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In this work we consider formal singular vector fields in C 3 with an isolated and doubly-resonant singularity of saddle-node type at the origin. Such vector fields come from irregular two-dimensional systems with two opposite non-zero eigenvalues, and appear for instance when studying the irregular singularity at infinity in Painlevé equations (Pj ), j ∈ {I, II, III, IV, V }, for generic values of the parameters. Under generic assumptions we give a complete formal classification for the action of formal diffeomorphisms (by changes of coordinates) fixing the origin and fibered in the independent variable x. We also identify all formal isotropies (self-conjugacies) of the normal forms. In the particular case where the flow preserves a transverse symplectic structure, e.g. for Painlevé equations, we prove that the normalizing map can be chosen to preserve the transverse symplectic form.

Introduction

Definition and main result

We consider singular vector fields Y in C 3 which can be written in appropriate coordinates (x, y) := (x, y 1 , y 2 ) as

Y = x 2 ∂ ∂x + -λy 1 + F 1 (x, y) ∂ ∂y 1 + λy 2 + F 2 (x, y) ∂ ∂y 2 , (1.1) 
where λ ∈ C * and F 1 , F 2 are formal power series of order at least two. They represent singular irregular 2-dimensional systems having two opposite non-zero eigenvalues and a vanishing third eigenvalue.

Our main motivation is the study of the irregular singularity at infinity in Painlevé equations (P j ), j ∈ {I, II, III, IV, V }, for generic values of the parameters [START_REF] Yoshida | 2-parameter family of solutions for Painlevé equations (I)-(V) at an irregular singular point[END_REF]. These equations, discovered (mainly) by Paul Painlevé [START_REF] Painlevé | Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme[END_REF], share the property that the only movable singularities of their solutions are poles (the so-called Painlevé property); this is the complete list of all such equations up to changes of variables. They have been intensively studied since the important work of Okamoto [START_REF] Okamoto | Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P. Painlevé[END_REF]. The study of fixed singularities, and more particularly those at infinity, started to be investigated by Boutroux with his famous tritronquées solutions [START_REF] Painlevé | Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme[END_REF]. Recently, several authors provided more complete information about such singularities, studying the so-called quasi-linear Stokes phenomena and also giving connection formulas ( [START_REF] Joshi | On Boutroux's tritronquée solutions of the first Painlevé equation[END_REF], [START_REF] Kapaev | Connection formulae for the first Painlevé transcendent in the complex domain[END_REF] and [START_REF] Kapaev | Quasi-linear stokes phenomenon for the Painlevé first equation[END_REF]). However, to the best of our knowledge there are no general analytic classification for this kind of doubly-resonant saddle-nodes yet (using normal form theory).

More precisely, we would like to understand the action of germs of analytic diffeomorphisms on such vector fields by changes of coordinates. If one tries to do this, a first step would be to provide a formal classification, that is to study the action of formal changes of coordinates on these vector fields. This is the aim of this paper. Based on the usual strategy employed for the classification of resonant vector fields [START_REF] Martinet | Problèmes de modules pour des équations différentielles non linéaires du premier ordre[END_REF] in dimension 2, we give in a forthcoming paper a complete analytic classification for a more specific class of vector fields, by studying the non-linear Stokes phenomena.

To state our main results we need to introduce some notations and nomenclature.

• C x is the C-algebra of formal power series in the (multi)variable x = (x 1 , . . . , x n ) with coefficients in C. We denote by m its unique maximal ideal: it is formed by formal series with null constant term. For any formal series f 1 , . . . , f m in C x , we denote by f 1 , . . . , f m the ideal generated by these elements.

• D (1) is the Lie algebra of formal vector fields at the origin of C 3 which are singular (i.e. vanish at the origin). Any formal vector field in D (1) can be written

Y = b ∂ ∂x + b 1 ∂ ∂y 1 + b 2 ∂ ∂y 2 with b, b 1 , b 2 ∈ m.
• Diff is the group of formal diffeomorphisms fixing the origin of C 3 . It acts on D (1) by conjugacy: if (Φ, Y ) ∈ Diff × D (1) ,

Φ * (Y ) := (DΦ • Y ) • Φ -1 , (1.2) 
where DΦ is the Jacobian matrix of Φ.

• Diff fib is the subgroup of Diff of diffeomorphisms fibered in the x-coordinate, i.e. of the form (x, y) → (x, φ (x, y)).

Definition 1.1. A doubly-resonant saddle-node is a vector field Y ∈ D (1) which is Diff fib -conjugate to one of the form

Y = x 2 ∂ ∂x + -λy 1 + F 1 (x, y) ∂ ∂y 1 + λy 2 + F 2 (x, y) ∂ ∂y 2 ,
with λ ∈ C * and F 1 , F 2 ∈ m 2 . We will denote by SN the set of all such formal vector fields.

By Taylor expansion up to order 1 with respect to y, given a vector field Y ∈ SN written as above we can consider the associated 2-dimensional differential system:

x 2 dy dx = α (x) + A (x) y (x) + f (x, y (x)) , (1.3) 
where y = (y 1 , y 2 ), such that the following conditions hold:

• α (x) = α 1 (x) α 2 (x) , with α 1 , α 2 ∈ x 2 ⊂ C x • A (x) ∈ Mat 2,2 (C x ) with A (0) = Diag (-λ, λ), λ ∈ C * • f (x, y) = f 1 (x, y) f 2 (x, y) , with f 1 , f 2 ∈ y 1 , y 2 2 ⊂ C x, y .
Based on this expression, we state: We say that Y is non-degenerate if res (Y ) ∈ C\Q ≤0 , and we denote by SN nd ⊂ SN the subset of non-degenerate vector fields.

We will prove in subsection 3.1 that the residue of Y ∈ SN is invariant under the action of Diff fib by conjugacy. We can state now our first main result.

Theorem 1.3. Let Y ∈ SN nd be a non-degenerate doubly-resonant saddlenode. Then there exists a fibered diffeomorphism Φ ∈ Diff fib such that:

Φ * (Y ) = x 2 ∂ ∂x + (-λ + a 1 x + c 1 (v)) y 1 ∂ ∂y 1 + (λ + a 2 x + c 2 (v)) y 2 ∂ ∂y 2 , (1.4) 
where we put v := y 1 y 2 . Here, c 1 , c 2 in v = vC v are formal power series with null constant term and a 1 , a 2 ∈ C are such that a 1 + a 2 = res (Y ).

Remark 1.4. We will see in Corollary 3.4 and Proposition 3.2 that Φ as above is essentially unique (that is, unique up to pre-composition by linear transforms).

Definition 1.5. The parameter space for SN nd is the set

P := p = (λ, a 1 , a 2 , c 1 , c 2 ) ∈ C * × C 2 \∆ × (vC v ) 2 where ∆ = (a 1 , a 2 ) ∈ C 2 | a 1 + a 2 ∈ Q ≤0
is the locus of degeneracy. A vector field in the form (1.4) will be called a normal form of SN nd with parameters (λ, a 1 , a 2 , c 1 , c 2 ) in P.

Let us consider the quotient space

P (C * × Z /2Z)
where the group (C * × Z /2Z) acts on P as follows. Given p = (λ,

a 1 , a 2 , c 1 , c 2 ) ∈ P, θ ∈ C * and ǫ ∈ Z /2Z we define θ • (λ, a 1 , a 2 , c 1 , c 2 ) = (λ, a 1 , a 2 , c 1 • ϕ θ , c 2 • ϕ θ ) ǫ • (λ, a 1 , a 2 , c 1 , c 2 ) = (λ, a 1 , a 2 , c 1 , c 2 ) , if ǫ = 0 (-λ, a 2 , a 1 , c 2 , c 1 ) , if ǫ = 1 ,
where ϕ θ is the homothecy v → θv. If two parameters p, p ′ ∈ P are in the same orbit for this action we write p ∼ p ′ . Our second main result shows the uniqueness of the normal forms up to this action.

Theorem 1.6. Suppose Z and Z ′ are two normal forms of SN nd with respective parameters p = (λ, a 1 , a 2 , c 1 , c 2 ) ∈ P and

p ′ = (λ ′ , a ′ 1 , a ′ 2 , c ′ 1 , c ′ 2 ) ∈ P.
Then Z and Z ′ are Diff fib -conjugate if and only p ∼ p ′ .

One can rephrase the above results in terms of group actions as follows.

Corollary 1.7. There exists a bijection

SN nd Diff fib ≃ P (C * × Z /2Z) ,
where Diff fib acts on SN nd by conjugacy.

Let us make some remarks. Remark 1.8.

1. The condition of non-degeneracy is necessary to obtain such normal forms.

For instance for any

a 1 , a 2 ∈ C such that a 1 + a 2 = -p q ∈ Q ≤0 , with (p, q) ∈ N × N * , the vector field Y = x 2 ∂ ∂x + -λ + a 1 x + x p+1 (y 1 y 2 ) q y 1 ∂ ∂y 1 + (λ + a 2 x) y 2 ∂ ∂y 2 ,
with residue res (Y ) = -p q is not Diff fib -conjugate to a normal form as in Theorem 1.3. Indeed, the resonant term x p+1 (y 1 y 2 ) q cannot be eliminated by the action of Diff fib .

2. Notice that the above two results are not immediate consequences of Poincaré-Dulac normal form theory. In fact, the usual Poincaré-Dulac normal form possibly contains several additional resonant terms of the form

x k (y 1 y 2 ) l k,l∈N
, and is far from being unique.

Painlevé equations and the transversally symplectic case

In [START_REF] Yoshida | 2-parameter family of solutions for Painlevé equations (I)-(V) at an irregular singular point[END_REF] Yoshida shows that a vector field in the class SN nd naturally appears after a suitable compactification (given by the so-called Boutroux coordinates [START_REF] Boutroux | Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre[END_REF]) of the phase-space of Painlevé equations (P j ), j ∈ {I, II, III, IV, V } (for generic values of the parameters). In these cases the vector field presents an additional Hamiltonian structure that will interest us. Let us illustrate these computations in the case of the first Painlevé equation:

(P I ) d 2 z 1 dt 2 = 6z 2 1 + t .
As is well known since Okamoto [START_REF] Okamoto | Polynomial Hamiltonians associated with Painlevé equations[END_REF], (P I ) can be seen as a non-autonomous Hamiltonian system

∂z1 ∂t = -∂H ∂z2 ∂z2 ∂t = ∂H ∂z1
with Hamiltonian

H (t, z 1 , z 2 ) := 2z 3 1 + tz 1 - z 2 2 2 .
More precisely, if we consider the standard symplectic form ω st := dz 1 ∧ dz 2 and the vector field

Z := ∂ ∂t - ∂H ∂z 2 ∂ ∂z 1 + ∂H ∂z 1 ∂ ∂z 2
induced by (P I ), then the Lie derivative

L Z (ω st ) = ∂ 2 H ∂t∂z 1 dz 1 + ∂ 2 H ∂t∂z 2 dz 2 ∧ dt = dz 1 ∧ dt
belongs to the ideal dt generated by dt in the exterior algebra Ω * C 3 of differential forms in variables (t, z 1 , z 2 ). Equivalently, for any t 1 , t 2 ∈ C the flow of Z at time (t 2t 1 ) acts as a symplectomorphism between fibers {t = t 1 } and {t = t 2 }.

The weighted compactification given by the Boutroux coordinates [START_REF] Boutroux | Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre[END_REF] (see also [START_REF] Chiba | The first, second and fourth Painlevé equations on weighted projective spaces[END_REF]) defines a chart near {t = ∞} as follows:

     z 2 = y 2 x -3 5 z 1 = y 1 x -2 5 t = x -4 5 .
In the coordinates (x, y 1 , y 2 ), the vector field Z is transformed, up to a translation

y 1 ← y 1 + ζ with ζ = i √ 6
, into the vector field

Z = - 5 4x 1 5 Y (1.5)
where

Y = x 2 ∂ ∂x + - 4 5 y 2 + 2 5 xy 1 + 2ζ 5 x ∂ ∂y 1 + - 24 5 y 2 1 - 48ζ 5 y 1 + 3 5 xy 2 ∂ ∂y 2 . (1.6)
We observe that Y is a non-degenerate doubly-resonant saddle-node Y as in Definitions 1.1 and 1.2 with residue res (Y ) = 1. Furthermore we have:

     dt = -4 5 5 4 5 x -9 5 dx dz 1 ∧ dz 2 = 1 x (dy 1 ∧ dy 2 ) + 1 5x 2 (2y 1 dy 2 -3y 2 dy 1 ) ∧ dx ∈ 1 x (dy 1 ∧ dy 2 ) + dx
, where dx denotes the ideal generated by dx. We finally obtain

   L Y dy 1 ∧ dy 2 x = 1 5x (3y 2 dy 1 -(2ζ + 2y 1 ) dy 2 ) ∧ dx L Y (dx) = 2xdx . Therefore, both xL Y dy 1 ∧ dy 2 x
and L Y (dx) are differential forms which lie in the ideal dx . This motivates the following definition.

Definition 1.9. Consider the rational 1-form

ω := dy 1 ∧ dy 2 x .
We say that a formal vector field Y ∈ D (1) is transversally Hamiltonian (with respect to ω and dx) if

L Y (dx) ∈ dx and xL Y (ω) ∈ dx .
We say a formal diffeomorphism Φ ∈ Diff is transversally symplectic (with respect to ω and dx) if

Φ * (x) = x and xΦ * (ω) ∈ xω + dx .
(Here Φ * (ω) denotes the pull-back of ω by Φ.)

We denote respectively by D ω and Diff ω the sets of transversally Hamiltonian vector fields and transversally symplectic diffeomorphisms.

Remark 1.10.

• The flow of a transversally Hamiltonian X defines a map between fibers {x = x 1 } and {x = x 2 } which sends ω |x=x1 onto ω |x=x2 , since

(exp (X)) * (ω) ∈ ω + dx .
• By our definition, a transversally symplectic diffeomorphism Φ ∈ Diff ω is necessarily a fibered diffeomorphism. In other words: Diff ω ⊂ Diff fib .

Definition 1.11. A transversally Hamiltonian doubly-resonant saddlenode is a vector field Y ∈ D ω which is Diff ω -conjugate to one of the form

Y = x 2 ∂ ∂x + -λy 1 + F 1 (x, y) ∂ ∂y 1 + λy 2 + F 2 (x, y) ∂ ∂y 2 ,
with λ ∈ C * and F 1 , F 2 ∈ m 2 . We will denote by SN ω the set of all such formal vector fields.

Notice that a transversally Hamiltonian doubly-resonant saddle-node Y ∈ SN ω is necessarily non-degenerate since its residue is always equal to 1. In other words: SN ω ⊂ SN nd . Theorem 1.12. Let Y ∈ SN ω be a transversally Hamiltonian doubly-resonant saddle-node. Then, there exists a transversally symplectic diffeomorphism Φ ∈ Diff ω such that:

Φ * (Y ) = x 2 ∂ ∂x + (-λ + a 1 x -c (v)) y 1 ∂ ∂y1 + (λ + a 2 x + c (v)) y 2 ∂ ∂y2 . (1.7)
where we put v := y 1 y 2 . Here, c (v) in vC v is a formal power series with null constant term and a 1 , a 2 ∈ C are such that a 1 + a 2 = res (Y ) = 1. Furthermore this normal form is unique with respect to the action of Diff ω .

One can rephrase the theorem above in terms of group action.

Corollary 1.13. There exists a bijection

SN ω Diff ω ≃ C * × (a 1 , a 2 ) ∈ C 2 | a 1 + a 2 = 1 × vC v .
Remark 1.14.

1. As for Theorem 1.3, Φ is essentially unique (Corollary 3.4). This is an immediate consequence of Theorem 1.6. However, the fact that the normalizing diffeomorphism Φ in Theorem 1.12 is transversally symplectic is not an immediate consequence of Theorem 1.6.

2. The above normalization theorem can be interpreted as defining local action-angle coordinates for vector fields in SN ω . More precisely, if we consider the successive symplectic changes of coordinates   

y 1 = e i π 4 √ 2 (u 1 + iu 2 ) y 2 = e i π 4 √ 2 (u 1 -iu 2 )
and

u 1 = √ 2ρ cos ϕ u 2 = √ 2ρ sin ϕ ,
then the vector field (1.7) becomes:

x 2 ∂ ∂x + e -i π 4 x √ ρ ∂ ∂ρ + i λ + c (iρ) + (a 2 -a 1 ) 2 x ∂ ∂ϕ .
Notice that the corresponding differential equation can be explicitly integrated by quadratures in terms of an anti-derivative of c.

We will explain in section 4 how to compute inductively any finite jet of c (v) in the case of the Painlevé equations (for which c (v) is a germ of an analytic function at the origin).

Corollary 1.15. Let Y be as in (1.6). Then 

a 1 = a 2 = 1 2 , λ = 8 √ 3ζ 5 = 4•2 3 4 •3

Known results

In [START_REF] Yoshida | 2-parameter family of solutions for Painlevé equations (I)-(V) at an irregular singular point[END_REF], [START_REF] Yoshida | A general solution of a nonlinear 2-system without Poincaré's condition at an irregular singular point[END_REF] Yoshida shows that the doubly-resonant saddle-nodes arising from the compactification of Painlevé equations (P j ), j ∈ {I, II, III, IV, V } (for generic values for the parameters) is conjugate to polynomial vector fields of the form

Z = x 2 ∂ ∂x + -(1 + γy 1 y 2 ) + a 1 x y 1 ∂ ∂y 1 + 1 + γy 1 y 2 + a 2 x y 2 ∂ ∂y 2 , (1.8) 
with γ ∈ C * and (a 1 , a 2 ) ∈ C 2 such that a 1 +a 2 = 1. One drawback of this result is that Yoshida admits fibered transformations Ψ (x, y) = (x, ψ 1 (x, y) , ψ 2 (x, y))

of a more general form:

ψ i (x, y) = y i     1 + (k0,k1,k2)∈N 3 k1+k2≥1 q i,k (x) x k0 y k1+k0 1 y k1+k0 2     , (1.9) 
where each q i,k is a formal power series. Notice that x can appear with negative exponents and therefore Ψ / ∈ Diff. As we will see in the next subsection, the problem (when seen from the viewpoint of analytic classification) is that the transformations used by Yoshida have "small" regions of convergence, in the sense that one cannot cover an entire neighborhood of the origin in C 3 by taking the union of these regions. On the contrary, we prove in an upcoming work that the formal normalizations presented here can be embodied by diffeomorphisms analytic on finitely many sectors whose union is a neighborhood of the origin. This entails the classical theory of summability of formal power series.

Analytic results

Several authors studied the problem of convergence of the conjugating transformations described above. Some results (that we recall soon) will hold not only in the class of formal objects, but also for Gevrey (and even summable) ones, or more generally for holomorphic functions with asymptotic expansions in sectorial domains. We refer to [START_REF] Malgrange | Sommation des séries divergentes[END_REF] and [START_REF] Martinet | Problèmes de modules pour des équations différentielles non linéaires du premier ordre[END_REF] for details on asymptotic expansions, Gevrey and summability theory.

Assuming that the initial vector field is analytic, Yoshida proves in [START_REF] Yoshida | A general solution of a nonlinear 2-system without Poincaré's condition at an irregular singular point[END_REF] that he can chose a conjugacy of the form (1.9) which is the asymptotic expansion of an analytic function in a domain

(x, z) ∈ S × D (0, r) | |z 1 z 2 | < ν |x|
for some small ν > 0, where S is a sector of opening less than π with vertex at the origin and D (0, r) is a polydisc of small poly-radius r = (r 1 , r 2 ). Moreover, the (q i,k (x)) i,k are in fact Gevrey-1 series.

Under more restrictive conditions (which correspond to c 1 = c 2 = 0 and Re (a 1 + a 2 ) > 0 in Theorem 1.3), Shimomura, improving on a result by Iwano [START_REF] Iwano | On a general solution of a nonlinear 2-system of the form x 2 dw/dx = Λw + xh(x, w) with a constant diagonal matrix Λ of signature (1, 1)[END_REF], shows in [START_REF] Shimomura | Analytic integration of some nonlinear ordinary differential equations and the fifth Painlevé equation in the neighbourhood of an irregular singular point[END_REF] that analytic doubly-resonant saddle-nodes satisfying these conditions are conjugate to:

x 2 ∂ ∂x + (-λ + a 1 x) y 1 ∂ ∂y 1 + (λ + a 2 x) y 2 ∂ ∂y 2
via a diffeomorphism whose coefficients have asymptotic expansions as x → 0 in sectors of opening greater than π. Stolovitch generalized this result for any dimension in [START_REF] Stolovitch | Classification analytique de champs de vecteurs 1résonnants de (C n , 0)[END_REF]. Unfortunately, as shown by Yoshida in [START_REF] Yoshida | 2-parameter family of solutions for Painlevé equations (I)-(V) at an irregular singular point[END_REF], the hypothesis c 1 = c 2 = 0 is not met in the case of Painlevé equations.

In a forthcoming series of papers we will prove an analytic version of Theorem 1.12, valid in sectorial domains with sufficiently large opening, which in turn will help us to provide an analytic classification. Let us insist once more on the key fact that the union of these sectorial domains forms a whole neighborhood of the origin.

Outline of the paper

• In section 2 we recall some basic concepts and results from the theory of formal vector fields and differential forms.

• In section 3 we prove Theorems 1.3, 1.6 and 1.12, and compute the isotropies of the associated normal forms.

• In section 4 we explain how to compute any finite jet of the formal invariant c in Theorem 1.12 in the case of the Painlevé equations. 

Background

We refer the reader to [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF], [START_REF] Martinet | Normalisation des champs de vecteurs holomorphes (d'après A.-D. Brjuno)[END_REF] and [START_REF] Brjuno | Analytic form of differential equations. I, II[END_REF] for a detailed introduction to formal vector fields and formal diffeomorphisms. Although these concepts are well-known by specialists, we will recall briefly the needed results and nomenclature.

Formal power series, vector fields and diffeomorphisms

As usual, we will denote a formal power series as

f (x) = k f k x k where, for all k = (k 1 , . . . , k n ) ∈ N, f k ∈ C and x k = x k1 1 . . . x kn n .
We will also use the notation

|k| = k 1 + • • • + k n for the degree of a monomial x k (which is of homogenous degree k = (k 1 , . . . , k n )).
We denote respectively by C x , D, Diff the sets of formal power series (equipped with an algebra structure), vector field (equipped with a Lie algebra structure), diffeomorphisms (equipped with a group structure). The maximal ideal of the algebra C x formed by formal power series with null constant term is denoted by m.

A vector field will be seen either as a an element of (C x )

n or as a derivation on C x : for any vector field

X = α 1 ∂ ∂x 1 + • • • + α n ∂ ∂x n ∈ (C x ) n , (2.1) 
its Lie derivative is defined as the operator

L X (f ) = α 1 ∂f ∂x 1 + • • • + α n ∂f ∂x n , (2.2) 
for any formal power series f ∈C x . The Lie bracket [X, Y ] of two vector fields X, Y ∈ D is defined by

L [X,Y ] (f ) = L X (L Y (f )) -L Y (L X (f )) for all f ∈ C x .
Similarly, a formal diffeomorphism will be seen either as an element of

Φ (x) ∈ (C x ) n such that Φ (0) = 0 and D 0 Φ = Jac (Φ (0)) ∈ Gl n (C), or as an algebra automorphism of C x : given a formal series f = k∈N n a k x k ∈ C x , we denote by Φ * (f ) = k∈N n a k φ k1 1 • • • φ kn n , (2.3) 
the pull-back of f by Φ ∈ Diff, where

φ 1 = Φ (x 1 ) , . . . , φ n = Φ (x n ) .
The Jacobian matrix (or the linear part) of Φ in the basis (x 1 , . . . , x n ) is the

matrix ∂φ i ∂x j (0, . . . , 0) i,j
.

The order ord (f ) (resp. ord (X), resp. ord (Φ)) of a non-zero formal power series

f ∈ C x (resp. vector field X ∈ D, resp. diffeomorphism Φ ∈ Diff) is the maximal integer k ≥ 0 such that f ∈ m k (resp. L X (m) ⊂ m k , resp. Φ * (m) ⊂ m k ).
The notion of order allows to define the classical Krull topology on C x , D and Diff. The set of formal vector field of order at least k is a submodule denoted by D (k) ⊂ D. In particular, D (1) is the submodule of singular formal vector fields. We denote by A (k) ⊂ Diff the normal subgroup formed by those automorphisms Φ such that

Φ (x i ) -x i ∈ m k+1
for each i = 1, . . . , n. Each element of A (k) will be called a formal diffeomorphism tangent to the identity up to order k.

Given a subgroup G ⊂ Diff, we say that two vector fields Y 1 , Y 2 in D are G-conjugate if there exits a Φ∈G such that:

L Y1 • Φ = Φ • L Y2 .
The following two lemmas will be important in the proof of Theorem 1.3. Lemma 2.1. Let X, Y ∈ D (1) be two singular formal vector fields. Then:

ord ([X, Y ]) ≥ ord (X) + ord (Y ) -1 . Lemma 2.2. Let (d n ) n≥0 ⊂ N >0 be
a strictly increasing sequence of positive integers, and (Φ n ) n≥0 a sequence of formal diffeomorphisms. Assume that for all n ≥ 0, Φ n (x) = x + P dn (x) mod m dn+1 , where P dn (x) is a vector homogenous polynomial of degree d n . Then the sequence

Φ [n] n≥0 , defined by Φ [n] = Φ n • • • • • Φ 0 , for all n ≥ 0, is convergent, of limit Φ ∈ Diff.
Moreover, if each Φ n is fibered then Φ is fibered too.

Proof. It suffices to prove by induction that for all n ≥ 0:

Φ n • • • • • Φ 0 (x) = x + P d0 (x) + • • • + P dn (x) mod m dn+1 ,
because the sequence (d n ) n≥0 ⊂ N >0 is strictly increasing.

Exponential map and logarithm

Given formal vector field X ∈ D (1) and a formal power series f ∈ C x and we set

L •0 X (f ) = f L •(k+1) X (f ) := L X L •k X (f )
, for all k ≥ 0 so that we can consider the algebra homomorphism given by:

exp (X) * : f → k≥0 1 k! L •k X (f ) . (2.4)
This series is convergent in the Krull topology and defines in fact a formal diffeomorphism, which is called the time 1 formal flow of X ∈ D (1) or the exponential of X. (see e.g. section 3 in [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF]).

For any vector field X ∈ D (1) , we consider also the adjoint map

ad X : D (1) → D (1) Y → [X, Y ]
and define

(ad X ) •0 := Id (ad X ) •(k+1) := ad X • (ad X ) •k , ∀k ∈ N .
We will need the following classical formula (see [START_REF] Martinet | Normalisation des champs de vecteurs holomorphes (d'après A.-D. Brjuno)[END_REF]).

Proposition 2.3. Given X, Y ∈ D (1) :

exp (X) * (Y ) = exp (ad X ) (Y ) ,
where

exp (ad X ) (Y ) = k≥0 1 k! (ad X ) •k (Y ) = Y + 1 1! [X, Y ] + 1 2! [X, [X, Y ]] + . . . .
We also recall the existence of a logarithm for all formal diffeomorphisms tangent to the identity (see [START_REF] Ilyashenko | Lectures on analytic differential equations[END_REF], section 3). Proposition 2.4. For any formal diffeomorphism Φ ∈ Diff, there exists a unique vector field F ∈ D (2) such that Φ = ϕ • exp (F ), where ϕ ∈ Diff is the linear change of coordinate given by D 0 Φ. Moreover, for each k ≥ 2, the exponential map defines a bijection between D (k) and A (k-1) .

Jordan decomposition and Dulac-Poincaré normal forms

According to [START_REF] Martinet | Normalisation des champs de vecteurs holomorphes (d'après A.-D. Brjuno)[END_REF], any singular formal vector field X ∈ D (1) admits a unique Jordan decomposition: X = X S + X N , with X S , X N ∈ D (1) and [X S , X N ] = 0 , (

where the restriction of X S (resp. X N ) to each k-jet vector space J k = m /m k (which is finite dimensional), k ≥ 0, is semi-simple (resp. nilpotent). This decomposition is compatible with truncation and invariant by conjugacy: if

X = X S + X N is the Jordan decomposition of X then 1. for all k ≥ 0, j k (X) = j k (X S ) + j k (X N )
is the Jordan decomposition of j k (X)(here, for any singular vector field Y ∈ D (1) , j k (Y ) is the endomor-

phism J k → J k induced by L Y ); 2. for any formal diffeomorphism ϕ ∈ Diff, ϕ * (X) = ϕ * (X S ) + ϕ * (X N ) is the Jordan decomposition of ϕ * (X).
Definition 2.5. We say that X ∈ D (1) 

is in Poincaré-Dulac normal form if its Jordan decomposition X = X S + X N is such that X S is in diagonal form, i.e. X S = S (λ), where λ := (λ 1 , . . . , λ n ) ∈ C n and S (λ) := λ 1 x 1 ∂ ∂x 1 + • • • + λ n x n ∂ ∂x n . (2.6) 
As mentioned in the introduction, according to Poincaré-Dulac Theorem, any singular vector field is conjugate to a Poincaré-Dulac normal form, but this normal form is far from being unique: every vector field is conjugate to many distinct Poincaré-Dulac normal forms.

Definition 2.6. A monomial vector field is a vector field in D of the form x k S (µ) for some k ∈ I, where I is the index set

I := {k = (k 1 , . . . k n ) ∈ (Z ≥-1 ) n | at most one of the k j 's is -1} ,
and some µ ∈ C n with the condition that µ = (0, . . . , 0, µ j , 0, . . . 0)

↑ j if k j = -1.
Fixing λ ∈ C n , each monomial vector field x k S (µ) is an eigenvector for ad S(λ) with eigenvalue

λ, k := λ 1 k 1 + • • • + λ n k n .
This is a consequence of the following elementary lemma. Lemma 2.7. For all λ, µ ∈ C n , and for all l, m ∈ Z n :

x l S (λ) , x m S (µ) = x l+m ( λ, m S (µ) -µ, l S (λ)) .
Remark 2.8. Notice that each X ∈ D can be uniquely written as an infinite sum of monomial vector fields of the form

X = k∈I x k S (µ k ) ,
which is a Krull-convergent series in D. We will call this expression the monomial expansion of X.

Assume now that X = S (λ) + X N is in Poincaré-Dulac normal form and let us consider the monomial expansion of X N :

X N = k∈I x k S (µ k ) . The condition [X S , X N ] = 0 is equivalent to require ∀k ∈ I, λ, k = 0 =⇒ µ k = 0 ;
in other words, each x k in the monomial expansion of X N is a so-called resonant monomial.

Proposition 2.9. Let X, Y ∈ D (1) be two vector fields in Poincaré-Dulac normal form with the same semi-simple part S (µ) for some µ ∈ C n , and with nilpotent parts in D (2) :

X = S (µ) + X N
, with X N ∈ D (2) , nilpotent, and

[S (µ) , X N ] = 0 Y = S (µ) + Y N , with Y N ∈ D (2) , nilpotent, and [S (µ) , Y N ] = 0 .
Assume X and Y are conjugate by a formal diffeomorphism Φ such that D 0 Φ = diag (λ 1 , . . . , λ n ) for some λ 1 , . . . , λ n ∈ C * . If we write Φ = ϕ•exp (F ) for some vector field F ∈ D (2) , where ϕ ∈ Diff is the linear diffeomorphism associated to D 0 Φ = diag (λ 1 , . . . , λ n ), then necessarily [S (µ) , F ] = 0.

Remark 2.10. Recall that the condition [S (µ) , F ] = 0 means that if we write

F = k∈I x k S (λ k ), then µ, k = 0 =⇒ λ k = 0.
Proof. We can assume without loss of generality that Φ is tangent to the identity. Indeed by setting P := (D 0 Φ) -1 , we obtain that P • Φ is tangent to the identity and conjugates X to Ỹ = DP • Y • P -1 . Since DP is diagonal, the assumptions made on Y are also met by Ỹ . Moreover, it is clear that the property we have to prove is true for Φ if and only if it is true for P • Φ. Therefore we may suppose that Φ is tangent to the identity. According to Proposition 2.4, there exists F ∈ D (2) such that exp (F ) = Φ, while according to Proposition 2.3 we have:

exp (F ) * (S (µ)) = S (µ) + [F, S (µ)] + 1 2! [F, [F, S (µ)]] + . . . (2.7) 
Since exp (F ) * (S (µ)) = S (µ) by uniqueness of the Jordan decomposition, we have

[F, S (µ)] + 1 2! [F, [F, S (µ)]] + . . . = 0 . (2.8)
This implies that [F, S (µ)] = 0, using Lemma 2.1 and the fact that ord (F ) ≥ 2.

Remark 2.11. The assumption that D 0 Φ is in diagonal form necessarily holds if µ i = µ j , for all i = j.

Formal differential forms

Definition 2.12. We denote by Ω 1 (C x ) (or just Ω 1 for simplicity) the set of formal 1-forms in C n . It is the dual of Der (C x ) as C x -module.

Fixing the dual basis (dx 1 , . . . One can also extend the Krull topology to Ω. We can define the action of Diff by pull-back on Ω (C x ) thanks to the following properties:

dx n ) of (C n ) * , Ω 1 (C x ) is a free C x - module of
1. C-linearity 2. for all f ∈ C x , Φ * (f ) is defined as in (2.3) 3. ∀α, β ∈ Ω (C x ), ∀Φ ∈ Diff, Φ * (α ∧ β) = Φ * (α) ∧ Φ * (β) 4. ∀Φ ∈ Diff, Φ * • d = d • Φ * .
For any X ∈ D (1) and α ∈ Ω (C x ), we denote by L X (α) the Lie derivative of α with respect to X. We recall that L X is uniquely determined by the following properties:

1. for all k ≥ 0, L X : Ω k (C x ) -→ Ω k (C x ) is linear 2. for all f ∈ C x (i.e. f is a 0-form ), L X (f ) is as in Definition (2.2)
3. L X is a derivation of Ω (C x ), i.e. for all α, β ∈ Ω (C x ):

L X (α ∧ β) = L X (α) ∧ β + α ∧ L X (β) (Leibniz rule) 4. L X • d = d • L X .
We will need the following classical formula, which extends (2.4).

Proposition 2.15. ∀α ∈ Ω (C x ) , X ∈ D (1) :

exp (X) * (α) = exp (L X ) (α) = k≥0 1 k! L •k X (α) .
Proof. (Sketch) This formula is true for 0-forms, and we just has to prove it for 1-forms, because we can then it extend to any p-form using the exterior product and the Leibniz formula. In order to prove the result for 1-forms, one has to use the fact that

L X • d = d • L X .
With the same arguments, and using formulas

Φ * •d = d•Φ * and Φ * (α ∧ β) = Φ * (α) ∧ Φ * (β)
, we can prove the following Proposition. Proposition 2.16. For all Φ ∈ Diff, X ∈ D (1) and θ ∈ Ω (C x ), we have;

Φ * L Φ * (X) (ω) = L X (Φ * (ω)) .
In other words, the following diagram is commutative for all p ≥ 0:

Ω p Φ * / / L Φ * (X) Ω p LX Ω p Φ * / / Ω p
From now on, we set n = 3, we denote by x = (x, y) = (x, y 1 , y 2 ) the coordinates in C 3 . Definition 2.17. We denote by dx the ideal generated by dx in Ω = Ω (C x, y ): it is the set of forms θ ∈ Ω such that θ = dx ∧ η, for some η ∈ Ω.

Proposition 2.18. Let θ ∈ Ω, X ∈ D (1) and set Φ := exp (X) ∈ Diff. Then the following assertions are equivalent:

1. L X (x) = 0 and L X (θ) ∈ dx 2. Φ * (x) = x and Φ * (θ) ∈ θ + dx .
Proof. It is just a consequence of Propositions 2.15 and 2.3.

The next Lemma is proved by induction, as Lemma 2.2.

Lemma 2.19. In the situation described in Lemma 2.2, if we further assume that there exists a form θ ∈ Ω such that Φ * n (θ) ∈ θ + dx , for all n ≥ 0, then Φ * (θ) ∈ θ + dx .

Transversal Hamiltonian vector fields and transversal symplectomorphisms

We will need in fact to deal with forms with rational coefficients, and more precisely with

ω := dy 1 ∧ dy 2 x .
Given a formal vector field X such that L X (x) ∈ x we can easily extend its Lie derivative action to the set x -1 Ω (C x, y ) by setting:

L X 1 x θ := - L X (x) x 2 θ + 1 x L X (θ) , θ ∈ Ω (C x, y ) ∈ x -1 Ω (C x, y ) , because L X (x) ∈ x .
In particular we have

xL X 1 x θ ∈ Ω (C x, y ) .
Notice that if a vector field X satisfy L X (dx) ∈ dx , then L X (x) ∈ x . Similarly, we naturally extend the action of fibered diffeomorphisms by pullback on rational forms in x -1 Ω (C x, y ) by:

Φ * 1 x θ = 1 x Φ * (θ) , for (Φ, θ) ∈ Diff fib × Ω (C x, y ) so that xΦ * 1 x θ = Φ * (θ) .
Recalling Definition 1.9, we can now state a result analogous to Proposition 2.18.

Proposition 2.20. Let F ∈ D (1) be a singular vector field. The following two statements are equivalent:

1. exp (F ) is a transversally symplectic diffeomorphisms , Proof. This comes from Proposition 2.16: Φ * L Φ * (X) (ω) = L X (Φ * (ω)), and from the fact that Diff ω is a group, so Φ -1 ∈ Diff ω . Consequently we have:

xL Φ * (X) (ω) = x Φ -1 * L X (Φ * (ω)) = x Φ -1 * L X (ω + dx ) = x Φ -1 * (L X (ω)) + x Φ -1 * (L X ( dx )) = x Φ -1 * ( dx ) + x Φ -1 * ( dx ) ∈ dx .
Remark 2.22. In other words, we have an action of the group Diff ω on D ω , and then on SN ω .

We would like now to give a characterization of transversally Hamiltonian vector fields in terms of its monomial expansion (see Remark 2.8). Consider a monomial vector field X = x k0 y k1 1 y k2 2 S (µ) , with µ = (µ 0 , µ 1 , µ 2 ) ∈ C 3 \ {0}, such that L X (x) ∈ x . We necessarily have either µ 0 = 0 or k 0 ≥ 0. Let us compute its Lie derivative applied to ω:

L X (ω) = - L X (x) x 2 dy 1 ∧ dy 2 + 1 x d (L X (y 1 )) ∧ dy 2 + 1 x dy 1 ∧ d (L X (y 2 )) = -µ 0 x k0-1 y k1 1 y k2 2 dy 1 ∧ dy 2 + µ 1 x d x k0 y k1+1 1 y k2 2 ∧ dy 2 + µ 2 x dy 1 ∧ d x k0 y k1 1 y k2+1 2 = (µ 1 (k 1 + 1) + µ 2 (k 2 + 1) -µ 0 ) x k0-1 y k1 1 y k2 2 dy 1 ∧ dy 2 + dx .
Moreover:

L X (dx) = d (L X (x)) = d µ 0 x k0+1 y k1 1 y k2 2 = µ 0 (k 0 + 1) x k0 y k1 1 y k2 2 dx + k 1 x k0+1 y k1-1 1 y k2 2 dy 1 + k 2 x k0+1 y k1 1 y k2-1 2 dy 2 .
Thus, we see that X is transversally Hamiltonian if and only if the following two conditions hold:

1. µ 1 (k 1 + 1) + µ 2 (k 2 + 1) = µ 0 2. either µ 0 = 0 or k 1 = k 2 = 0.
So we have the following:

Proposition 2.23. Let X ∈ D (1) be a singular vector field and let 

X = k∈I x k S (µ k ) be its
L x l S(µ l ) (dx) / ∈ dx
to obtain a contradiction, by looking at the terms of higher order. Similarly, according to the computation above, for each k ∈ I:

L x k S(µ k ) (ω) = (µ 1 (k 1 + 1) + µ 2 (k 2 + 1) -µ 0 ) x k0-1 y k1 1 y k2
2 dy 1 ∧ dy 2 + dx If one of the two conditions 1. or 2. above were not satisfied by a couple (k, µ k ) with |k| minimal, then we could not have xL X (ω) ∈ dx (just consider the terms of higher order).

3 Formal classification under fibered transformations

Invariance of the residue by fibered conjugacy

We start this section by proving that the non-degenerate condition defined in the introduction only depends on the conjugacy class of the vector field under the action of fibered diffeomorphisms. More precisely, the following proposition states that the residue is an invariant of a doubly-resonant saddle-node under the action of Diff fib . Proof. Consider the system

x 2 dy dx = α (x) + A (x) y (x) + f (x, y (x)) , (3.1) 
with y = (y 1 , y 2 ) and where the following conditions hold:

• α (x) = α 1 (x) α 2 (x) , with α 1 , α 2 ∈ x 2 ⊂ C x • A (x) ∈ Mat 2,2 (C x ) with A (0) = Diag (-λ, λ), λ ∈ C * • f (x, y) = f 1 (x, y) f 2 (x, y) , with f 1 , f 2 ∈ y 1 , y 2 2 ⊂ C x, y .
Perform the change of coordinates given by y = β (x) + P (x) z + h (x, z), with z = (z 1 , z 2 ) and where:

• β (x) = β 1 (x) β 2 (x) , with β 1 , β 2 ∈ x ⊂ C x • P (x) ∈ Mat 2,2 (C x ) such that P (0) ∈ GL 2 (C) • h (x, y) = h 1 (x, y) h 2 (x, y) , with h 1 , h 2 ∈ z 1 , z 2 2 ⊂ C x, z .
Then one obtain the following system satisfied by z (x):

x 2 dz dx = P (x) -1 α (x) + A (x) β (x) + f (x, β (x)) -x 2 dβ dx (x) +P (x) -1 A (x) P (x) -x 2 dP dx (x) + ∂f ∂y (x, β (x)) P (x) z + z 1 , z 2 2 , Since A (0) ∈ GL 2 (C), f (x, y) ∈ y 1 , y 2 2
and ord (β) ≥ 1, the order of

P (x) -1 α (x) + A (x) β (x) + f (x, β (x)) -x 2 dβ dx (x)
is at least 2 if and only if ord (β) ≥ 2. Then:

Tr P (x) -1 A (x) P (x) -x 2 dP dx (x) + ∂f ∂y (x, β (x)) P (x) ∈ Tr (A (x)) + x 2 . So Tr (A (x)) x |x=0
is invariant by fibered change of coordinates on system of the form (3.1) with ord (α) ≥ 2.

Proof of Theorems 1.3 and 1.12

We will use the tools described in Section 2.

Proof. Let Y ∈ SN nd (resp. in SN ω ) be a non-degenerate (resp. transversally Hamiltonian) doubly-resonant saddle-node:

Y = x 2 ∂ ∂x + (-λy 1 + F 1 (x, y 1 , y 2 )) ∂ ∂y 1 + (λy 2 + F 2 (x, y 1 , y 2 )) ∂ ∂y 1 ,
with λ ∈ C * , and F ν (x, y) ∈ m 2 , for ν = 1, 2 . As seen in the previous subsection, we can assume that F 1 (x, 0, 0) = F 2 (x, 0, 0) = 0. The general idea is to apply successive (infinitely many) diffeomorphisms of the form exp x j0 y j1 1 y j2 2 S (0, µ 1,j , µ 2,j )

for convenient choices of j, µ 1,j , µ 2,j , in order to remove all the terms we want to. Let us consider the monomial expansion of Y :

Y = λS (0, -1, 1) + xS (1, 0, 0) + k∈I, |k|≥1 x k0 y k1 1 y k2 2 S (0, µ 1,k , µ 2,k ) . (3.2)
Since Y in non-degenerate we necessarily have

µ 1,(1,00) + µ 2,(1,0,0) = res (Y ) ∈ C\Q ≤0 .
In the transversally Hamiltonian case, each term in the sum k∈I, |k|≥1

x k0 y k1 1 y k2 2 S (0, µ 1,k , µ 2,k ) must satisfy µ 1,k (k 1 + 1) + µ 2,k (k 2 + 1) = 0 , if k = (1, 0, 0) and µ 1,(1,0,0) + µ 2,(1,0,0) = 1.
The normalizing conjugacy Φ is constructed in two steps.

1. The first step is aimed at removing all non-resonant monomial terms, i.e. those of the form

x k0 y k1 1 y k2 2 S (0, µ 1,k , µ 2,k ) , with k ∈ I, |k| ≥ 1 and k 1 = k 2 .
2. The second step is aimed at removing certain resonant monomial terms, and more precisely those of the form

x k0 (y 1 y 2 ) k S (0, η 1,i , η 2,i ) , except for (k 0 , k) = (1, 0) and k 0 = 0 .

We will see that each one of these steps allows us to define a fibered diffeomorphism Φ j (transversally symplectic in the transversally Hamiltonian case), for j = 1, 2. Finally we define Φ := Φ 2 • Φ 1 . The main tool used at each step is Proposition 2.15. Moreover, each Φ j will be constructed using Corollary 2.2. The fact that each Φ j is a fibered diffeomorphism (transversally symplectic in the transversally Hamiltonian case) will again come from Lemma 2.2 (and Lemma 2.19 in the transversally symplectic case, and each Y j = (Φ j ) * (Y j-1 ), j = 1, 2 with Y 0 := Y , will be transversally Hamiltonian according to Lemma 2.21).

1. First step: we remove all non-resonant monomial terms, using diffeomorphisms of the form

exp x i0 y i1 1 y i2 2 S (0, η 1,i , η 2,i ) ,
with i ∈ I, |i| ≥ 1, i 1 = i 2 and η 1,i , η 2,i to be determined. We have, thanks to Proposition 2.15:

exp x i0 y i1 1 y i2 2 S (0, η 1,i , η 2,i ) * (Y 0 ) = Y 0 + 1 1! x i0 y i1 1 y i2 2 S (0, η 1,i , η 2,i ) , Y 0 +. . . ,
where (. . . ) are terms computed via successive nested brackets, and they are all of order at least |i| + 1. Let us compute the first bracket:

x i 0 y i 1 1 y i 2 2 S (0, η 1,i , η 2,i ) , Y0 = λ (i1 -i2) x i 0 y i 1 1 y i 2 2 S (0, η 1,i , η 2,i ) -i0x i 0 +1 y i 1 1 y i 2 2 S (0, η 1,i , η 2,i ) + k∈I, |k|≥1 x i 0 +k 0 y i 1 +k 1 1 y i 2 +k 2 2 (k1η1,i 0 + k2η2,i 2 ) S (0, µ 1,k , µ 2,k ) - k∈I, |k|≥1 x i 0 +k 0 y i 1 +k 1 1 y i 2 +k 2 2 (i1µ 1,k + i2µ 2,k ) S (0, η 1,i , η 2,i ) .
Then one can remove all terms of the form x i0 y i1 1 y i2 2 S (0, µ 1,i , µ 2,i ) with |i| ≥ 1 and i 1 = i 2 by induction on |i| ≥ 1. We then define (using Lemma 2.2) a fibered diffeomorphism Φ 1 , such that Y 1 := (Φ 1 ) * (Y 0 ) is still of the form (3.2), but without non-resonant terms:

Y 1 = λS (0, -1, 1) + xS (1, a 1 , a 2 ) + k0+k≥1 (k0,k) =(1,0) x k0 y k 1 y k 2 S (0, µ 1,k , µ 2,k )
for maybe different µ j,k . Notice that a 1 , a 2 here are necessarily such that a 1 + a 2 / ∈ Q ≤0 since the vector field is supposed to be non-degenerate, and this condition is invariant under fibered change of coordinates. Remark. In the transversally Hamiltonian case, the terms x i0 y i1 1 y i2 2 S (0, η 1,i , η 2,i ) to be removed at this stage satisfy η 1,i (i 1 + 1) + η 2,i (i 2 + 1) = 0, so that Φ 1 is transversally symplectic according to Proposition 2.20 and Lemma 2.19. Moreover, in this case, we necessarily have a 1 + a 2 = 1.

2.

Second step: we finally remove all the terms of the form x i0 (y 1 y 2 ) i S (0, η 1,i , η 2,i ) , except for (i 0 , i) = (1, 0) and i 0 = 0 , using diffeomorphisms of the form

exp x i0 (y 1 y 2 ) i S (0, η 1,i , η 2,i ) ,
with i 0 + i ≥ 1, and η 1,i , η 2,i to be determined. We have, thanks to Proposition 2.15:

exp x i0 (y 1 y 2 ) i S (0, η 1,i , η 2,i ) * (Y 1 ) = Y 1 + 1 1! x i0 (y 1 y 2 ) i S (0, η 1,i , η 2,i ) , Y 1 +. . . ,
where (. . . ) are terms computed via successive nested brackets, and they are all of order strictly greater than the order of the first bracket. Let us compute the first bracket:

x i 0 (y1y2) i S (0, η 1,i , η 2,i ) , Y3 = -(i0 + i (a1 + a2)) x i 0 +1 (y1y2) i S (0, η 1,i , η 2,i ) + k 0 +2k≥1 (k 0 ,k) =(1,0) x i 0 +k 0 (y1y2) i+k k (η1,i 0 + η2,i 2 ) S (0, µ 1,k , µ 2,k ) - k 0 +2k≥1 (k 0 ,k) =(1,0) x i 0 +k 0 (y1y2) i+k i (µ 1,k + µ 2,k ) S (0, η 1,i , η 2,i ) .
Then we see that one can remove all terms of the form x i0 (y 1 y 2 ) i S (0, η 1,i , η 2,i ) except for (i 0 , i) = (1, 0) and for i 0 = 0, without creating non-resonant terms, since (a 1 + a 2 ) / ∈ Q ≤0 . We do this by induction on I := i 0 + i ≥ 1, and for fixed I ≥ 1, we remove the terms with i increasing and i 0 decreasing. Notice that at each step we do not create terms already removed earlier in the process. We then define (using Lemma 2.2) a fibered diffeomorphism Φ 2 , such that

Y 2 := (Φ 2 ) * (Y 1 ) is of the form Y 2 = λS (0, -1, 1) + xS (1, a 1 , a 2 ) + k≥1 (y 1 y 2 ) k S (0, µ 1,k , µ 2,k ) .
Remark. In the transversally Hamiltonian case, the terms x i0 (y 1 y 2 ) i S (0, η 1,i , η 2,i ) to be removed at this stage satisfy (η 1,i + η 2,i ) = 0, so that Φ 2 is transversally symplectic, according to Proposition 2.20 and and Lemma 2.19.

Finally, we define Φ := Φ 2 • Φ 1 , so that Φ * (Y ) = Y 2 and Φ is a fibered diffeomorphism (transversally symplectic in the Hamiltonian case).

Uniqueness: proof of Theorem 1.6

We now prove Theorem 1.6.

Proof. Let Z = x 2 ∂ ∂x + (-λ + a 1 x + c 1 (v)) z 1 ∂ ∂z 1 + (λ + a 2 x + c 2 (v)) z 2 ∂ ∂z 2 Z ′ = x 2 ∂ ∂x + (-λ ′ + a ′ 1 x + c ′ 1 (v)) z 1 ∂ ∂z 1 + (λ ′ + a ′ 2 x + c ′ 2 (v)) z 2 ∂ ∂z 2 , where (λ, λ ′ , a 1 , a 2 , a ′ 1 , a ′ 2 ) ∈ (C * ) 2 × C 4 , (a 1 + a 2 , a ′ 1 + a ′ 2 ) ∈ (C\Q ≤0 ) 2 and (c 1 , c 2 , c ′ 1 , c ′ 2 ) ∈ (vC v )
4 are formal power series in v = z 1 z 2 of order at least one.

• It is clear that if there exists ϕ : v → θv with θ ∈ C * such that

(λ, a 1 , a 2 , c 1 , c 2 ) = (λ ′ , a ′ 1 , a ′ 2 , c ′ 1 • ϕ, c ′ 2 • ϕ) resp. (λ, a 1 , a 2 , c 1 , c 2 ) = (-λ ′ , a ′ 2 , a ′ 1 , c ′ 2 • ϕ, c ′ 1 • ϕ) then Z is Diff fib -conjugate to Z ′ .
• Now assume that Z is Diff fib -conjugate to Z ′ . First of all, studying the terms of degree 1 with respect to z, we see that we either have

(λ, a 1 , a 2 ) = (λ ′ , a ′ 1 , a ′ 2 ) or (λ, a 1 , a 2 ) = (-λ ′ , a ′ 2 , a ′ 1 )
. Up to perform a linear change of coordinates beforehand, let us assume that (λ, a 1 , a 2 ) = (λ ′ , a ′ 1 , a ′ 2 ). In the following, and for convenience, we will use the notations:

Z = Z (c,r) := xS (1, a 1 , a 2 ) + (λ + c (v)) S (0, -1, 1) + r (v) S (0, a 1 , a 2 ) Z ′ = Z (c ′ ,r ′ ) := xS (1, a 1 , a 2 ) + (λ + c ′ (v)) S (0, -1, 1) + r ′ (v) S (0, a 1 , a 2 ) ,
where:

c 1 = -c + r , c 2 = c + r c ′ 1 = -c ′ + r ′ , c ′ 2 = c ′ + r ′ , so that ord (c) ≥ 1, ord (r) ≥ 1. Now we have to prove that if Z (c,r) is Diff fib -conjugate to Z (c ′ ,r ′ ) , then (c, r) = (c ′ , r ′ ).
By assumption, there exists Φ ∈ Diff fib such that

Φ * Z (c,r) = Z (c ′ ,r ′ ) . By Remark 2.11, D 0 Φ = diag (1, θ 1 , θ 2 ) is diagonal. Now, set Ψ := (D 0 Φ) -1 • Φ , ϕ : v → (θ 1 θ 2 ) v, and (c, r) := (c ′ • ϕ, r ′ • ϕ)
, so that:

Ψ * Z (c,r) = Z (c,r) .
We are going to prove that Ψ = Id. By Proposition 2.9, there exists G ∈ D (1) such that Ψ = exp (G) and:

G = g 0 (x, v) ∂ ∂x + g 1 (x, v) z 1 ∂ ∂z 1 + g 2 (x, v) z 2 ∂ ∂z 2 ,
where

g i ∈ m ⊂ C x, v for i = 1, 2 and g 0 ∈ m 2 ⊂ C x, v
is of order at least two. Since Ψ is fibered in x we deduce that g 0 = 0. Therefore, using the notation (2.6), we can write:

G = A (x, v) S (0, -1, 1) + B (x, v) S (0, a 1 , a 2 ) ,
where

     A = A i,j x i v j B = i,j≥0 i+j≥1 B i,j x i v j .
Let us prove that A = B = 0 (hence G = 0) so that Ψ = Id. We consider the Jordan decompositions of Z := Z (c,r) and Z := Z (c,r) :

Z = Z S + Z N , Z S semi-simple, Z N nilpotent, [Z S , Z N ] = 0 Z = Z S + Z N , Z S semi-simple, Z N nilpotent, Z S , Z N = 0 .
By uniqueness of this decomposition we clearly have:

     Z S = Z S = S (0, -λ, λ) Z N = xS (1, a 1 , a 2 ) + c (v) S (0, -1, 1) + r (v) S (0, a 1 , a 2 ) Z N = xS (1, a 1 , a 2 ) + c (v) S (0, -1, 1) + r (v) S (0, a 1 , a 2 )
, and we also know that:

Ψ * (Z) = Z ⇒ Ψ * (Z S ) = Z S Ψ * (Z N ) = Z N .
Let us now consider the associated two-dimensional vector fields in the variables (x, v). In the "chart" (x, v) the vector field G is given by F = B.S (0, a), with a = a 1 + a 2 . Z and Z correspond respectively to:

Y := xS (1, a) + r (v) S (0, a) , Y := xS (1, a) + r (v) S (0, a) .
Thus we have exp (F ) * (Y ) = Y . By Proposition 2.3 we derive

exp (F ) * (Y ) = Y + [F, Y ] + 1 2! [F, [F, Y ]] + . . . and r (v) S (0, a) + [F, Y ] + 1 2! [F, [F, Y ]] + . . . = r (v) S (0, a) . (3.3) 
We compute next

[F, Y ] = -x L S(1,a) (B) + B L S(0,a) (r) -r L S(0,a) (B) S (0, a)
and, setting

C (1) (x, v) := -x L S(1,a) (B) + B L S(0,a) (r) (3.4) 
-r L S(0,a) (B) ,

we obtain

[F, Y ] = C (1) (x, v) S (0, a) .
Now, it is easy to see that for all l ∈ N, ad •l F (Y ) ca be written

ad •l F (Y ) = C (l) (x, v) S (0, a) ,
where C (l) is determined by the recursive relation:

C (l+1) (x, v) = B (x, v) L S(0,a) C (l) -C (l) (x, v) L S(0,a) (B) .
In particular, we see that for all l ≥ 2, C (l) (x, 0) = 0. Equation (3.3) can now be rewritten:

r (v) + C (1) (x, v) + l≥2 C (l) (x, v) = r (v) . (3.5) Let us set r (v) = k≥1 r k v k and r (v) = k≥1 r k v k . Looking at terms inde- pendent of v in (3.5) (i.e. by taking v = 0), we see that C (1) (x, 0) = 0.
Taking (3.4) into account we obtain that ∂B (x, 0) ∂x = 0. Since ord (B) ≥ 1

(by assumption) this means that B (x, 0) = 0. Let us prove the properties B i,k = 0 and r k = r k for all i, j ∈ N and k ≤ j by induction on j ≥ 0.

j = 0. This corresponds to the case described above: for all i ≥ 0, B i,0 = 0 (and r 0 = r 0 ).

-If the property holds at a rank j ≥ 0, if we consider for all i ≥ 0 terms of homogenous degree (i + 1, j + 1) in (3.5), we obtain:

(i + a (j + 1)) B i,j+1 = 0 by induction, and because for all l ≥ 2 the relation C (l) (x, 0) = 0 also holds. Since a / ∈ Q ≤0 we have B i,j+1 = 0. On the other hand, if we look at terms of homogeneous degree (0, j + 1), we obtain: r j+1 = r j+1 .

We conclude that B = 0, so that F = 0 and r = r. Finally, we have G = AL (0, -1, 1). Taking the relation exp (G) * (Z N ) = Z N into account, we have:

Z N + [G, Z N ] + 1 2! [G, [G, Z N ]] + . . . = Z N if and only if c (v) S (0, -1, 1) + [G, Z N ] + 1 2! [G, [G, Z N ]] + . . . = c (v) S (0, -1, 1) . Let us compute [G, Z N ]: [G, Z N ] = -xL S(1,a1,a2) (A) + r (v) L S(0,a1,a2) (A) S (0, -1, 1) .
All other Lie brackets vanish. There only remains

c (v) -xL S(1,a1,a2) (A) -r (v) L S(0,a1,a2) (A) = c (v) ,
which becomes a system of identities between terms of same degree:

           c j - j-k1 k=0 akA 0,k r j-k = c j , j ≥ 0 (i + aj) A i,j + j-k1 k=0 akA i+1,k r j-k = 0 , i ≥ 0, j ≥ 0 .
Once again, we prove by induction on j ≥ 0 that for all i ≥ 0 and all 0 ≤ k ≤ j the relations A i,k = 0 and c k = c k hold. Thus A = 0 and c = c. As a conclusion Ψ = Id and (c, r) = (c, r), so that

Φ = D 0 Φ = diag (1, θ 1 , θ 2 ) and (c, r) := (c ′ • ϕ, r ′ • ϕ) where ϕ : v → (θ 1 θ 2 ) v.

Fibered isotropies of the formal normal form

Looking back at the uniqueness proof in the previous paragraph, we immediately obtain all formal fibered isotropies of the normal form given by Theorems 1.3 and 1.12. We recall that an isotropy of a vector field is a self-conjugacy. For a vector field X ∈ D (1) , we set:

Isot fib (X) := Φ ∈ Diff fib | Φ * (X) = X . Proposition 3.2. Consider a normal form of SN nd Z = x 2 ∂ ∂x + (-λ + a 1 x + c 1 (y 1 y 2 )) y 1 ∂ ∂y 1 + (λ + a 2 x + c 2 (y 1 y 2 )) y 2 ∂ ∂y 2 ,
with parameters (λ, a 1 , a 2 , c 1 , c 2 ) ∈ P. Then:

Isot fib (Z) = diag (1, θ 1 , θ 2 ) , (θ 1 , θ 2 ) ∈ (C * ) 2 (c 1 , c 2 ) (θ 1 θ 2 v) = (c 1 , c 2 ) (v) . Remark 3.3. If (c 1 , c 2 ) = (0, 0) the condition c i (θ 1 θ 2 v) = c i (v)
for each i ∈ {1, 2} is equivalent to requiring that each c i lie in C v q , for some q ∈ N >0 , and that θ 1 θ 2 be a q th root of unity.

This proposition has for immediate consequence the (almost) uniqueness of the normalizing conjugacy Φ ∈ Diff in Theorem 1.3. More precisely: Corollary 3.4. Let Y ∈ SN nd be a non-degenerate doubly-resonant saddlenode such that D 0 Y = diag (0, -λ, λ), with λ = 0. Then there exists a unique fibered diffeomorphism Φ ∈ Diff fib tangent to the identity such that:

Φ * (Y ) = x 2 ∂ ∂x + (-λ + a 1 x + c 1 (v)) y 1 ∂ ∂y 1 + (λ + a 2 x + c 2 (v)) y 2 ∂ ∂y 2 , (3.6) 
where we put v := y 1 y 2 . Here, c 1 , c 2 belong to v = vC v and a 1 , a 2 ∈ C are such that a 1 + a 2 = res (Y ). 

Z = x 2 ∂ ∂x + (-(λ + c (v)) + a 1 x) y 1 ∂ ∂y 1 + (λ + c (v) + a 2 x) y 2 ∂ ∂y 2 .
Then:

Isot ω (Z) = diag 1, α, 1 α , α ∈ C\ {0} ≃ C\ {0} .

Applications to Painlevé equations

In this section we investigate the study of the irregular singularity at infinity in the first Painlevé equation

(P I ) d 2 z 1 dt 2 = 6z 2 1 + t
in terms of Theorem 1.12. More precisely, we are going to explain that the formal invariant c ∈ C v of a doubly-resonant, transversally symplectic saddle-node Y ∈ SN ω is in fact a germ of an analytic function at the origin, whenever Y is analytic at the origin (and not merely a formal vector field). Moreover, we show how to compute recursively this invariant in some specific cases, including Painlevé equations.

Asymptotically Hamiltonian vector fields

We deal here with the case of asymptotically Hamiltonian vector fields.

Definition 4.1.

• We say that a formal vector field X in C 2 , 0 is orbitally linear if

X = U (y) λ 1 y 1 ∂ ∂y 1 + λ 2 y 2 ∂ ∂y 2 ,
for some unity U (y) ∈ C y × (i.e. U (0, 0) = 0) and (λ 1 , λ 2 ) ∈ C 2 .

• We say that a formal (resp. germ of an analytic) vector field X in C 2 , 0 is formally (resp. analytically) orbitally linearizable if X is formally (resp. analytically) conjugate to an orbitally linear vector field.

• We say that a doubly-resonant saddle-node Y ∈ SN is formally/analytically asymptotically orbitally linearizable if the formal/analytic vector field Y |{x=0} in C 2 , 0 is formally/analytically orbitally linearizable.

Remark 4.2.

1. If a vector field X is analytic at the origin of C 2 and has two opposite eigenvalues, it follows from a classical result of Brjuno (see [START_REF] Martinet | Normalisation des champs de vecteurs holomorphes (d'après A.-D. Brjuno)[END_REF]), that X is analytically orbitally linearizable if and only if it is formally orbitally linearizable.

2. The fact of being orbitally linearizable is naturally invariant under orbital equivalence, and then, by (almost) uniqueness of c 1 , c 2 in Theorem 1.6, if Y ∈ SN nd is asymptotically linearizable, then its formal invariants c 1 , c 2 satisfy c 1 + c 2 = 0. In this case, we write c := c 2 = -c 1 .

The two remarks above imply the following corollary. 

Φ * (Y ) = x 2 ∂ ∂x + (-λ + a 1 x -c (v)) y 1 ∂ ∂y 1 + (λ + a 2 x + c (v)) y 2 ∂ ∂y 2 ,
where we put v := y 1 y 2 . Here, c (v) ∈ vC {v} is a germ of an analytic function vanishing at the origin, and a 1 , a 2 ∈ C are such that a 1 +a 2 = res (Y ). Moreover, Φ is unique up to linear transformations.

It is important to notice that the following property holds. Proof. The facts that L Y (ω) ∈ dx and L Y (x) = x 2 imply that a 1 + a 2 = 1 and then:

L Y (dy 1 ∧ dy 2 ) = x (dy 1 ∧ dy 2 ) + dx .
Consequently, if we denote Y 0 := Y |x=0 the restriction of Y to the invariant hypersurface {x = 0}, we have:

L Y0 (dy 1 ∧ dy 2 ) = 0 .
This means that Y 0 is a Hamiltonian vector field, i.e. there exists H (y) ∈ C y such that:

Y 0 (y 1 , y 2 ) = - ∂H ∂y 2 (y 1 , y 2 ) ∂ ∂y 1 + ∂H ∂y 1 (y 1 , y 2 ) ∂ ∂y 2 .
Possibly by performing a linear change of coordinate, we can assume that H (y) ∈ λy 1 y 2 + m 3 , therefore we can write:

Y = x 2 ∂ ∂x + - ∂H ∂y 2 + xF 1 (x, y) ∂ ∂y 1 + ∂H ∂y 1 + xF 2 (x, y) ∂ ∂y 2 ,
where F 1 , F 2 ∈ C x, y vanish at the origin. If we define J := 0 -1

1 0 ∈ M 2 (C)
and ∇H := t (DH), then Y |{x=0} = J∇H. According to the Morse lemma for holomorphic functions, there exists an analytic change of coordinates ϕ ∈ Diff in C 2 , 0 tangent to the identity such that H (y) := H ϕ -1 (y) = y 1 y 2 . Let us now recall a trivial result from linear algebra.

Fact. Let J := 0 -1 1 0 ∈ M 2 (C), and P ∈ M 2 (C). Then, P JP t = det (P ) J.

We deduce the next result.

Lemma. Let H ∈ m 2 ⊂ C y , Y 0 := J∇H the associated Hamiltonian vector field in C 2 (for the standard symplectic form dy 1 ∧ dy 2 ), and an analytic diffeomorphism near the origin denoted by ϕ. Then:

ϕ * (Y 0 ) := Dϕ • ϕ -1 • Y 0 • ϕ -1 = det Dϕ • ϕ -1 J∇ H ,
where

H := H • ϕ -1 .
As a conclusion,the previous lemma shows that Y is asymptotically orbitally linearizable.

The next property is a straightforward consequence of Corollary 4.3, Proposition 4.4 and Theorem 1.12.

Corollary 4.5. Let Y ∈ SN ω be a transversally Hamiltonian doubly-resonant saddle-node. Then, there exists a transversally symplectic diffeomorphism Φ ∈ Diff ω such that Φ |{x=0} be a germ an analytic diffeomorphism in C 2 , 0 and:

Φ * (Y ) = x 2 ∂ ∂x + (-λ + a 1 x -c (v)) y 1 ∂ ∂y1 + (λ + a 2 x + c (v)) y 2 ∂ ∂y2 . (4.
1) where we put v := y 1 y 2 . Here, c (v) ∈ vC {v} is a germ of an analytic function vanishing at the origin, and a 1 , a 2 ∈ C are such that a 1 + a 2 = res (Y ) = 1. Moreover, Φ is unique up to linear symplectic transformations, and:

Φ |{x=0} * (dy 1 ∧ dy 2 ) = dy 1 ∧ dy 2 .

Periods of the Hamiltonian on {x = 0}

From now on, we consider a vector field 

Y = x 2 ∂ ∂x + - ∂H ∂y 2 + xF 1 (x,
Y 0 = - ∂H ∂y 2 ∂ ∂y 1 + ∂H ∂y 1 ∂ ∂y 2 .
We fix a small polydisc D (0, r) ⊂ C 2 on which H is analytic with r = (r 1 , r 2 ).

The leaves of the foliation defined by Y 0 in D (0, r) are given by the level curves L a := {H = a} ∩ D (0, r), a ∈ D (0, r), with r > 0 small enough. The Morse Lemma for holomorphic functions tells us that L a is topologically a cylinder for a = 0, and r,r 1 , r 2 small enough. Thus we can consider a generator γ a of the first homology group of L a . We also consider a time-form for Y 0 , which is a meromorphic 1-form τ Y0 in D (0, r) with a unique pole at the origin and such

that τ Y0 • (Y 0 ) = 1. For instance, take τ Y0 = - dy 1 ∂H ∂y2
. Now we define the associated period map:

T H : D (0, r) \ {0} -→ C a -→ T H (a) := 1 2iπ ˛γa τ Y0 .
This mapping is a well-defined meromorphic function of a ∈ D (0, r).

Proposition 4.6. For r > 0 small enough, and a ∈ D (0, r) \ {0}, T Y0 (a) only depends on the class of γ a in H 1 (L a , Z). In other words, if τ ′ Y0 is another time-form of Y 0 and γ ′ a is any loop in L a homologous to γ a , then

˛γa τ Y0 = ˛γ′ a τ ′ Y0 .
Proof. The fact that this quantity does not depend on a specific choice of a representative of γ a in its homology class comes from Stokes Theorem. The fact that it does not depend on the choice of a specific time-form comes from the fact that γ a lies in a leaf of the foliation generated by Y 0 . If

γ a : [0, 1] → L a t → (γ a,1 (t) , γ a,2 (t)) , then d dt (γ a ) (t) = v a (t) Y 0 (γ a (t)), where v a (t) = 1 -∂H ∂y2 (γ a (t)) dγ a,1 (t) dt = 1 ∂H ∂y1 (γ a (t))
dγ a,2 (t) dt .

Then:

˛γa τ Y0 = ˆ1 0 τ Y0 (γ a (t)) • d dt (γ a ) (t) dt = ˆ1 0 τ Y0 (γ a (t)) • (v a (t) Y 0 (γ a (t))) dt = ˆ1 0 v a (t) dt since τ Y0 • (Y 0 ) = 1.
Definition 4.7. We call T H the period map of H near the origin. Now, consider a germ of an analytic diffeomorphism Ψ fixing the origin of C 2 . Then:

T H (a) = 1 2iπ ˛γa τ Y0 = 1 2iπ ˛Ψ-1 (γa) Ψ * (τ Y0 ) .
Notice that if we write X 0 := Ψ -1 * (Y 0 ) and τ X0 := Ψ * (τ Y0 ), then: Consequently, taking for instance τ X0 = -dy 1 y 1 (λ + c (v))

τ X0 • (X 0 ) = (Ψ * (τ Y0 )) • Ψ -1 * (Y 0 ) = τ Y0 • (Y 0 ) = 1 .
, we see that: As a consequence, for a = h (v), we have the following relation:

dh dv (v) .T H (h (v)) = -1 .
If we consider the antiderivative S H of T H such that S H (0) = 0, we have

S H (h (v)) = -v ,
and in particular S H = -g .

Let us summarize this study in the following proposition. given by Theorem 1.12. Consider the period map T H as defined above. Then the following holds:

1. c is the germ of an analytic function at the origin.

2. T H defines the germ of an analytic function in a neighborhood of 0 ∈ C 2 , such that T H (0) = -1 λ . 3. If S H is the primitive of T H such that S H (0) = 0, then (-S H ) is invertible (for the composition), and its inverse h satisfy:

dh dv (v) = λ + c (v) .
The conclusion is that if one is able to compute the period map of the original Hamiltonian vector field on {x = 0}, then one can compute the formal invariant c in the normal form given in Theorem 1.12, which is in fact even analytic in this case. Remark 4.9. The Hamiltonian function h (y 1 y 2 ) = λy 1 y 2 + ´y1y2 c (v) dv is in fact the symplectic normal form of the original Hamiltonian function H (y 1 , y 2 ) = λy 1 y 2 + o z→0 y 2 , as described in [START_REF] Chow | Normal forms and bifurcation of planar vector fields[END_REF] (section 2.7). , according to equation (1.6). These are not the system of coordinates which diagonalizes the linear part of the vector field, but the value of the period does not changes by symplectic changes of coordinates (those which preserve dy 1 ∧ dy 2 ). Now, if we fix a = 0 with |a| small enough and look at the level curve {H = a} near the origin in C 2 , we can compute the associated period: (see e.g. [START_REF] Bryuno | Boutroux asymptotics of solutions of Painlevé equations and power geometry[END_REF], [START_REF] Abenda | Singularity analysis of 2D complexified Hamiltonian systems[END_REF]). To compute it we can chose for instance γ a,1 : [0, 2π] -→ C t -→ ρ a e it where ρ a > 0 is such that 12ζy 2 1 + 4y Notice that y 1 → 24ζy 2 1 + 8y 3 1 (k+ 1 2 ) is in fact analytic in a neighborhood of the origin, with a zero of order 2k + 1. Hence we can compute the integral above using the residue theorem. As we have for k ≥ 1. Since S H (0) = 0 and dSH da (0) = T H (0) = 0, the mapping (-S H ) is invertible for the composition and we can compute recursively its inverse (denoted by h):

Example: the case of the first Painlevé equation

h (v) = k≥1 h k v k .
For all k ≥ 1, the coefficient h k is uniquely determined by the coefficients S H,j , j ≤ k. Finally, we have

λ + c (v) = dh dv (v) = k≥0 (k + 1) h k+1 v k = λ + k≥1 c k v k .

Definition 1 . 2 .

 12 The residue of Y ∈ SN is the complex number res (Y ) := Tr (A (x)) x |x=0 .
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  rank n, generated by dx 1 , . . . , dx n . Definition 2.13. For any p ∈ N, we denote the p-exterior product of Ω 1 (C x ) byΩ p (C x ) := p Ω 1 (C x )(or just Ω p ). Its elements will be called formal p-forms.The set of 0-forms is the set of formal series: Ω 0 (C x ) := C x . Definition 2.14. We denote byΩ (C x ) := +∞ ⊕ p=0 Ω p (C x )(or just Ω for simplicity) the exterior algebra of the formal forms in C n , and by d the exterior derivative on it.

2 .

 2 L F (x) = 0 and F is transversally Hamiltonian. Proof. It is just a consequence of Proposition 2.18. Lemma 2.21. Let Φ ∈ Diff ω and X ∈ D ω . Then, Φ * (X) ∈ D ω .
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 31 Let X, Y ∈ SN . If X and Y are Diff fib -conjugate, then res (X) = res (Y ).
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 35 Let Z ∈ SN ω . We denote by Isot ω (Z) the subgroup of elements Φ ∈ Diff ω such that Φ * (Z) = Z. Proposition 3.6. Let (λ, a 1 , a 2 ) ∈ C * ×C 2 such that a 1 +a 2 = 1, and c ∈ vC v with v = y 1 y 2 . Consider

Corollary 4 . 3 .

 43 Let Y ∈ SN nd be a doubly-resonant saddle-node asymptotically orbitally linearizable such that Y 0 := Y |{x=0} be a germ of an analytic vector field in C 2 , 0 . Then, there exists Φ ∈ Diff fib such that Φ |{x=0} be a germ an analytic diffeomorphism in C 2 , 0 and:
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 44 If Y ∈ SN ω is doubly-resonant transversally Hamiltonian saddle-node, then Y is asymptotically orbitally linearizable.

Now, let us+ y 2 ∂ ∂y 2 ,

 2 take Ψ -1 = Φ |{x=0} as in Corollary 4.5 such that X 0 = (λ + c (v)) -y 1 ∂ ∂y 1 with v = y 1 y 2 , c ∈ C {v} and c (0) = 0. Then γa := Ψ -1 (γ a ) = Φ |{x=0} (γ a ) is a loop generating the homology of the leaf Φ |{x=0} (L a ). Consider h := H • Ψ near the origin. Then, Φ |{x=0} (L a ) = {h = a} in a neighborhood of the origin. Notice that h depends in fact only on v = y 1 y 2 , and h (v) = λv + o |v|→0 (|v|). Since λ = 0, the inverse function theorem ensures the existence of an analytic function g ∈ C {v} such that g (0) = 0 and h • g (v) = g • h (v) = v in a neighborhood of 0. Thus, {h (v) = a} = {v = g (a)}.

  + c (g (a)) according to the orientation chosen for γ a . In particular, we see that T H is analytic at the origin, and T H can be extend at 0 by-1 λ . The fact that Φ |{x=0} satisfiesΦ |{x=0} * (dy 1 ∧ dy 2 ) = dy 1 ∧ dy 2implies that det Φ |{x=0} = 1, so thatX 0 =c (v) .

2 is analytic at the origin of C 2 .

 22 on {x = 0} of a transversally Hamiltonian doubly-resonant saddle-node Y ∈ SN ω , where H (y) = λy 1 y 2 + o z→0 y Consider its unique transversally Hamiltonian normal formX = x 2 ∂ ∂x + (-(λ + c (v)) + a 1 x) y 1 ∂ ∂y 1 + (λ + c (v) + a 2 x) y 2 ∂ ∂y 2

  In the case of the first Painlevé equation, in appropriate coordinates, we are working with the Hamiltonian H (y 1 , y 2 )

where γ a, 1

 1 is the component of γ a with respect to ∂ ∂y1 . Remark 4.10. The period T H (a) is one of the periods of the Weierstrass function ℘ associated to the cubic H (y 1 , y 2 ) = a

1 -. 2 )

 12 As we have normal convergence, we can swap the order of summation and integration: dy 1 a k .

1 ,S

 1 we see that the associated residue at 0 is equal to8 2k (24ζ) H,k a k with S H,k = T H,k-1 k

  monomial expansion. X is transversally Hamiltonian if and only if for all k ∈ I, x k S (µ k ) is transversally Hamiltonian.Proof. Clearly if x k S (µ k ) is transversally Hamiltonian for all k ∈ I, then X is transversally Hamiltonian is obvious, by convergence of the above series in the Krull topology. Assume conversely that X is transversally Hamiltonian.

First of all, notice that we necessarily have, for all k ∈ I, L x k S(µ k ) (dx) ∈ dx . Indeed, if it were not the case, consider k with |k| minimum among the set of multi-index l satisfying

  analytic at the origin of C 2 , and F 1 , F 2 ∈ C x, y vanishing at the origin. Let us consider the restriction Y 0 := Y |{x=0} : it is an analytic Hamiltonian vector field in C 2 , 0 :

		y)	∂ ∂y 1	+	∂H ∂y 1	+ xF 2 (x, y)	∂ ∂y 2	,
	with H (y) = λy 1 y 2 + O y→0	y 3					

  3 1 > 5|a| 2 , for all y 1 = γ a,1 (t), t ∈ [0, 2π]. Now we write:

As a conclusion, the jet of order k of T H gives us the jet of order k of c. After computations performed with Maple, we obtain for instance:

.

One can in fact compute any finite jet of c. Remark 4.11. Similar computations can be performed for any Hamiltonian of the form H (y 1 , y 2 ) = βy 2 2 + αy 2 1 + f (y 1 ), where α, β ∈ C\ {0} and f ∈ C {y 1 }.
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