 0 < α < 1

Gini’s principle g(x) = (1 + α)x− αx2 where 0 < α ≤ 1

Denneberg’s absolute deviation g(x) =





(1 + α)x if 0 ≤ x ≤ 1/2

α+ (1− α)x if 1/2 ≤ x ≤ 1
where 0 < α ≤ 1

Exponential transform g(x) =





(1− exp(−rx))/(1 − exp(−r)) if r > 0

x if r = 0

Logarithmic transform g(x) =





(log(1 + rx))/(log(1 + r)) if r > 0

x if r = 0

Square-root transform g(x) =





(
√
1 + rx − 1)/(

√
1 + r − 1) if r > 0

x if r = 0

S-inverse shaped transform g(x) = a

(
x3

6
− δ

2
x2 +

(
δ2

2
+ β

)
x

)

where a =

(
1

6
− δ

2
+
δ2

2
+ β

)−1

with 0 ≤ δ ≤ 1 and β ∈ R

Wang’s transform g(x) = Φ(Φ−1(x) + Φ−1(α))

where Φ is the standard Gaussian cdf and 0 ≤ α ≤ 1

Beta’s transform g(x) =

∫ x

0

1

β(a, b)
ta−1(1 − t)b−1dt

where β(a, b) is the Beta function with parameters a, b > 0

Table 1: Some risk measures and their distortion functions.
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Risk measure Expression as a combination of CTMa(β) and VaR(β)

CTE(β) CTM1(β)

CVaRλ(β) λVaR(β) + (1− λ)CTM1(β) where λ ∈ [0, 1]

ω1CTM1(β) + ω2CTM1(α) + ω3VaR(α)

GlueVaRh1,h2

β,α where ω1 = h1 −
(h2 − h1)(1 − β)

β − α
, ω2 =

(h2 − h1)(1 − α)

β − α

and ω3 = 1− ω1 − ω2 = 1− h2, with h1 ∈ [0, 1], h2 ∈ [h1, 1] and α < β

SP(β) (1 − β)(CTM1(β)−VaR(β))

CTV(β) CTM2(β)− CTM2
1(β)

TSDλ(β) CTM1(β) + λ
√

CTM2(β)− CTM2
1(β) where λ ≥ 0

CTS(β) CTM3(β)/(CTM2(β)− CTM2
1(β))

3/2

Table 2: Link between the CTM and some risk measures when the cdf of X is continuous.

Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0325 0.0098 0.0374 0.0133 0.0291 0.0095

PL 0.0317 0.0097 0.0357 0.0127 0.0286 0.0094

0.995
AE 0.0457 0.0137 0.0540 0.0191 0.0401 0.0130

PL 0.0446 0.0135 0.0518 0.0184 0.0395 0.0129

0.999
AE 0.0891 0.0258 0.1115 0.0386 0.0752 0.0236

PL 0.0871 0.0255 0.1073 0.0375 0.0741 0.0235

γ = 1/5

0.99
AE 0.0519 0.0164 0.0627 0.0199 0.0472 0.0140

PL 0.0502 0.0161 0.0588 0.0191 0.0461 0.0138

0.995
AE 0.0739 0.0229 0.0915 0.0289 0.0657 0.0191

PL 0.0717 0.0225 0.0862 0.0277 0.0643 0.0189

0.999
AE 0.1500 0.0437 0.1952 0.0589 0.1266 0.0349

PL 0.1461 0.0430 0.1850 0.0569 0.1239 0.0344

γ = 1/4

0.99
AE 0.0973 0.0285 0.1028 0.0349 0.0834 0.0248

PL 0.0900 0.0278 0.0944 0.0332 0.0835 0.0246

0.995
AE 0.1411 0.0402 0.1515 0.0509 0.1190 0.0341

PL 0.1305 0.0392 0.1395 0.0484 0.1202 0.0337

0.999
AE 0.3039 0.0787 0.3350 0.1063 0.2492 0.0631

PL 0.2807 0.0768 0.3102 0.1017 0.2604 0.0622

Table 3: Relative MSE for both estimators, case of the CTE.
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Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0487 0.0169 0.0629 0.0215 0.0458 0.0140

PL 0.0448 0.0160 0.0549 0.0194 0.0443 0.0142

0.995
AE 0.0653 0.0225 0.0866 0.0295 0.0609 0.0182

PL 0.0597 0.0212 0.0757 0.0267 0.0586 0.0184

0.999
AE 0.1177 0.0394 0.1658 0.0549 0.1084 0.0307

PL 0.1073 0.0371 0.1456 0.0499 0.1033 0.0306

γ = 1/5

0.99
AE 0.0808 0.0261 0.0988 0.0336 0.0680 0.0211

PL 0.0743 0.0256 0.0852 0.0304 0.0652 0.0217

0.995
AE 0.1100 0.0349 0.1376 0.0463 0.0907 0.0276

PL 0.1004 0.0339 0.1187 0.0417 0.0862 0.0281

0.999
AE 0.2078 0.0620 0.2723 0.0870 0.1630 0.0468

PL 0.1879 0.0598 0.2362 0.0785 0.1535 0.0468

γ = 1/4

0.99
AE 0.1558 0.0449 0.2175 0.0570 0.1327 0.0376

PL 0.1397 0.0439 0.1707 0.0501 0.1252 0.0388

0.995
AE 0.2182 0.0602 0.3161 0.0787 0.1818 0.0494

PL 0.1932 0.0582 0.2471 0.0690 0.1698 0.0503

0.999
AE 0.4485 0.1086 0.7089 0.1508 0.3561 0.0854

PL 0.3899 0.1038 0.5482 0.1323 0.3279 0.0852

Table 4: Relative MSE for both estimators, case of the DP(1/3).
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Value of γ δ Estimator
Fréchet Burr ρ = −1 Burr ρ = −2

n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99
AE 0.0517 0.0162 0.0618 0.0207 0.0487 0.0141

PL 0.0395 0.0145 0.0421 0.0157 0.0382 0.0133

0.995
AE 0.0699 0.0216 0.0848 0.0282 0.0654 0.0184

PL 0.0534 0.0191 0.0584 0.0215 0.0511 0.0172

0.999
AE 0.1290 0.0383 0.1612 0.0523 0.1196 0.0311

PL 0.0993 0.0334 0.1143 0.0406 0.0932 0.0286

γ = 1/5

0.99
AE 0.0800 0.0272 0.1116 0.0335 0.0756 0.0204

PL 0.0579 0.0221 0.0670 0.0240 0.0583 0.0186

0.995
AE 0.1083 0.0363 0.1549 0.0455 0.1010 0.0267

PL 0.0780 0.0291 0.0941 0.0327 0.0776 0.0239

0.999
AE 0.2020 0.0644 0.3067 0.0843 0.1829 0.0454

PL 0.1457 0.0515 0.1916 0.0619 0.1401 0.0397

γ = 1/4

0.99
AE 0.1920 0.0461 0.2432 0.0678 0.1516 0.0405

PL 0.1008 0.0347 0.1122 0.0438 0.0927 0.0355

0.995
AE 0.2669 0.0613 0.3421 0.0921 0.2055 0.0529

PL 0.1384 0.0453 0.1595 0.0594 0.1242 0.0452

0.999
AE 0.5454 0.1088 0.7137 0.1727 0.3928 0.0906

PL 0.2760 0.0796 0.3409 0.1136 0.2330 0.0748

Table 5: Relative MSE for both estimators, case of the PH(2/3).
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Figure 1: Choosing β on a random sample of n = 100 Burr observations with γ = 1/2 and ρ = −1;

x−axis: 1 − β. The choice procedure is conducted with β0 = 0.5 and h = 0.1. The blue line is the

Hill estimator; we obtain β∗ = 0.86 and γ̂ = 0.475.
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Figure 2: Poker data set: values of the consecutive swings of poker player Tom Dwan (absolute

value of the aggregated results during alternative winning and losing streaks). Measurement unit:

thousands of USD.
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Figure 3: Poker data set: sample autocorrelation function until lag 34. Dashed line: 95% significance

level.
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Figure 4: Poker data set, detrended data: Hill estimators; x−axis: 1 − β. Dashed line: standard

Hill estimator, black line: estimator γ̂RBβ (1), blue line: estimator γ̂RBβ (3/4), purple line: estimator

γ̂RBβ (1/2), green line: estimator γ̂RBβ (1/4), red line: estimator γ̂RBβ (0).
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Figure 5: Poker data set (measurement unit: thousands of USD). Full line: 95% quantile line,

dashed line: 97% quantile line, dashed-dotted line: 99% quantile line.
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Figure 6: Secura Belgian Re data set: Hill estimators; x−axis: 1 − β. Dashed line: standard

Hill estimator, black line: estimator γ̂RBβ (1), blue line: estimator γ̂RBβ (3/4), purple line: estimator

γ̂RBβ (1/2), green line: estimator γ̂RBβ (1/4), red line: estimator γ̂RBβ (0).
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Estimator γ̂ β∗ Estimate of γ

Standard Hill 0.75 0.351

Bias-reduced Hill, τ = 1 0.794 0.260

Bias-reduced Hill, τ = 3/4 0.912 0.167

Bias-reduced Hill, τ = 1/2 0.912 0.158

Bias-reduced Hill, τ = 1/4 0.912 0.146

Bias-reduced Hill, τ = 0 0.853 0.118

Table 6: Poker data set: estimates of γ.

Estimator γ̂ β∗ Estimate of γ

Standard Hill 0.854 0.292

Bias-reduced Hill, τ = 1 0.782 0.263

Bias-reduced Hill, τ = 3/4 0.792 0.262

Bias-reduced Hill, τ = 1/2 0.792 0.261

Bias-reduced Hill, τ = 1/4 0.792 0.260

Bias-reduced Hill, τ = 0 0.792 0.258

Table 7: Secura Belgian Re data set: estimates of γ.

δ Estimator V̂aR ĈTE ̂DP(1/2) ̂DP(1/3)

0.95

AE
3684 4373 4747 5010

[3121, 4247] [3705, 5041] [4022, 5472] [4245, 5775]

PL
3684 4911 5450 5805

[3121, 4247] [4161, 5661] [4618, 6282] [4918, 6692]

0.97

AE
3993 4740 5145 5430

[2832, 5154] [3362, 6118] [3649, 6641] [3851, 7009]

PL
3993 5323 5907 6291

[2832, 5154] [3775, 6871] [4190, 7624] [4462, 8120]

0.99

AE
4748 5636 6118 6457

[1958, 7538] [2325, 8947] [2524, 9712] [2663, 10251]

PL
4748 6329 7023 7480

[1958, 7538] [2611, 10047] [2897, 11149] [3085, 11875]

Table 8: Poker data set, detrended data: estimating some risk measures (measurement unit: thou-

sands of USD). Between square brackets: asymptotic 95% confidence intervals.
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δ Estimator V̂aR ĈTE ŜP

0.98

AE
4989 6750 35.220

[3505, 6473] [4742, 8758] [24.744, 45.696]

PL
4989 6864 37.500

[3505, 6473] [4822, 8906] [26.346, 48.654]

0.99

AE
5978 8087 21.092

[3673, 8283] [4969, 11205] [12.960, 29.224]

PL
5978 8224 22.459

[3673, 8283] [5053, 11395] [13.800, 31.118]

0.995

AE
7163 9690 12.636

[3770, 10556] [5100, 14280] [6.6506, 18.621]

PL
7163 9854 13.455

[3770, 10556] [5186, 14522] [7.0817, 19.828]

0.999

AE
10899 14744 3.8452

[3506, 18291] [4743, 24745] [1.2371, 6.4533]

PL
10899 14993 4.0944

[3506, 18292] [4823, 25163] [1.3172, 6.8716]

Table 9: Insurance data set: estimating some risk measures (measurement unit: thousands of

Euros). Between square brackets: asymptotic 95% confidence intervals.
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