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Abstract. Among the many possible ways to study the right tail of a real-valued random

variable, a particularly general one is given by considering the family of its Wang distortion risk

measures. This class of risk measures encompasses various interesting indicators, such as the widely

used Value-at-Risk and Tail Value-at-Risk, which are especially popular in actuarial science, for

instance. In this paper, we first build simple extreme analogues of Wang distortion risk measures.

Special cases of the risk measures of interest include the extreme Value-at-Risk as well as the re-

cently introduced extreme Conditional Tail Moment. We then introduce adapted estimators when

the random variable of interest has a heavy-tailed distribution and we prove their asymptotic nor-

mality. The finite sample performance of our estimators is assessed on a simulation study and we

showcase our technique on a set of real data.

Keywords: asymptotic normality, conditional tail moment, distortion risk measure, extreme-

value statistics, heavy-tailed distribution.

1 Introduction

Understanding the extremes of a random phenomenon is a major question in various areas of sta-

tistical application. The first motivating problem for extreme value theory is arguably to determine

how high the dikes surrounding the areas below sea level in the Netherlands should be so as to pro-

tect these zones from flood risk in case of extreme storms affecting Northern Europe, see de Haan

and Ferreira (2006). Further climate-related examples are the estimation of extreme rainfall at a
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given location (Koutsoyiannis, 2004), the estimation of extreme daily wind speeds (Beirlant et al.,

1996) or the modeling of large forest fires (Alvarado et al., 1998). Another stimulating topic comes

from the fact that extreme phenomena may have strong adverse effects on financial institutions or

insurance companies, and the investigation of those effects on financial returns makes up a large

part of the recent extreme value literature. Examples of such studies include the analysis of extreme

log-returns of financial time series (Drees, 2003) or the study of extreme risks related to large losses

for an insurance company (Rootzén and Tajvidi, 1997).

A commonly encountered problem when analyzing the extremes of a random variable is that the

straightforward empirical estimator of the quantile function is not consistent at extreme levels, that

is, if the true quantile at the chosen level exceeds the range covered by the available data, and

this makes beyond-the-sample estimation impossible. Many of the aforementioned problems can

actually be modeled using univariate heavy-tailed distributions. Roughly speaking, a distribution

is said to be heavy-tailed if and only if its related survival function decays like a power function

with negative exponent at infinity; its so-called tail index is then the parameter which controls

its rate of convergence to 0 at infinity. The estimation of the tail index, an excellent overview of

which is given in the recent monograph by de Haan and Ferreira (2006), is therefore the first step

to understand the extremes of a random variable whose distribution is heavy-tailed. Once the tail

index has been estimated, it becomes possible to estimate an extreme quantile, or Value-at-Risk

(VaR) as it is known in the actuarial science literature, at an arbitrarily high level, for instance

using the extrapolation method of Weissman (1978).

Of course, the estimation of a single extreme quantile only gives incomplete information on the

extremes of a random variable. To put it differently, it may well be the case that a light-tailed

distribution (e.g. a Gaussian distribution) and a heavy-tailed distribution share a quantile at some

common level, although they clearly do not have the same behavior in their extremes. Besides, the

VaR is not a coherent risk measure in the sense of Artzner et al. (1999), which is a undesirable

feature from the financial point of view. This is why other quantities, which take into account the

whole right tail of the random variable of interest, were developed and studied. Examples of such

indicators include the Tail Value-at-Risk (TVaR) or Stop-loss Premium reinsurance risk measure;

we refer to Embrechts et al. (1997) and McNeil et al. (2005) for the study of such risk measures in

an actuarial or financial context. When the related survival function is continuous, these measures

can be obtained by combining the VaR and a Conditional Tail Moment (CTM) as introduced by

El Methni et al. (2014), which is a general notion of moment of a random variable in its right tail.

One may then wonder if such risk measures may be encompassed in a single, unified framework.
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An answer, in our opinion, lies in considering Wang distortion risk measures (DRMs), introduced

by Wang (1996). The aforementioned VaR, TVaR and CTM actually are particular cases of Wang

DRMs, and so are many other interesting risk measures like the Wang transform (Wang, 2000)

which is very popular in finance and the newly introduced GlueVaR of Belles-Sampera et al. (2014).

The flexibility of this class is a reason why it has received considerable attention recently, see e.g.

Wirch and Hardy (1999, 2002), Cotter and Dowd (2006) who worked with the particular subclass

of spectral risk measures and Sereda et al. (2010), among others. The focus of our paper is to show

that Wang DRMs can be nicely extended to the study of extreme risk. To be specific, we show how

a simple linear transformation allows one to construct an extreme analogue of a Wang DRM and

we consider its estimation under classical conditions in extreme value theory.

The outline of our paper is as follows. We first recall the definition of a Wang DRM in Section 2. In

Section 3, we present a simple way to build extreme analogues of Wang DRMs and we consider their

estimation. Section 4 is devoted to the study of the finite-sample performance of our estimators,

and we showcase our method on a real dataset in Section 5. The proofs of our results are deferred

to the Appendix.

2 Wang risk measures

Let X be a positive random variable. Wang (1996) introduced a family of risk measures called

distortion risk measures (DRMs) by the concept of a distortion function: a function g : [0, 1] → [0, 1]

is a distortion function if it is nondecreasing with g(0) = 0 and g(1) = 1. For ease of exposition,

distortion functions will also be assumed to be right-continuous, a very mild condition which holds

in all usual examples. The Wang DRM of X with distortion function g is then defined by:

Rg(X) :=

∫ ∞

0

g(1− F (x))dx

where F is the cumulative distribution function (cdf) of X . Note that if q is the quantile function of

X , namely q(α) = inf{t ∈ R |F (t) ≥ α} for all α ∈ (0, 1), a change of variables and an integration

by parts make it possible to rewrite Rg(X), when it is finite, as a Lebesgue-Stieltjes integral:

Rg(X) =

∫ 1

0

q(1− α)dg(α)

(the right-continuity of g makes this integral well-defined indeed). A Wang DRM can thus be

understood as a weighted version of the expectation of the random variable X . Specific examples

include:

• the quantile at level β or VaR(β), standing for the level exceeded on average in 100β% of

cases, obtained by setting g(x) = I{x ≥ 1− β}, with I{·} being the indicator function;
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• the Tail Value-at-Risk TVaR(β) in the worst 100β% cases, namely the average of all quantiles

exceeding VaR(β), is recovered by taking g(x) = min(x/(1− β), 1).

In Table 1 we give further examples of classical DRMs and their distortion functions (see e.g. Wang,

1996, Wirch and Hardy, 1999, Wang, 2000 and Guegan and Hassani, 2014). Broadly speaking, the

class of Wang DRMs allows almost total flexibility as far as the weight function is considered:

in particular, choosing a convex (resp. concave) continuously differentiable function g results in

gradually putting more weight towards small (resp. high) quantiles of X . Besides, any spectral risk

measure of X , namely

Sψ(X) =

∫ 1

0

q(1 − α)ψ(α)dα

where ψ is a non-decreasing probability density function on [0, 1], is also a Wang DRM with the

distortion function g being the antiderivative of ψ. An application of such spectral risk measures is

considered in Cotter and Dowd (2006).

Furthermore, we note that if h : [0,∞) → [0,∞) is a strictly increasing, continuously differentiable

function then the Wang DRM of h(X) with distortion function g is

Rg(h(X)) =

∫ 1

0

h ◦ q(1 − α)dg(α).

Of course, the choice h(x) = x yields standard Wang DRMs of X , but we may recover other types

of risk measures by changing the function h. For instance, the choices g(x) = min(x/(1 − β), 1),

β ∈ (0, 1) and h(x) = xa, with a a positive real number, yield after integrating by parts:

Rg(X
a) = CTMa(β) := E(Xa|X > q(β))

provided F is continuous. This is actually the Conditional Tail Moment (CTM) of order a of the

random variable X as introduced in El Methni et al. (2014). Especially, when F is continuous,

the TVaR coincides with the Conditional Tail Expectation of X . Table 2 gives several examples of

risk measures, such as the Conditional Value-at-Risk or Conditional Tail Variance, which can then

be obtained by combining a finite number of CTMs and the VaR; see El Methni et al. (2014) for

further details.

We close this section by mentioning that according to Wirch and Hardy (2002), a DRM is a coherent

risk measure (see Artzner et al., 1999) if and only if the distortion function g is concave. The

coherency of a risk measure is thought of as a desirable feature from the actuarial point of view; in

particular, it reflects on the diversification principle which asserts that aggregating two risks cannot

be worse than handling them separately. A particular corollary of the result of Wirch and Hardy

(2002) is that while the VaR is not a coherent risk measure, the TVaR is, for instance, and this
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was already noted several times in the recent literature. More broadly, this result makes it easy

to identify the subclass of coherent Wang DRMs such as the Dual Power or Proportional Hazard

transform risk measure, whose respective practical interpretations can be found in the actuarial

science literature.

3 Framework

3.1 Extreme versions of Wang risk measures and their estimation

Extreme versions of Wang risk measures may be obtained as follows. Let g be a distortion function

and for every β ∈ [0, 1), consider the function gβ(y) which is defined by:

gβ(y) :=





g

(
y

1− β

)
if y ≤ 1− β

1 otherwise.

Such a function, which is deduced from g by a simple linear transform of its argument, is thus

constant equal to 1 on [1− β, 1]. Moreover, if g is concave then so is gβ: in other words, if g gives

rise to a coherent Wang DRM, so does gβ. Pick also a strictly increasing continuously differentiable

function h and set

Rg,β(h(X)) =

∫ 1

0

h ◦ q(1− α)dgβn
(α).

The distortion measure dgβ of this risk measure is concentrated on [0, 1− β], so that it only takes

into account those (high) quantiles of X whose order lies in [β, 1]. It is actually straightforward to

obtain

Rg,β(h(X)) =

∫ 1

0

h ◦ q(1− (1− β)s)dg(s),

which makes the interpretation of this risk measure easier: the high quantiles of X are transformed

via the function h and then weighted using the function g. A further way to understand the action

of gβ is the following:

Proposition 1. Let β ∈ [0, 1). If the cdf of X is continuous, one has

Rg,β(h(X)) = Rg(h(Xβ)) with P(Xβ ≤ x) = P(X ≤ x|X > q(β)).

In many cases, the Wang DRM Rg,β(h(X)) is thus actually obtained by computing the Wang DRM

of h(X), with distortion function g, given that X exceeds q(β). When β ↑ 1, we may then think of

this construction as a way to consider Wang DRMs of the extremes of X .

Choosing h(x) = x makes it possible to recover some simple and widely used extreme risk measures:

• the usual extreme VaR is obtained by setting g(x) = I{x = 1},
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• an extreme version of the TVaR is obtained by taking g(x) = x,

and the same idea yields extreme analogues of the various risk measures shown in Table 1. Fur-

thermore, as highlighted in Section 1, choosing g(x) = x and h(x) = xa, a > 0 yields an extreme

version of a CTM of X , and therefore extreme versions of quantities such as those introduced in

Table 2 can be studied.

3.2 A first estimator

We now give a first idea to estimate this type of extreme risk measure. Let (X1, . . . , Xn) be a

sample of independent and identically distributed random variables having cdf F , and let (βn) be

a nondecreasing sequence of real numbers belonging to (0, 1), which converges to 1. Denote by F̂n

the empirical cdf related to this sample and by q̂n the related empirical quantile function:

F̂n(x) =
1

n

n∑

i=1

I{Xi ≤ x} and q̂n(α) = inf{t ∈ R | F̂n(t) ≥ α} = X⌈nα⌉,n

in which X1,n ≤ · · · ≤ Xn,n are the order statistics of the sample (X1, . . . , Xn) and ⌈·⌉ denotes the

ceiling function. The empirical counterpart of Rg,βn
(h(X)) is then

R̂g,βn
(h(X)) =

∫ 1

0

h ◦ q̂(1− (1 − βn)s)dg(s).

In the case when n(1 − βn) is actually a positive integer, which is fairly common in practice (see

Sections 4 and 5), this estimator can be conveniently rewritten as an L-statistic, namely:

R̂g,βn
(h(X)) =

n(1−βn)∑

i=1

h(Xn−i+1,n)

∫ 1

0

I{xi−1,n(βn) ≤ s < xi,n(βn)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
with xi,n(βn) =

i

n(1− βn)

or equivalently

R̂g,βn
(h(X)) =

n(1−βn)∑

i=1

h(Xn−i+1,n)


 lim
s→xi,n(βn)
s<xi,n(βn)

g(s)− lim
s→xi−1,n(βn)
s<xi−1,n(βn)

g(s)




+ h(Xnβn,n)

[
1− lim

s→1
s<1

g(s)

]
.

If g is further assumed to be continuous on [0, 1], this L-statistic takes the simpler form

R̂g,βn
(h(X)) = h(Xnβn+1,n) +

n(1−βn)−1∑

i=1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)− h(Xn−i,n)].

Our aim is to examine the asymptotic properties of this estimator. Our framework is that of regular

variation: a function f is said to be regularly varying at infinity with index b ∈ R if f is nonnegative
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and for any x > 0, f(tx)/f(t) → xb as t→ ∞. We shall assume in this paper that the distribution

of X is heavy-tailed, or in other words, that 1 − F is regularly varying with index −1/γ < 0,

the parameter γ being the so-called tail index of the cdf F . It is in fact convenient to use an

equivalent assumption on the left-continuous inverse U of 1/(1 − F ), defined by U(y) = inf{t ∈
R | 1/(1−F (t)) ≥ y} = q(1−y−1). More precisely, we shall assume that U is regularly varying with

index γ, and use the following second-order condition on U (see de Haan and Ferreira, 2006):

Condition C2(γ, ρ, A): for any x > 0, we have

lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ

xρ − 1

ρ

with γ > 0, ρ ≤ 0 and A is a Borel measurable function which converges to 0 and has constant sign.

When ρ = 0, the right-hand side is to be read as xγ log x.

We highlight that in condition C2(γ, ρ, A), the function |A| is necessarily regularly varying at infinity

with index ρ (see Theorem 2.3.3 in de Haan and Ferreira, 2006). Such an assumption, which controls

the rate of convergence of the ratio U(tx)/U(t) to xγ as t→ ∞, is classical when studying the rate

of convergence of an estimator of a parameter describing the extremes of a random variable. Most

standard examples in extreme-value theory satisfy this condition (see e.g. the examples pp.61–62

in de Haan and Ferreira, 2006).

In all what follows, we also assume that the function h is a positive power of x. This choice allows

us to consider estimators of a large class of risk measures of X , including the aforementioned CTM.

Our first result is the following:

Theorem 1. Assume that U satisfies condition C2(γ, ρ, A). Assume further that βn → 1, n(1 −
βn) → ∞ and

√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick a d−tuple of distortion functions

(g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞,

then:
√
n(1− βn)

(
R̂gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V being the d× d matrix whose (i, j)−th entry is

Vi,j = aiajγ
2

∫
[0,1]2 min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t)

∫ 1

0
s−aiγdgi(s)

∫ 1

0
t−ajγdgj(t)

Let us emphasize that Theorem 1 is obtained under the restriction n(1 − βn) → ∞. Thus, it only

ensures that the estimator consistently estimates so-called intermediate (i.e. not “too extreme”)
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Wang DRMs, in the sense that the order of the smallest quantile that it takes into account must

converge sufficiently slowly to 1. In other words, our first estimator should only be used to estimate

those risk measures above a lower threshold q(βn) that belongs to the range covered by the available

data. This restriction, which is undesirable from the practical point of view, will be tackled in the

next section by the introduction of an estimator adapted to the extreme-value framework.

For now, let us draw a useful consequence from Theorem 1. For b ∈ R, we introduce the class of

functions

Eb([0, 1]) :=
{
g : [0, 1] → R | g ∈ C1([0, 1],R) and lim sup

s→0
s−b|g′(s)| <∞

}
.

Roughly speaking, the classes Eb can be considered as the spaces of those functions g which are

continuously differentiable on [0, 1] and whose first derivative behaves like a power of s in a neigh-

borhood of 0. Especially, any polynomial function belongs to E0([0, 1]). For a given distortion

function g, the convergence condition

∫ 1

0

s−aγ−1/2−ηdg(s) <∞

being determined by the behavior of g in a neighborhood of 0, it is obvious that checking the

condition g ∈ Eb([0, 1]) (for some b) greatly simplifies such an integrability hypothesis. Our next

result focuses on this case:

Corollary 1. Assume that U satisfies condition C2(γ, ρ, A). Assume further that βn → 1, n(1 −
βn) → ∞ and

√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick a d−tuple of distortion functions

(g1, . . . , gd) and a1, . . . , ad > 0. Assume there are b1, . . . , bd ∈ R such that for all j ∈ {1, . . . , d}, we
have gj ∈ Ebj ([0, 1]). If

∀j ∈ {1, . . . , d}, γ < 2bj + 1

2aj

then:
√
n(1− βn)

(
R̂gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V )

with V as in Theorem 1.

In particular, the condition on γ we get for the asymptotic normality of the CTM of order a,

obtained with g(x) = x and thus g ∈ E0([0, 1]), is γ < 1/2a, which is the condition obtained by El

Methni et al. (2014). Since moreover

∀a1, a2 > 0,

∫

[0,1]2
min(s, t)s−a1γ−1t−a2γ−1ds dt =

2− (a1 + a2)γ

(1− a1γ)(1− a2γ)(1− (a1 + a2)γ)

when γ < (2max(a1, a2))
−1, one may also readily check that the asymptotic variance is the same as

in Theorem 1 there. We highlight however that the assumption C2(γ, ρ, A) is somewhat stronger than
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the (conditional) assumptions made on F by El Methni et al. (2014). This is because Theorem 1

and Corollary 1 address the case of functions gj that may be much more difficult to handle than

the simple identity function, which is the only case addressed by Theorem 1 of that paper.

3.3 Estimating extreme risk measures of arbitrary order

In order to design a consistent estimator of an arbitrarily extreme risk measure, we remark that for

any s ∈ (0, 1) and a > 0 we have:

[q(1− (1− δn)s)]
a =

(
1− βn
1− δn

)aγ
[q(1 − (1− βn)s)]

a(1 + o(1))

as a consequence of the regular variation property of U and provided that (βn) is a sequence

converging to 1 such that (1− δn)/(1− βn) converges to a positive limit. In other words, the value

of the quantile function at an arbitrarily extreme level is essentially its value at a much smaller

level up to an extrapolation factor which depends on the unknown tail index γ. A way to design

an adapted estimator of the extreme risk measure Rg,δn(X
a), when n(1 − δn) → c <∞, is thus to

take a sequence (βn) such that n(1− βn) → ∞ and define:

R̂Wg,δn(X
a|βn) :=

(
1− βn
1− δn

)aγ̂
R̂g,βn

(Xa)

where γ̂ is a consistent estimator of γ. This can be seen as a Weissman-type estimator of Rg,δn(X
a)

(see Weissman, 1978); in fact, we exactly recover Weissman’s estimator of an extreme quantile by

setting a = 1 and g(x) = 0 if x < 1. Besides, taking g(x) = x, we also recover the estimator of the

extreme CTM of X introduced in El Methni et al. (2014). All the aforementioned estimators are

based on the same idea: to estimate the quantity of interest at an arbitrarily extreme level, this

quantity is estimated first at an intermediate level where the straightforward empirical estimator

is known to be consistent, and then multiplied by an extrapolation factor which depends on an

external estimate of the tail index γ.

Our second main result examines the asymptotic distribution of this estimator.

Theorem 2. Assume that U satisfies condition C2(γ, ρ, A), with ρ < 0. Assume further that

βn, δn → 1, n(1 − βn) → ∞, (1− δn)/(1− βn) → 0 and
√
n(1− βn)A((1 − βn)

−1) → λ ∈ R. Pick

a d−tuple of distortion functions (g1, . . . , gd) and a1, . . . , ad > 0. If for some η > 0,

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞

9
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and
√
n(1− βn)(γ̂ − γ)

d−→ ξ then

√
n(1− βn)

log([1 − βn]/[1− δn])

(
R̂Wgj ,δn(X

aj |βn)
Rgj ,δn(X

aj )
− 1

)

1≤j≤d

d−→




a1ξ
...

adξ


 .

Again, in the particular case d = 1, a = 1 and g(x) = 0 if x < 1, we recover the asymptotic result

about Weissman’s estimator, see Theorem 4.3.8 in de Haan and Ferreira (2006); for g(x) = x and

d = 1, we recover Theorem 2 of El Methni et al. (2014). As far as practical situations are concerned,

the estimation of the parameter γ is of course a central question, not least because the asymptotic

distribution of our Weissman-type estimator is exactly determined by the estimator of γ which is

used. Many estimators of γ can be considered: we mention the very popular Hill estimator (1975),

the Pickands estimator (1975), the maximum likelihood estimator (Smith, 1987 and Drees et al.,

2004) and probability-weighted moment estimators (Hosking and Wallis, 1987, Diebolt et al., 2007),

among others. Such estimators are computed using a number k = k(n) → ∞ of order statistics of

the sample (with k/n → 0) and are
√
k−asymptotically normal under conditions akin to ours. It

is then convenient to set k = ⌈n(1 − βn)⌉, which ensures that the estimator of γ converges at the

required rate
√
n(1− βn). The choice of the intermediate level βn, which is crucial, is a difficult

problem however, and we discuss a possible selection rule in our simulation study below.

4 Simulation study

The finite-sample performance of our estimators is illustrated on the following simulation study,

where we consider a couple of classical heavy-tailed distributions and three different distortion

functions g. The distributions studied are:

• the Fréchet distribution: F (x) = exp(−x−1/γ), x > 0;

• the Burr distribution: F (x) = 1− (1 + x−ρ/γ)1/ρ, x > 0 (here ρ ≤ 0).

Both of these distributions have extreme value index γ and their respective second-order parameters

are −1 and ρ, see e.g. Beirlant et al. (2004). We consider the following distortion functions:

• the Conditional Tail Expectation (CTE) function g(x) = x which weights all quantiles equally;

• the Dual Power (DP) function g(x) = 1− (1−x)1/α with α ∈ (0, 1), which gives higher weight

to large quantiles. When c := 1/α is a positive integer, the related DRM is the expectation

of max(X1, . . . , Xc) for independent copies X1, . . . , Xc of X ;
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• the Proportional Hazard (PH) transform function g(x) = xα with α ∈ (0, 1), which gives

higher weight to large quantiles and is such that g′(s) ↑ ∞ as s ↓ 0.

Theorem 1 shall thus be valid for γ < 1/2 for either of the two first distortion functions, and

γ < α−1/2 for the Proportional Hazard transform (note that in this case the related Wang DRM is

actually well-defined and finite for γ < α). In some sense, a suitable choice of α in the PH transform

case will allow us to check if our technique is robust to a violation of the integrability condition of

Theorems 1 and 2.

Our estimator being based on a preliminary estimation at level βn where (βn) is some intermediate

sequence, we first discuss the choice of this level. This choice is crucial: choosing βn too close to

1 increases the variance of the estimator dramatically, while choosing βn too far from 1 results in

biased estimates. There has been a great amount of research carried out recently on this choice:

an excellent overview of possible techniques, including bootstrap methods, Pareto quantile plots or

procedures based on the analysis of finite-sample bias, is given in Section 5.4 of Gomes and Guillou

(2014). In many practical cases though, the analysis of a dataset from the point of view of extremes

starts by drawing a plot of one or several tail index estimators, and then by selecting βn in a region

contained in the extremes of the sample where the estimation is “stable”. Our idea here is to suggest

an automatic such choice. We work with the popular Hill estimator (Hill, 1975):

γ̂βn
=

1

⌈n(1− βn)⌉

⌈n(1−βn)⌉∑

i=1

log (Xn−i+1,n)− log
(
Xn−⌈n(1−βn)⌉,n

)

which we shall also use to estimate the extreme value index γ. Our idea is to detect the last stability

region in the Hill plot β 7→ γ̂β ; choosing β in this region most often realizes a decent bias-variance

trade-off. Specifically:

• choose β0 > 0 and a window parameter h > 1/n;

• for β0 < β < 1− h, let I(β, h) = [β, β + h] and compute the standard deviation σ(β, h) of the

set of estimates {γ̂b, b ∈ I(β, h)};

• if β 7→ σ(β, h) is monotonic, let βlm be β0 if it is increasing and 1− h if it is decreasing;

• otherwise, denote by βlm the last value of β such that σ(β, h) is locally minimal and its value

is less than the average value of the function β 7→ σ(β, h);

• choose β∗ such that γ̂β∗ is the median of {γ̂b, b ∈ I(βlm, h)}.

This procedure is similar to others in the extreme value literature (see e.g. Resnick and Stărică,

1997, Drees et al., 2000 or de Sousa and Michailidis, 2004); closely related procedures when there

11
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is random covariate information can be found in Stupfler (2013) and Gardes and Stupfler (2014).

An illustration of this technique on a simulated dataset is given in Figure 1.

In each case, we carry out our computations on N = 5000 independent samples of n ∈ {100, 300}
independent copies of X ; our choice procedure is conducted with β0 = 0.5 and h = 0.1. We record

relative mean squared errors (MSEs):

MSE(R̂Wg,δ) =
1

N

N∑

i=1

(
R̂Wg,δ(X |β∗

i )

Rg,δ(X)
− 1

)2

at δ = 0.99, 0.995 and 0.999 (here β∗
i is the chosen intermediate level for the i−th sample). Our

results are reported in Tables 3–7. It appears on these examples that the performances of our

estimators are globally satisfactory. Results deteriorate when γ increases: a possible explanation

lies in the fact that the asymptotic distribution of our estimator is essentially that of γ̂ by Theorem 2,

which is a Gaussian distribution with variance proportional to γ2 (see Theorem 3.2.5 in de Haan

and Ferreira, 2006). Results however improve when |ρ| increases, which was expected since the

larger is |ρ|, the smaller is the bias in the estimation. Besides, the estimator seems to be at least

somewhat robust to a violation of the integrability condition in Theorems 1–2, as can be seen on the

example of the PH(2/3) risk measure, although in this example, the results deteriorate as the rate

of convergence of g′(s) to ∞ as s ↓ 0 increases. This likely comes from the fact that an increasing

such rate amplifies the error made by the plug-in extreme quantile estimator, all the more so as the

latter error itself increases when estimating quantiles whose order is very close to 1.

5 Real data application

We apply our method to the study of the results of high-stakes poker player Tom Dwan. The original

data, extracted from results publicly available at http://www.highstakesdb.com, consists in his

cumulative results on the Internet, aggregated over all poker variants and recorded approximately

every five days from mid-October 2008 to April 2011. In this study, we focus on the sub-parts

of the results curve where it is monotonic, namely, the periods of time when this player is either

consistently winning or losing. The analysis of such timeframes, which may last from a few days to

several weeks, is of great value to poker players since it helps them understand their own behavior

(and possibly that of their opponents as well) during winning and losing streaks.

To this end, we record the values of the local minima and maxima of the results curve and we

construct the differences between two such consecutive points. The data is now made of n = 68

observations, alternatively positive and negative, which represent the aggregated results during

12
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alternative winning and losing streaks. Our specific aim here is to analyze the extreme such streaks

(also called “swings” in poker technical terms). Our data, represented in Figure 2, is the absolute

value of the 68 observations at our disposal, and the analysis will thus focus on the magnitude

of the extreme swings of the results curve, irrespective of whether such a swing corresponds to a

win or a loss. Of course, this leads to a loss of information and it would clearly be interesting to

analyze the winning and losing streaks separately. Note though that the data on winning streaks is

made of only 34 observations; the rate of convergence of our technique being only a fraction of the

square-root of the total sample size, we believe that the separate datasets are too small to carry

out an analysis which is interpretable from the extreme-value point of view.

Since we work on time series data, there are particular concerns about independence and stationarity.

These hypotheses are checked using the turning point test (see Kendall, 1973) contained in the R

package randtests; the p−value of this test is 0.278 and thus we cannot reject the i.i.d. assumption

basing on this procedure. Since such a test is known to be suitable against cyclicity but poor against

trends (Kendall, 1973), we also run the KPSS test for trend stationarity (Kwiatkowski et al., 1992)

contained in the R package tseries, whose p−value is 0.1 for a trend parameter of 0.103 and a

lag parameter of 1 in the Newey-West variance estimator. This trend parameter being very small

relatively to the values of our time series (its minimum, median and maximum are respectively 10,

895 and 6162), the KPSS test indicates that the data is essentially stationary indeed. Finally, let us

note that the plot of the sample autocorrelation function (see Figure 3) does not indicate significant

correlation in the data.

Our next aim is to estimate the extreme value index γ of this random sample. Since the sample

size is fairly small, we use the Hill estimator together with a bias-reduced version inspired by the

work of Peng (1998):

γ̂RBβ (τ) =
1

ρ̂β1
(τ)

γ̂β +

(
1− 1

ρ̂β1
(τ)

)
γ̂Sβ
2γ̂β

,

with

γ̂Sβ =
1

⌈n(1− β)⌉

⌈n(1−β)⌉∑

i=1

(
logXn−i+1,n − logXn−⌈n(1−β)⌉,n

)2

and ρ̂β1
(τ) is the consistent estimator of ρ presented in equation (2.18) of Fraga Alves et al. (2003)

which depends on a different sample fraction 1 − β1 and a tuning parameter τ ≤ 0. By Theorem

2.1 in Peng (1998),

√
n(1− βn)(γ̂

RB
βn

(τ) − γ)
d−→ N

(
0, γ2

1− 2ρ+ 2ρ2

ρ2

)
(1)

provided (βn) is an intermediate sequence. The generalized jackknife estimator γ̂RBβ (τ) is thus

essentially a suitably weighted combination of the Hill estimator and a similar estimator, the

13
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coefficients being estimates of those which makes the asymptotic biases cancel out. We take

β1 = 1− ⌈n0.975⌉/n ≈ 0.0882, as recommended by Caeiro et al. (2009).

Some estimates of γ are given in Table 8 and Hill plots are represented in Figure 4. The Hill

estimator seems to drift away fairly quickly due to the finite-sample bias, and we decide to drop

it for our analysis. We then estimate γ by the median of the bias-reduced estimates obtained for

τ ∈ {0, 1/4, 1/2, 3/4, 1}: in each case, the estimate is obtained by a straightforward adaptation

of the selection procedure detailed in Section 4. We get γ̂ = 0.196 for β∗ = 0.735 and τ = 1/4;

especially, ρ is estimated by ρ̂ = −0.790. Finally, Table 9 gives estimates of some risk measures for

this dataset. From these results, it appears in particular that the maximal value in this dataset,

corresponding to a losing streak costing 6.162 million USD, exceeds both our estimates of the 99%

quantile and of the CTE in the 1% highest cases. It is also of the same order of magnitude as our

estimate of the Dual Power(1/2) (resp. Dual Power(1/3)) risk measure in the 1% highest cases,

which corresponds to the average value of the maximum of two (resp. three) consecutive extreme

results above the 99% quantile. In our opinion, this losing streak can thus be regarded as an extreme

period of loss.
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Appendix

Proofs of the main results

Proof of Proposition 1. On the one hand, we have that

Rg,β(h(X)) =

∫ 1

0

h ◦ q(1− α)dgβ(α) =

∫ 1

0

h ◦ q(1 − (1− β)s)dg(s). (2)

On the other hand, it holds that for any x:

Fβ(x) := P(X ≤ x|X > q(β)) =





0 if x ≤ q(β),

F (x) − β

1− β
if x > q(β)

since F is continuous. The related quantile function is defined by

∀α ∈ (0, 1), qβ(α) = inf{t ∈ R |Fβ(t) ≥ α} = inf{t ∈ R |F (t) ≥ β + (1− β)α} = q(β + (1 − β)α)

which yields

Rg(h(Xβ)) =

∫ 1

0

h ◦ qβ(1− α)dg(α) =

∫ 1

0

h ◦ q(1− (1− β)α)dg(α). (3)

Combining (2) and (3) completes the proof.

Proof of Theorem 1. First, recall that for any t ∈ R we have ⌊t⌋+ ⌈−t⌉ = 0, where ⌊·⌋ denotes

the floor function. Whence the equality

R̂gj ,βn
(Xaj) =

∫ 1

0

X
aj
n−⌊ls⌋,n dgj(s)

with l = l(n) = n(1− βn) → ∞. Clearly:

∀s ∈ [0, 1], Xn−⌊(⌊l⌋+1)s⌋,n ≤ Xn−⌊ls⌋,n ≤ Xn−⌊⌊l⌋s⌋,n,

and thus it is enough to prove that, for any sequence of integers k = k(n) such that k(n)/l(n) → 1,

we have:
√
k

(∫ 1

0
X
aj
n−⌊ks⌋,n dgj(s)

Rgj ,βn
(Xaj )

− 1

)

1≤j≤d

d−→ N (0, V ).

For any a > 0, let Ua(x) := [U(x)]a denote the left-continuous inverse of 1/(1 − Fa), where Fa is

the cdf of Xa. By Lemma 2:

Rgj ,βn
(Xaj )

Uaj (n/k)
=

∫ 1

0

Uaj (n/ks)

Uaj(n/k)
dgj(s) →

∫ 1

0

s−ajγdgj(s).

It is therefore enough to prove that:

√
k

(∫ 1

0 X
aj
n−⌊ks⌋,n dgj(s)−Rgj ,βn

(Xaj )

Uaj (n/k)

)

1≤j≤d

d−→ N (0,M) (4)
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where M is the d× d matrix with (i, j)−th entry

Mi,j = aiajγ
2

∫

[0,1]2
min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t).

Pick now j ∈ {1, . . . , d} and write

∫ 1

0

X
aj
n−⌊ks⌋,n dgj(s)−Rgj ,βn

(Xaj ) = ζj,n + ξj,n (5)

with ζj,n =

∫ 1

0

Uaj (n/ks)

(
X
aj
n−⌊ks⌋,n

Uaj (n/k)
− s−ajγ

)
sajγdgj(s)

and ξj,n =

∫ 1

0

Uaj (n/ks)
X
aj
n−⌊ks⌋,n

Uaj (n/k)

(
Uaj (n/k)

Uaj (n/ks)
− sajγ

)
dgj(s).

According to Lemma 3, we have:

(√
k

ζj,n
Uaj (n/k)

)

1≤j≤n

d−→ N (λC,M) (6)

where C is the column vector whose j−th entry is

Cj = aj

∫ 1

0

s−ρ − 1

ρ
s−ajγdgj(s).

To examine the convergence of ξj,n, we note that according to (12), there exists Borel measur-

able functions Ba1 , . . . , Bad , respectively asymptotically equivalent to a1A1, . . . , adAd and having

constant sign, such that for any ε > 0:

∀s ∈ (0, 1],

∣∣∣∣
1

Baj (n/ks)

(
Uaj (n/k)

Uaj(n/ks)
− sajγ

)
− sajγ

sρ − 1

ρ

∣∣∣∣ ≤ εsajγ+ρ−ε (7)

for n sufficiently large. Consider then the following decomposition of ξj,n:

ξj,n = ξ
(1)
j,n + ξ

(2)
j,n (8)

with

ξ
(1)
j,n =

∫ 1

0

Uaj (n/ks)Baj (n/ks)
X
aj
n−⌊ks⌋,n

Uaj (n/k)
sajγ

sρ − 1

ρ
dgj(s),

ξ
(2)
j,n =

∫ 1

0

Uaj (n/ks)Baj (n/ks)
X
aj
n−⌊ks⌋,n

Uaj (n/k)

(
1

Baj (n/ks)

[
Uaj (n/k)

Uaj(n/ks)
− sajγ

]
− sajγ

sρ − 1

ρ

)
dgj(s).

Writing
X
aj
n−⌊ks⌋,n

Uaj (n/k)
sajγ = 1 +

(
X
aj
n−⌊ks⌋,n

Uaj (n/k)
− s−ajγ

)
sajγ ,

we get by Lemma 3:

ξ
(1)
j,n =

∫ 1

0

Uaj (n/ks)Baj (n/ks)
sρ − 1

ρ
dgj(s) + OP

(
Uaj (n/k)Baj (n/k)√

k

)
.
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Applying Lemma 2 to the regularly varying functions t 7→ Uaj (t)|Baj (t)| and t 7→ t−ρUaj (t)|Baj (t)|,
which have respective regular variation indices ajγ + ρ and ajγ, we get

√
k

ξ
(1)
j,n

Uaj(n/k)
=

√
kBaj (n/k)

∫ 1

0

s−ajγ
1− s−ρ

ρ
dgj(s) + oP(1)

= −ajλ
∫ 1

0

s−ajγ
s−ρ − 1

ρ
dgj(s) + oP(1) = −λCj + oP(1) (9)

since Baj is equivalent to ajA. The quantity ξ
(2)
j,n is controlled by applying inequality (7): for any

ε ∈ (0, η), we have for sufficiently large n that:

|ξ(2)j,n| ≤ ε

∫ 1

0

Uaj (n/ks)|Baj (n/ks)|
X
aj
n−⌊ks⌋,n

Uaj (n/k)
sajγ+ρ−εdgj(s).

The ideas used to control ξ
(1)
j,n yield for n large enough:

√
k

∣∣∣∣∣
ξ
(2)
j,n

Uaj(n/k)

∣∣∣∣∣ ≤ εaj|λ|
∫ 1

0

s−ajγ−εdgj(s) + oP(1) ≤ εaj |λ|
∫ 1

0

s−ajγ−ηdgj(s) + oP(1)

which, since ε is arbitrary, entails

√
k

∣∣∣∣∣
ξ
(2)
j,n

Uaj (n/k)

∣∣∣∣∣ = oP(1). (10)

Combining (8), (9) and (10) entails

√
k

(
ξj,n

Uaj (n/k)

)

1≤j≤d

P−→ −λC. (11)

Combine finally (5), (6) and (11) to obtain (4): the proof is complete.

Proof of Theorem 2. We start by writing, for any j:

R̂Wgj ,δn(X
aj |βn)

Rgj ,δn(X
aj )

=

(
1− βn
1− δn

)aj(γ̂−γ) R̂gj ,βn
(Xaj )

Rgj ,βn
(Xaj )

× Rgj ,βn
(Xaj )

Rgj ,δn(X
aj )

(
1− βn
1− δn

)ajγ
.

Recall that for any a > 0, Ua satisfies condition C2(aγ, ρ, aA) by Lemma 1. Taking logarithms and

applying Lemma 4 with Y = Xa, we get

log

(
R̂Wgj ,δn(X

aj |βn)
Rgj ,δn(X

aj )

)
= aj(γ̂ − γ) log

(
1− βn
1− δn

)
+ log

(
R̂gj ,βn

(Xaj )

Rgj ,βn
(Xaj )

)
+O

(
1√

n(1− βn)

)
.

A use of Theorem 1, together with the delta-method, entails

log

(
R̂Wgj ,δn(X

aj |βn)
Rgj ,δn(X

aj )

)
= aj(γ̂ − γ) log

(
1− βn
1− δn

)
+OP

(
1√

n(1− βn)

)
.

Recall that log([1 − βn]/[1 − δn]) → ∞; a Taylor expansion and the hypothesis on γ̂ now make it

clear that √
n(1− βn)

log([1− βn]/[1− δn])

(
R̂Wgj ,δn(X

aj |βn)
Rgj ,δn(X

aj )
− 1

)
= ajξ(1 + oP(1))

which completes the proof.
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Preliminary results and their proofs

The first result is a very useful fact which we shall use several times in our proofs.

Lemma 1. Assume that condition C2(γ, ρ, A) is satisfied. Pick a > 0 and define Ua(x) := [U(x)]a.

Then Ua satisfies condition C2(aγ, ρ, aA).

Proof of Lemma 1. Pick x > 0. The function U satisfies condition C2(γ, ρ, A) which is equivalent

to:

U(tx) = U(t)

(
xγ + A(t)

[
xγ(xρ − 1)

ρ
+ o(1)

])
as t→ ∞.

Thus

Ua(tx) = Ua(t)x
aγ

(
1 +A(t)

[
xρ − 1

ρ
+ o(1)

])a
as t→ ∞.

Using a Taylor expansion and rearranging terms, we get:

Ua(tx) = Ua(t)

(
xaγ + aA(t)

[
xaγ(xρ − 1)

ρ
+ o(1)

])
as t→ ∞,

which is the result.

This result yields an important inequality which is actually contained in Theorem 2.3.9 in de Haan

and Ferreira (2006): for any a > 0, one may find a Borel measurable function Ba, asymptotically

equivalent to aA and having constant sign, such that for any ε > 0, there is t0 > 0 such that for

t, tx ≥ t0: ∣∣∣∣
1

Ba(t)

(
Ua(tx)

Ua(t)
− xaγ

)
− xaγ

xρ − 1

ρ

∣∣∣∣ ≤ εxaγ+ρmax(xε, x−ε). (12)

The second preliminary result is a technical lemma on some integrals, which we shall use frequently

in our proofs.

Lemma 2. Let g be a nondecreasing right-continuous function on [0, 1]. Assume that f is a Borel

measurable regularly varying function with index b ∈ R. If for some η > 0:

∫ 1

0

s−b−ηdg(s) <∞,

then for any δ ∈ R such that δ < η and any continuous and bounded function ϕ on (0, 1] we have,

provided k = k(n) → ∞ and k/n→ 0:

∫ 1

0

f(n/ks)

f(n/k)
s−δϕ(s)dg(s) →

∫ 1

0

s−b−δϕ(s)dg(s).

Proof of Lemma 2. Pick δ < η and define ε := (η − δ)/2 > 0, so that δ + ε < η. We have

∣∣∣∣
∫ 1

0

f(n/ks)

f(n/k)
s−δϕ(s)dg(s)−

∫ 1

0

s−b−δϕ(s)dg(s)

∣∣∣∣ ≤
∫ 1

0

sb+ε
∣∣∣∣
f(n/ks)

f(n/k)
− s−b

∣∣∣∣ s−b−δ−ε|ϕ(s)|dg(s).

20



J. El Methni & G. Stupfler Extreme versions of Wang risk measures

Notice that the function f1 : y 7→ y−b−εf(y) is regularly varying with index −ε < 0. By a uniform

convergence result for regularly varying functions (see e.g. Theorem 1.5.2 in Bingham et al., 1987):

sup
0<s≤1

sb+ε
∣∣∣∣
f(n/ks)

f(n/k)
− s−b

∣∣∣∣ = sup
0<s≤1

∣∣∣∣
f1(n/ks)

f1(n/k)
− sε

∣∣∣∣ = sup
t≥1

∣∣∣∣
f1(tn/k)

f1(n/k)
− t−ε

∣∣∣∣→ 0.

As a consequence
∣∣∣∣
∫ 1

0

f(n/ks)

f(n/k)
s−δϕ(s)dg(s)−

∫ 1

0

s−b−δϕ(s)dg(s)

∣∣∣∣ = O

(
sup

0<s≤1
sb+ε

∣∣∣∣
f(n/ks)

f(n/k)
− s−b

∣∣∣∣
)

and the right-hand side converges to 0. The proof is complete.

The third lemma is the key to the proof of Theorem 1. It examines the asymptotic behavior of

some weighted integrals of the empirical tail quantile process.

Lemma 3. Assume that condition C2(γ, ρ, A) is satisfied. Let a1, . . . , ad > 0, f1, . . . , fd be Borel

measurable regularly varying functions with respective indices bj ≤ ajγ and g1, . . . , gd be distortion

functions. Assume that k = k(n) → ∞, k/n→ 0,
√
kA(n/k) → λ ∈ R and for some η > 0:

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞.

Pick δ1, . . . , δd ∈ R such that δj < (ajγ − bj) + η, and set

Ij,n :=
1

fj(n/k)

∫ 1

0

fj(n/ks)
√
k

(
X
aj
n−⌊ks⌋,n

Uaj(n/k)
− s−ajγ

)
sajγ−δjdgj(s).

Then we have:

(I1,n, . . . , Id,n)
d−→ N (λC,Σ)

with C being the column vector with j−th entry

Cj = aj

∫ 1

0

s−ρ − 1

ρ
s−bj−δjdgj(s)

and Σ being the d× d matrix with (i, j)−th entry

Σi,j = aiajγ
2

∫

[0,1]2
min(s, t)s−bi−δi−1t−bj−δj−1dgi(s)dgj(t).

Proof of Lemma 3. Define ε := min1≤j≤d(η − δj)/2 > 0, so that δj + ε < η for all j, and let

ε′ > 0 be so small that

∀j ∈ {1, . . . , d}, ajγ +
1

2
+
ε

2
− 1− ε′

1 + 2ε′

(
ajγ +

1

2
+ ε

)
< 0. (13)

Set sn = k−(1−ε′)/(1+2ε′). Pick j ∈ {1, . . . , d} and use the triangle inequality to get:
∣∣∣∣∣

1

fj(n/k)

∫ sn

0

fj(n/ks)
√
k

(
X
aj
n−⌊ks⌋,n

Uaj(n/k)
− s−ajγ

)
sajγ−δjdgj(s)

∣∣∣∣∣ ≤ E
(1)
j,n + E

(2)
j,n,
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with

E
(1)
j,n =

√
k

X
aj
n,n

Uaj (n/k)

∫ sn

0

fj(n/ks)

fj(n/k)
sajγ−δjdgj(s)

and E
(2)
j,n =

√
k

∫ sn

0

fj(n/ks)

fj(n/k)
s−δjdgj(s).

Since the distribution of X is heavy-tailed it follows from Theorem 1.1.6, Theorem 1.2.1 and Lemma

1.2.9 in de Haan and Ferreira (2006) that Xn,n = OP(U(n)). Thus

E
(1)
j,n = OP

(√
k
Uaj (n)

Uaj(n/k)

∫ sn

0

fj(n/ks)

fj(n/k)
sajγ−δjdgj(s)

)

Use now Potter bounds for U (see e.g. Theorem 1.5.6 in Bingham et al., 1987) to get

E
(1)
j,n = OP

(
kajγ+1/2+ε/2

∫ sn

0

fj(n/ks)

fj(n/k)
sajγ−δjdgj(s)

)

= OP

(
kajγ+1/2+ε/2sajγn

∫ sn

0

fj(n/ks)

fj(n/k)
s−δjdgj(s)

)
.

Besides, note that

∫ sn

0

fj(n/ks)

fj(n/k)
s−δjdgj(s) ≤ s1/2+εn

∫ sn

0

fj(n/ks)

fj(n/k)
s−1/2−δj−εdgj(s) = o

(
s1/2+εn

)
,

by Lemma 2. Thus

E
(1)
j,n = oP(k

ajγ+1/2+ε/2sajγ+1/2+ε
n ) = oP(1) and E

(2)
j,n = oP(k

1/2+ε/2s1/2+εn ) = oP(1)

by (13) and the fact that sn = k−(1−ε′)/(1+2ε′). From this we deduce that for any j ∈ {1, . . . , d}:

Ij,n :=
1

fj(n/k)

∫ 1

sn

fj(n/ks)
√
k

(
X
aj
n−⌊ks⌋,n

Uaj (n/k)
− s−ajγ

)
sajγ−δjdgj(s) + oP(1).

Now, by Theorem 2.4.8 in de Haan and Ferreira (2006), we may find a Borel measurable function

A0 which has constant sign and is asymptotically equivalent to A at infinity such that for any ε > 0,

we have

sup
0<s≤1

sγ+1/2+ε′
∣∣∣∣
√
k

(
Xn−⌊ks⌋,n

U(n/k)
− s−γ

)
− γs−γ−1Wn(s)−

√
kA0(n/k)s

−γ s
−ρ − 1

ρ

∣∣∣∣
P−→ 0 (14)

where Wn is an appropriate sequence of standard Brownian motions. In other words:

Xn−⌊ks⌋,n

U(n/k)
= s−γ

(
1 +

1√
k
γs−1Wn(s) +A0(n/k)

s−ρ − 1

ρ
+

1√
k
s−1/2−ε′ oP(1)

)

with the oP(1) being uniform in s ∈ (0, 1]. Now for any n, Wn
d
= W where W is a standard

Brownian motion, and the random process W has continuous sample paths and s−1/2+ε′W (s) → 0

almost surely as s → 0. Moreover, for s ∈ [sn, 1], s
−1/2−ε′ ≤ s

−1/2−ε′

n =
√
k1−ε′ = o(

√
k). Finally,
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(s−ρ − 1)/ρ is bounded by a constant on [sn, 1] when ρ < 0, and is equal to − log(s) for ρ = 0 and

thus dominated by s−1/2−ε′ in a neighborhood of 0. A Taylor expansion therefore yields:

X
aj
n−⌊ks⌋,n

Uaj(n/k)
= s−ajγ

(
1 +

1√
k
γs−1Wn(s) +A0(n/k)

s−ρ − 1

ρ
+

1√
k
s−1/2−ε′ oP(1)

)aj

= s−ajγ
(
1 +

1√
k
ajγs

−1Wn(s) + ajA0(n/k)
s−ρ − 1

ρ
+

1√
k
s−1/2−ε′ oP(1)

)

where the oP(1) is uniform in s ∈ [sn, 1]. We deduce from this convergence that

Ij,n = ζj,n + ξj,n + oP

(∫ 1

0

fj(n/ks)

fj(n/k)
s−1/2−δj−ε

′

dgj(s)

)

with ζj,n = ajγ

∫ 1

0

fj(n/ks)

fj(n/k)
s−1−δjWn(s)dgj(s)

and ξj,n = aj
√
kA0(n/k)

∫ 1

0

fj(n/ks)

fj(n/k)

s−ρ − 1

ρ
s−δjdgj(s).

By Lemma 2, we obtain

Ij,n = ζj,n + ξj,n + oP(1). (15)

The bias term ξj,n is controlled by applying Lemma 2:

ξj,n = ajλ

∫ 1

0

s−ρ − 1

ρ
s−bj−δjdgj(s)(1 + o(1)) → λCj . (16)

Notice now that

(ζ1,n, . . . , ζd,n)
d
=

(
ajγ

∫ 1

0

fj(n/ks)

fj(n/k)
s−1−δjW (s)dgj(s)

)

1≤j≤d

whereW is a standard Brownian motion. SinceW has continuous sample paths and s−1/2+εW (s) →
0 almost surely as s→ 0, we get by Lemma 2 that

(ζ1,n, . . . , ζd,n)
d
=

(
ajγ

∫ 1

0

fj(n/ks)

fj(n/k)
(s−1/2+εW (s))s−1/2−δj−εdgj(s)

)

1≤j≤d

d−→
(
ajγ

∫ 1

0

s−1−bj−δjW (s)dgj(s)

)

1≤j≤d

.

The entries of this random vector are almost surely finite. Let us recall thatW is a centered Gaussian

process with covariance function Cov(W (s),W (t)) = min(s, t); consequently, for all (u1, . . . , ud) ∈
Rd, the random variable

d∑

j=1

ujajγ

∫ 1

0

s−1−bj−δjW (s)dgj(s)

is Gaussian centered and has variance

γ2Var




d∑

j=1

ujaj

∫ 1

0

s−1−bj−δjW (s)dgj(s)


 =

d∑

i,j=1

uiujΣi,j (17)

by Fubini’s theorem. It remains to combine Equations (15), (16) and (17), and to use the Cramér-

Wold theorem to complete the proof.
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The fourth and final lemma shall be useful to control the bias term in Theorem 2.

Lemma 4. Assume that Yi, i ≥ 1 are independent random variables with common cdf FY , such

that the left-continuous inverse UY of 1/(1 − FY ) satisfies condition C2(γY , ρY , AY ), with ρY < 0.

Assume further that βn, δn → 1, n(1 − βn) → ∞, (1 − δn)/(1 − βn) → 0 and
√
n(1− βn)AY ((1 −

βn)
−1) → λ ∈ R. Pick a distortion function g. If for some η > 0,

∫ 1

0

s−γY −ηdg(s) <∞,

then
Rg,δn(Y )

Rg,βn
(Y )

(
1− βn
1− δn

)−γY

= 1− λ/ρY√
n(1− βn)

∫ 1

0
s−γY −ρY dg(s)
∫ 1

0 s
−γY dg(s)

(1 + o(1)).

Proof of Lemma 4. Set k1 = k1(n) = n(1 − βn), rn = (1 − βn)/(1 − δn), k2 = k2(n) = k1/rn.

Since for any b ∈ (0, 1),

Rg,b(Y ) =

∫ 1

0

UY ([(1 − b)s]−1)dg(s),

we may write

Rg,δn(Y ) = rγYn Rg,βn
(Y ) + u1,n + u2,n (18)

where

u1,n = rγYn
rρYn − 1

ρY

∫ 1

0

UY (n/k1s)A0(n/k1s)dg(s)

and u2,n =

∫ 1

0

UY (n/k1s)A0(n/k1s)

(
1

A0(n/k1s)

[
UY (n/k2s)

UY (n/k1s)
− rγYn

]
− rγYn

rρYn − 1

ρY

)
dg(s)

with the notation of (14). By Lemma 2 and the convergence
√
k1A0(n/k1) → λ,

√
k1

u1,n
UY (n/k1)

= λrγYn
rρYn − 1

ρY

∫ 1

0

s−γY −ρY dg(s)(1 + o(1))

= − λ

ρY
rγYn

∫ 1

0

s−γY −ρY dg(s)(1 + o(1)) (19)

because rn → ∞ and ρY < 0. The sequence u2,n is controlled by using first inequality (12) and

Lemma 2: for any ε ∈ (0,−ρY ), we have if n is large enough,

√
k1

|u2,n|
UY (n/k1)

≤ εrγY +ρY +ε
n |

√
k1A0(n/k1)|

∫ 1

0

UY (n/k1s)|A0(n/k1s)|
UY (n/k1)|A0(n/k1)|

dg(s)

= ε|λ|rγY +ρY +ε
n

∫ 1

0

s−γY −ρY dg(s)(1 + o(1))

= o(rγYn ). (20)

Combining (19) and (20) entails

√
k1

UY (n/k1)
(u1,n + u2,n) = − λ

ρY
rγYn

∫ 1

0

s−γY −ρY dg(s)(1 + o(1)).
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Use once more Lemma 2 to get

Rg,βn
(Y )

UY (n/k1)
=

∫ 1

0

UY (n/k1s)

UY (n/k1)
dg(s) →

∫ 1

0

s−γY dg(s),

which yields √
k1

Rg,βn
(Y )

(u1,n + u2,n) = − λ

ρY
rγYn

∫ 1

0 s
−γY −ρY dg(s)

∫ 1

0
s−γY dg(s)

(1 + o(1)). (21)

Combining (18) and (21) completes the proof.
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Risk measure Rg(X) Distortion function g

VaR at level β g(x) = I{x ≥ 1− β} where 0 ≤ β < 1

TVaR above level β g(x) = min

{
x

1− β
, 1

}
where 0 ≤ β < 1

Proportional Hazard transform g(x) = xα where 0 ≤ α ≤ 1

Dual Power g(x) = 1− (1− x)1/α where 0 ≤ α ≤ 1

Gini’s principle g(x) = (1 + α)x− αx2 where 0 ≤ α ≤ 1

Denneberg’s absolute deviation g(x) =





(1 + α)x if 0 ≤ x ≤ 1/2

α+ (1− α)x if 1/2 ≤ x ≤ 1
where 0 ≤ α ≤ 1

Exponential transform g(x) =





(1− exp(−rx))/(1 − exp(−r)) if r > 0

x if r = 0

Logarithmic transform g(x) =





(log(1 + rx))/(log(1 + r)) if r > 0

x if r = 0

Square-root transform g(x) =





(
√
1 + rx − 1)/(

√
1 + r − 1) if r > 0

x if r = 0

S-inverse shaped transform g(x) = a

(
x3

6
− δ

2
x2 +

(
δ2

2
+ β

)
x

)

where a =

(
1

6
− δ

2
+
δ2

2
+ β

)
with 0 ≤ δ ≤ 1 and β ∈ R

Wang’s transform g(x) = Φ(Φ−1(x) + Φ−1(α))

where Φ is the standard Gaussian cdf and 0 ≤ α ≤ 1

Beta’s transform g(x) =

∫ x

0

1

β(a, b)
ta−1(1 − t)b−1dt

where β(a, b) is the Beta function with parameters a, b > 0

Table 1: Some risk measures and their distortion functions.

Risk measure Expression as a combination of CTMa(β) and VaR(β)

CTE(β) CTM1(β)

CVaRλ(β) λVaR(β) + (1− λ)CTM1(β) where λ ∈ [0, 1]

ω1CTM1(β) + ω2CTM1(α) + ω3VaR(α)

GlueVaRh1,h2

β,α where ω1 = h1 −
(h2 − h1)(1 − β)

β − α
, ω2 =

(h2 − h1)(1 − α)

β − α

and ω3 = 1− ω1 − ω2 = 1− h2, with h1 ∈ [0, 1], h2 ∈ [h1, 1] and α < β

SP(β) (1 − β)(CTM1(β)−VaR(β))

CTV(β) CTM2(β)− CTM2
1(β)

CTS(β) CTM3(β)/(CTM2(β)− CTM2
1(β))

3/2

Table 2: Link between the CTM and some risk measures when the cdf of X is continuous.
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MSE Fréchet Burr ρ = −1 Burr ρ = −2

CTE δ n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99 0.0307 0.0106 0.0366 0.0129 0.0294 0.00967

0.995 0.0432 0.0148 0.0532 0.0188 0.0407 0.0132

0.999 0.0843 0.0282 0.111 0.0382 0.0767 0.0240

γ = 1/4

0.99 0.0901 0.0260 0.105 0.0337 0.0762 0.0241

0.995 0.133 0.0365 0.158 0.0491 0.107 0.0331

0.999 0.302 0.0711 0.365 0.103 0.216 0.0612

γ = 1/3

0.99 0.210 0.0594 0.231 0.0750 0.213 0.0481

0.995 0.315 0.0840 0.359 0.110 0.317 0.0660

0.999 0.750 0.169 0.918 0.240 0.763 0.125

Table 3: Relative MSE, case of the CTE.

MSE Fréchet Burr ρ = −1 Burr ρ = −2

DP(1/2) δ n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99 0.0422 0.0135 0.0469 0.0163 0.0367 0.0127

0.995 0.0578 0.0182 0.0658 0.0227 0.0493 0.0168

0.999 0.109 0.0328 0.130 0.0437 0.0887 0.0290

γ = 1/4

0.99 0.109 0.0368 0.144 0.0445 0.105 0.0319

0.995 0.153 0.0496 0.211 0.0628 0.145 0.0421

0.999 0.311 0.0907 0.476 0.125 0.287 0.0736

γ = 1/3

0.99 0.313 0.0753 0.326 0.0999 0.229 0.0682

0.995 0.458 0.103 0.491 0.142 0.320 0.0900

0.999 1.058 0.194 1.218 0.296 0.668 0.160

Table 4: Relative MSE, case DP(1/2).
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MSE Fréchet Burr ρ = −1 Burr ρ = −2

DP(1/3) δ n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99 0.0475 0.0154 0.0545 0.0198 0.0434 0.0145

0.995 0.0642 0.0203 0.0751 0.0271 0.0571 0.0188

0.999 0.120 0.0353 0.145 0.0505 0.100 0.0312

γ = 1/4

0.99 0.142 0.0426 0.155 0.0527 0.120 0.0370

0.995 0.197 0.0564 0.220 0.0724 0.162 0.0476

0.999 0.398 0.100 0.463 0.139 0.311 0.0802

γ = 1/3

0.99 0.309 0.0970 0.372 0.116 0.270 0.0803

0.995 0.450 0.129 0.551 0.160 0.378 0.104

0.999 1.058 0.239 1.319 0.320 0.813 0.178

Table 5: Relative MSE, case DP(1/3).

MSE Fréchet Burr ρ = −1 Burr ρ = −2

PH(2/3) δ n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99 0.0381 0.0140 0.0437 0.0170 0.0362 0.0130

0.995 0.0515 0.0184 0.0606 0.0230 0.0483 0.0169

0.999 0.0959 0.0322 0.119 0.0430 0.0865 0.0283

γ = 1/4

0.99 0.107 0.0387 0.118 0.0433 0.106 0.0332

0.995 0.148 0.0504 0.168 0.0587 0.143 0.0422

0.999 0.300 0.0885 0.359 0.112 0.272 0.0696

γ = 1/3

0.99 0.242 0.0841 0.344 0.0959 0.235 0.0748

0.995 0.346 0.107 0.511 0.131 0.324 0.0939

0.999 0.792 0.188 1.271 0.260 0.691 0.156

Table 6: Relative MSE, case PH(2/3).
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MSE Fréchet Burr ρ = −1 Burr ρ = −2

PH(1/2) δ n = 100 n = 300 n = 100 n = 300 n = 100 n = 300

γ = 1/6

0.99 0.0450 0.0192 0.0486 0.0202 0.0442 0.0197

0.995 0.0562 0.0230 0.0629 0.0253 0.0549 0.0234

0.999 0.0926 0.0352 0.113 0.0423 0.0883 0.0345

γ = 1/4

0.99 0.119 0.0564 0.132 0.0581 0.119 0.0565

0.995 0.149 0.0648 0.172 0.0689 0.146 0.0642

0.999 0.264 0.0924 0.334 0.108 0.247 0.0878

γ = 1/3

0.99 0.253 0.128 0.408 0.149 0.260 0.133

0.995 0.307 0.139 0.551 0.169 0.307 0.143

0.999 0.540 0.182 1.217 0.252 0.495 0.175

Table 7: Relative MSE, case PH(1/2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Figure 1: Choosing β on a random sample of n = 100 Burr observations with γ = 1/2 and ρ = −1;

x−axis: 1 − β. The choice procedure is conducted with β0 = 0.5 and h = 0.1. The blue line is the

Hill estimator; we obtain β∗ = 0.86 and γ̂ = 0.475.
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Figure 2: Poker dataset (measurement unit: thousands of USD).
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Figure 3: Poker dataset: sample autocorrelation function until lag 34. Dashed line: 95% significance

level.
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Figure 4: Poker dataset: Hill estimators; x−axis: 1−β. Dashed line: standard Hill estimator, black

line: estimator γ̂RBβ (1), blue line: estimator γ̂RBβ (3/4), purple line: estimator γ̂RBβ (1/2), green line:

estimator γ̂RBβ (1/4), red line: estimator γ̂RBβ (0).

Estimator γ̂ β∗ Estimate of γ

Standard Hill 0.868 0.430

Bias-reduced Hill, τ = 1 0.853 0.197

Bias-reduced Hill, τ = 3/4 0.882 0.182

Bias-reduced Hill, τ = 1/2 0.794 0.225

Bias-reduced Hill, τ = 1/4 0.735 0.196

Bias-reduced Hill, τ = 0 0.735 0.145

Table 8: Poker dataset: estimates of γ.

δ V̂aR ĈTE ̂CVaR1/2
̂DP(1/2) ̂DP(1/3)

0.95 2234 3900 3067 4668 5155

0.97 2470 4312 3391 5161 5699

0.99 3065 5351 4208 6404 7072

Table 9: Poker dataset: estimating some risk measures (measurement unit: thousands of USD).
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