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1. Introduction

The research in wave energy devices; with first patent that dates back to 1799 (Girard and his son,
France) [1]; has a considerable research and development record spanning past few decades. Over the
nantes.fr



recently past few years wave energy sector has undergone a remarkable rise in funding sources and
consequently a significant development in this field is observed. A number of projects are underway
and wind plus wave based combined platforms are currently being proposed in order to combat the
energy issue with renewable solution. Some worth mentioning review studies regarding wave energy
and wave energy technologies include: [2–6]. Present work is an attempt towards improvement of the
computational numerical analysis aimed at assessing power absorption capability of floating point
absorber type wave energy converter.

The focus of present study has been devoted to the viscous drag forces that exist as the floating
structures interacts with surrounding fluid in particular fluctuating wave forces. A number of
researchers; [7–9]; have mentioned that in the numerical analysis the viscous forces has been taken
into account according to the viscous drag damping. However the quantification of the power loss in
the absence of this additional viscous term is usually omitted while the drag coefficient is usually tak-
en from the existing experimental data.

Incorporation of a dissipation force in a BEM solver is reported in [10] and it is demonstrated that
such technique is useful in achieving additional damping for the floating body in particular in the reso-
nance zone while the coefficient of this dissipation term rely on the experiments or CFD computations.
The existing data, mostly experimental, carry a huge scatter in the value of the force coefficients and
usually a difference of 30–40% is seen in the reported values [11, chapter 12]. Therefore the prediction
of the drag coefficient for a complex geometrical structure poses a major issue. In [12,13] it is explored
and is demonstrated that the CFD can be employed for such objective. This study investigates the
methodology of using the Morison equation into the wave to wire numerical model of wave energy
converters.

Fig. 1 shows a schematic of the rectangular generic surging wave energy converter (WEC). A full
scale model with dimensions; height (h) = 20 m and draft (z-axis) = 10 m and width (w) = 7.85 m
and length (l) = 10 m is considered for this study.

A wave to wire model of a single degree of freedom surging buoy has been derived from the equa-
tion of motion. This model is termed here as potential time domain viscous (PTDV) model. To help
understand the importance of the viscous forces regarding considered wave energy converters, the
outcome of the PTDV model is compared against the findings of the CFD solver. A such analysis shows
how a simple wave structure interaction model using potential theory can be improved when viscous
drag term is included into the wave to wire model consequently validating the PTDV model. To accom-
plish this task, CFD computations for the following three flow scenarios are conducted;

1. Radiation: rigid structure (wave energy converter) is made to oscillate in fluid at rest.
2. Diffraction: waves are interacting with the wave energy converter held still in a numerical wave

tank. The rigid structure then behaves as an obstacle to the wave field and causes a wave diffraction
field.
Fig. 1. Schematic of generic WEC.
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3. Wave structure interaction (WSI): waves are generated and the wave energy converter is free to
respond to the incoming wave forces.

1.1. Viscous forces

The wave energy converters (especially the floating type – point absorbers) are designed to pro-
duce electricity as they interact with the surrounding wave climate. Therefore it becomes greatly
important that, for physical and numerical testing, the wave forces are accurately measured and/or
calculated. The problem of wave structure interaction, in its simplest form, is usually studied in terms
of the oscillatory flow past a rigid structure.

The experimental set-up of oscillating flow problems usually consists of large U-tube apparatus
where fluid is made to oscillate at a certain required frequency while the rigid structure is held fixed.
A second method of studying such a problem is to impose oscillatory motion on the rigid structure in
an otherwise calm fluid. The inertia coefficient of former and lateral approach is usually denoted by Cm

and CI , respectively, with Cm ¼ 1þ CI, this is because the inertia force(s) in the two methods are not
the same.1

The viscous drag force evaluation for simple shaped structures like cylinder and square with
smooth and sharp corners have been the subject of a number of studies from the last few decades.
For example the analysis of the viscous oscillatory flow can be traced back to [14]. Sarpkaya [15]
has discussed the viscous effects in relation to low Keulegan–Carpenter (KC) numbers. It has been
emphasized in a number of studies (for example [16]) that not only is the KC number important to
the oscillatory flow analysis but the viscous parameter named b should also be studied alongside
KC number. This viscous parameter b is defined as the ratio of the Reynolds number to the Keule-
gan–Carpenter number. A very low value of the b represents a very small scale model laboratory
experiment/numerical test. The KC number is defined as
1 In s
KC ¼ UmT
D

ð1Þ
here Um = amplitude of the sinusoidal velocity, T = time period of the sinusoidal velocity, and D = rele-
vant dimension of the rigid structure. For deep water waves the KC number can be re-written as
KC ¼ 2pAw

D
; ð2Þ
where Aw is equal to the amplitude of the wave.
Since the magnitude of the viscous force is directly relevant to the KC number therefore it is worth

exploring what range of KC numbers are relevant to the wave energy converter in question. From the
wave statistics data, the maximum significant wave height corresponding to five wave site locations
across Europe is shown in Table 1, where D is the relevant dimension of the WEC and taken as equal to
the submerged draft of devices i.e., 10 m. Following Eq. (2), a higher wave amplitude would corre-
spond to a higher value of KC. Thus the upper limit of the KC number that corresponds to the wave
energy devices is less than 5 (i.e., KC 6 5).

1.2. Morison equation

Morison [17] proposed a semi-empirical expression that offers the calculation of the in-line force
exerted by the oscillatory flow on a slender cylinder. Morison equation provides a semi-empirical for-
mulation to model the unsteady force on rigid structures in oscillatory flow. According to this simple
expression the total in-line force on an immersed object within an oscillatory viscous fluid with velo-
city _X and acceleration €X is expressed as a summation of two components:

� force due to the inertia; an effect of the irrotational (potential) assumption, i.e., qVCI
€X.
till water the absence of ambient dynamic pressure gradient leads to a zero Froude–Krylov force.
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Table 1
Maximum significant wave height and corre-
sponding KC value for various locations.

Location Hs- max ½m� D [m] KC

Yeu 7 10 2.2
SEM-REV 9 10 2.8
EMEC 11 10 3.4
Lisboa 7 10 2.2
Belmullet 14 10 4.4
� force due to the viscous drag; effect of the skin friction and flow separation. i.e., 1
2 qACd

_X j _X j.

For a 3 dimensional structure moving in-line to the oscillatory flow of velocity U and acceleration
_U, the Morison equation becomes [18]:
FðtÞ ¼ �1
2
qACdð _X � UÞj _X � Uj � qVCIð€X � _UÞ þ qV _U: ð3Þ
The first term on the right hand side of Eq. (3), is the drag force, second term is hydrodynamic mass
force and third term is the Froude–Krylov force. Here Cd is the drag coefficient and CI the inertia coef-
ficient. A is the relevant cross-sectional area and V the volume of the structure. The inertial force pro-
posed by the Morison equation is proportional to the acceleration of the flow whereas the viscous drag
part is proportional to the time dependent flow velocity and acts in the direction of the velocity. The
derivation of these coefficients have a record of extensive research both theoretical and experimental.
However growing computational capability and development in computational fluid dynamics has
lead to the numerical prediction of these coefficient and the existence of experimental data has served
as validation tool for advances made in numerical modeling techniques. The somewhat simple look of
the Morison equation invited researchers to further improve its scope. This was done by proposing
some extra non-linear terms. Keulegan and Carpenter [19] were the first to attempt a correction to
the Morison equation.

Cook [20] has reported that despite being imperfect and restricted to further limitations, there
appears to be a consensus that the Morison equation is a ‘‘good point of departure’’ when modeling
hydrodynamic loadings in oscillatory flow. Furthermore this statement holds true to date. Other early
work towards the improvement of the Morison equation regarding vorticity effects include [15,21].
Lighthill [22] proposed correction terms associated with irrotational flow; this attempt is usually
remembered as the Lighthill correction. Cook [20] has analyzed the Lighthill correction through
experimental data and concludes that the additional terms proposed by the Lighthill correction do
not make a significant difference when the Morison force is made to fit the experimental measure-
ments and can therefore be neglected.

When employing the Morison equation for hydrodynamic loading, it is always advantageous to
recall previous work done in relation to the limitations of this empirical equation. Some limitations
of the Morison equation as stated in [20] and in [18] are listed below:

1. The equation produces approximate profile of the in-line force only.
2. Ratio of the cylinder diameter to flow wave length should be <2. This insures that the effect of

cylinder motion on incoming waves is ignorable.
3. The equation works favorably within inertia dominated and the drag dominated regions, i.e.,

KC < 6 and KC > 20, respectively.
4. The effect of the transverse force is not included.
5. Vortex and wake-return-impact are beyond the scope of the Morison equation.

The flow properties mentioned in the last two limitations (numbered 4 and 5) are usually respon-
sible for the vibrational spikes that are usually observed in experimental results. This fact has been
pointed-out by Sumer and Fredsøe [18]. Despite the above mentioned limitations and the approximate
4



representation of fluid forces, the Morison equation has enjoyed widespread use. Consequently, there
exist a great deal of work done regarding the evaluation of the appropriate values of the force
coefficients.

The next section reviews the literary work regarding force coefficient for a cylindrical and a rect-
angular square structure.
1.3. Review of work concerning Morison equation coefficients

The evaluation of the Morison force coefficients usually involves physical laboratory tests to mea-
sure the in-line force(s). However some researchers have shown that computational numerical analy-
sis can be adopted as an alternative to the experimental procedure and the force coefficients be
determined thus.

For a given flow problem, once the force time history is measured through experiments, we have two
forces: one is the experimental and the other the Morison force. The task therefore is to predict those
values of the drag and inertia coefficients such that the lateral force (the Morison) is as close to the
former force curve as possible. Should a CFD analysis be conducted instead of an experimental proce-
dure, the Morison force curve would need to correspond with the CFD results (for example see [12,13]).

In order to yield an appropriate value of the drag and inertia coefficients there exist a number of
methods that can be used for this curve fitting procedure such as Morison’s method, Fourier series
approach, least squares method, and weighted least squares method.

A brief introduction to these methods can be found in [11]. Some of these methods are considered
relatively more accurate. In this study the time invariant value of the drag and inertia coefficient has
been evaluated using least squares method.

One might reason that there exist other methods such as the weighted least squares method which
offers improved results although more computationally demanding. But the objective of present work
is to locate an estimate of the drag coefficient and to study, using a potential time domain viscous
model, the variation of the annual power production of the device verses a range of the drag coeffi-
cients. For this the drag coefficient value is successively increased starting from its initial nominal val-
ue. A comparison of the evaluated drag coefficient with existing literature (see [12,13]) showed a good
match which favors the choice of using the least squares method. A usual least square technique pro-
duces the force coefficients by minimizing the error function Er which is given by:
Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

1

FCFD � FMorisonð Þ2
vuut ð4Þ
Here N is the total number of data sets, and Fsubscript is the force corresponding to the subscript. This
approach can either be applied on a wave by wave basis or for the whole set of results and produces
time invariant force coefficients. In the modified least square method, called weighted least square,
the effect of small forces on resulting force coefficients is reduced hence, the method claims to be
more accurate in some cases [23].

In [24] theoretical and experimental results regarding viscous oscillatory in-line force on circular
and square cylinders are presented. A flow regime of a low KC number and moderately higher b para-
meter is considered in this study. It has been mentioned that when the fluid is oscillating while the
cylinder is at rest, the inertia force is increased by the Froude–Krylov force caused by the pressure gra-
dient and this is the reason why the inertia coefficient of this scenario is usually written as
Cm ¼ Ci þ 1. Following [24] the average values of the drag and inertia coefficient for a circular cylinder
can be written as:

1 6 Cd 6 2 for 1 6 KC 6 10 at three b values of 1665, 482 and 196.
2 6 Cm 6 2:2 for 1 6 KC 6 4 at three b values of 1665, 1204 and 964.

For sharp edged plate, square and diamond shaped structures the drag coefficient is reported to be
6 6 Cd 6 7;4 6 Cd 6 5 and 2 6 Cd 6 3, respectively, whereas the KC range corresponding to
5



these values was found to be 1 6 KC 6 10 with a maximum b of about 430. It has been reported that
for sharp edged bodies the vortex shedding occurs at even low KC regimes.

In [23], physical model test of a vertical circular cylinder are presented in the context of the Mor-
ison force coefficients. A small scale model of the vertical cylinder was tested for the in-line force(s) as
waves pass overhead. Moreover two least square methods are discussed in relation to their corre-
sponding impact on the resulting value of the force coefficients.

In [25] numerical computations are made in order to deduce the Morison force coefficients. The
test case comprised a square cylinder. The numerical case studies mentioned include two different
attach angles of the approaching flow and it has been reported that in case of the zero attack angle
the Morison force could not accurately predict the lift force. However the calculations for the in-line
drag force were adequately predicted. The numerical methodology implemented was based on a
weakly compressible flow method with three-dimensional large eddy simulations.

In [26] numerical results for oscillatory flow past a cylinder with round and with sharp corners are
presented and an average value for the drag coefficient is reported to be around 2.9. Numerical com-
putations are shown along experimental results of [27].

Atluri et al. [28] reported a CFD examination of the viscous in-line force for thin sharp edged square
plates – the heave plates. CFD results have been presented along side existing experimental data and
the advantages of using CFD, such as the ability of readily jump to various scale models and quick
assessment of the design variables, are highlighted.

Following the work discussed above it is quite clear that the empirical coefficient required for the
drag term of the Morison equation for a circular cylinder resides in between a minimum value of about
1 and a maximum upper value of about 4 whereas for a sharp edged square cylinder or flat plat the
lower value of the drag is reported to be about 2 and higher value of about 10. The KC range considered
lies somewhere less than 6. It is noted that the higher drag value corresponds to a KC value of less than
1 whereas the lower drag value corresponds to a higher KC number.

1.4. Potential time domain viscous (PTDV) model

A wave to wire model of a single degree of freedom surging buoy has been derived from the equa-
tion of motion. Equations for the computation of annual power of this one degree of freedom buoy are
shown below. From frequency domain analysis the power function of the WEC is obtained from Eq. (5)
PðxÞ ¼ 1
2

Bptox2RAO2
: ð5Þ
Here RAO is the response amplitude operator of the device. In frequency domain it can be defined as;
RAO ¼ ½�x2ðmþ AÞ þ ixðBþ BptoÞ þ K11�
�1

Fe: ð6Þ
Here A is the added mass coefficient, B is the radiation damping coefficient whereas Bpto comes from
the power take off (PTO) force and K11 being the total stiffness of the system. This total stiffness may
include the additional stiffness of the PTO system, hydrostatics contributions and any other additional
external force like moorings etc. Likewise additional damping part can be summed into the second
term on the right-hand-side of the Eq. (6). It is worth mentioning at this stage that the PTO force that
is considered in this study comprises only on the damping part. For derivation of the above relation for
the RAO, consider the standard equation of motion i.e.,
F ¼ m€x ð7Þ
Where m the mass and x is the displacement caused by the force F. In frequency domain analysis the
total net force F for a floating structure (with frequency dependent displacement x, velocity _x and
acceleration €x) can be written as sum of the three major forces named the radiation force Fr, hydro-
static force Fh and the power take off force Fpto.
F ¼ Fr þ Fh þ Fpto ð8Þ
6



Fr ¼ �A€x� B _x ð9Þ
Fh ¼ �khx ð10Þ
Fpto ¼ �Kptox� Bpto _x: ð11Þ
Here kh is hydrostatic stiffness and Kpto is the stiffness contribution from the PTO. Substituting Eqs.
(8)–(11) into Eq. (7) yields Eq. (6), with K11 ¼ Kpto þ kh. From the power function (Eq. (5)) the mean
power of a sea state for given spectrum Sðf iÞ is obtained from (Eq. (12)) to be
Pf ðHs; TpÞ ¼
XN

i¼1

2Pðf iÞSðf iÞDf : ð12Þ
with Df being the frequency step used in the discretization of the spectrum S. And i being the index of
the frequency (or angular frequency) of the waves.

Then the annual power production (APP) of the wave energy conversion system at a given
location is obtained through the product of the sea statistics data obtained from the scatter diagram
(say C(Hs, Tp)) of the deployment site and the above mentioned mean power of the considered
spectrum, as shown in Eq. (13),
PAPPðxÞ ¼
XNT

k¼1

XNH

j¼1

Pf ðHs;j; Tp;kÞCðHs;j; Tp;kÞ; ð13Þ
where NT and NH are the indices of the maximum values of Tp and Hs, respectively. For the Yeu island
site (located near coast of western France) the significant wave height and the peak wave period con-
sidered here comprises:
0:5 6 Hs 6 7:5 ð14Þ
3:0 6 Tp 6 17: ð15Þ
The APP of the device for non-linear analysis should be computed via time domain analysis. In time
domain the equation of motion of the buoy in single degree of freedom (say surge) is (using the Cum-
mins relation [29]).
ðM þ l1Þ€XðtÞ ¼ FexðtÞ �
XNprony

i¼1

Ii � Bpto
_XðtÞ � K11XðtÞ þ viscous drag-term: ð16Þ
Here M the mass of device, l1 is the added mass obtained from frequency domain coefficients, and
FexðtÞ is the wave excitation force in time domain. K11 is the total stiffness and viscous drag-term is
the drag component of the Morison equation, i.e., 1

2 qACdUr j Ur j. It is worth noticing that Ur is the rela-

tive velocity of the float with respect to the velocity of the incoming waves, that is Ur ¼ _X � V , where _X
is the instantaneous velocity of the buoy as it moves in response to the waves and V is the correspond-
ing incoming wave velocity taken in accordance to the linear wave theory for deep water scenario. For
the surging case this horizontal velocity component of the wave velocity is given by Eq. (17). In Eq.
(16) the convolution product of radiation impulse response function times the velocity has been
replaced by an additional state variables Ii using the methodology described in [30], these state vari-
ables are shown in Eq. (18) where a and b are the amplitude and the phase of the complex coefficients,
respectively and Nprony is the total number of these coefficients.
V ¼ xAwaveekz sinðxt � kxÞ ð17Þ
here Awave is wave amplitude, t the time vector and k being the wave number.
_I1 ¼ b1I1 þ a1
_X

..

.

_INprony ¼ bNprony
INprony þ aNprony

_X

ð18Þ
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In the time domain the waves corresponding to the sea state ðHs; TpÞ are described as a superposition
of regular waves and the resulting elevation of the irregular wave is (Eq. (19))
gðtÞ ¼
XNwave

i¼1

Awave;i cosðxit þuiÞ; ð19Þ
here ui are random phases between ½0� 2p�; i is the index of the wave frequency, and Nwave being
the total number of summed waves.
Awave;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SðHs; Tp; f iÞDf

q
: ð20Þ
The excitation force due to irregular wave of the defined spectrum is then given by
FexðtÞ ¼ R
XNwave

i¼1

Awave;iFexðxiÞeiðxi tþuiÞ

!
: ð21Þ
Once the time domain equation of motion is solved for _X, the instantaneous power PinsðtÞ is
PinstðtÞ ¼ Bpto
_XðtÞ2 ð22Þ
and the mean power:
PTðHs; TpÞ ¼
1
T

Z T

0
PinstðtÞdt; ð23Þ
where T is the total duration of the simulation. Similar to the frequency domain now the APP of this
time domain model is obtained by multiplying the mean power PT by the sea statistics say CðHs; TpÞ
i.e.,
PAPPðtÞ ¼
XNT

k¼1

XNH

j¼1

PTðHs;j; Tp;kÞCðHs;j; Tp;kÞ ð24Þ
1.4.1. Computation setup and results
For the computations of the linear hydrodynamic coefficients three mesh configurations are initial-

ly simulated. Results of these three mesh profiles are compared and the corresponding plots are pre-
sented in Fig. 2. Only the submerged part of the float is meshed for computations of the hydrodynamic
parameters using Aquaplus. Aquaplus is BEM solver for calculation of first order hydrodynamic coef-
ficients which has been developed at the Ecole Centrale de Nantes, France [31]. One can see that a per-
fect agreement, of response amplitude operator (RAO) of the device for each mesh, confirms that the
results are mesh independent. Following this a mesh with 500 panels was chosen for the rest of the
computations as presented from here onwards. Table 2 presents the set of the input parameters that
were used in the Aquaplus computations and the frequency dependent added mass A, radiation damp-
ing B and excitation force Fe for the surge motion of the float are shown in Fig. 3.

The overall picture of the performance of the WEC is shown via a numerically computed power
matrix as can be seen in Fig. 4, which shows the average value of power production for each corre-
sponding set of Hs and Tp. It is reasonably prominent that when viscous damping is taken into account
the predicted performance is reduced to almost 64% of the initial power production which was com-
puted without the additional viscous drag force. The corresponding absorbed power as a function of
the wave frequency is shown in Fig. 5 where the lower peak of the absorbed power refers to a viscous
force scenario.

The numerical tests for the APP of the WEC regarding three test locations were performed. The
resulted APP for various values of the drag coefficient at three test sites are shown in Fig. 6. A sig-
nificant impact of the drag force in relation to the APP is evident from these results.

Further a possible solution to improve power efficiency, in such a case where drag is causing a
steep reduction of the power output, has been proposed. This concerns the tuning of the power take
8
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Fig. 2. Mesh convergence test for Aquaplus.

Table 2
Input parameters for surging WEC.

Parameter Units Value

Bpto [N.s/m] 500,000
M [kg] 785,000
K11 [N/m] 500,000
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Fig. 3. Hydrodynamic parameters for surging WEC (a) added mass, (b) radiation damping and (c) excitation force.

Fig. 4. Power matrix without Cd and with Cd (=1.8), showing power in [Watts].
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Fig. 7. Variation of APP against PTO damping for surging WEC.
off system. Fig. 7 demonstrates that a variation of the employed PTO damping can improve the power
output even when the drag force has been included in the computational model.

1.5. CFD – FLOW3D

FLOW3D is a RANSE (Reynolds Averaged Navier–Stokes Equations) solver. The fluid in FLOW3D is
defined using a volume of fluid (VOF) function F [32]. For single fluid, F is the volume fraction
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occupied by the fluid and thus is equal to 1 and for the void region (the region above free surface in
this case) the value of F is 0. Here void region is area of the computational domain where a uniform
pressure (atmospheric pressure) is assigned.

1.5.1. Simulation setup
Table 3 shows the main solver properties for the three dimensional simulations conducted in

FLOW3D. A detailed summary of the mesh used, boundary conditions, turbulence models and the con-
vergence test of FLOW3D is presented next.

1.5.1.1. Meshing. In FLOW3D the technique that defines the geometry of the solid structures is named
as FAVOR™. This technique is based on the concept of area fraction (AF) and volume fraction (VF) of
the rectangular structured mesh. Thus the geometry shape depends on the mesh cells that lie on the
boundary of the structure. As the shape of the rigid body depends on the area and volume fractions of
occupied cells, a local fine mesh was needed to establish the exact geometric shape of the rigid body.
An optimum mesh was obtained by adding extra fixed points in the vicinity of the WEC. The way how
this mesh renders the geometrical shape of the rigid body is further explained with the help of an
illustration; see Fig. 8, where the geometrical shape corresponding to three different mesh cell sizes
is shown and it can been seen that to obtain a desired geometry shape, with higher precision, a much
refined cell size would be required. In the present simulations, the sharp edges of the wave energy
converter are to play a very important role in generating vortices, which in turn would influence
the total viscous drag force(s). Therefore a fixed point method of the FLOW3D mesh generation was
used and a smaller cell size at the fixed point insured that flow field in this region of oscillating motion
would be resolved, this insured that the shape of the body edges will not be lost as the structure
oscillates.
Table 3
General model properties.

Flow mode Incompressible
Number of fluid One fluid
Moving object model Implicit
Turbulent model Renormalized group (RNG) model
Pressure solver Implicit, GMRES
Volume of fluid advection Split Lagrangian method
Momentum advection Second order monotonicity preserving

(a) (b) (c)

Fig. 8. Three mesh structures and corresponding rendered geometry; (a) cell size 0.6 m, (b) cell size 0.4 m, (c) cell size 0.2 m.
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At free surface location relative dense mesh was created as this is a prerequisite to reduce wave
height decay as wave propagated in the numerical wave tank.

An optimum mesh profile can efficiently play an important role in minimizing the reflection effect
caused at the outer domain boundaries therefore a stretched cells structure was achieved adjacent to
these far-end boundaries, a vertical slice of the mesh is shown in Fig. 9.
1.5.1.2. Boundary conditions. Boundary conditions applied to the CFD wave tank are explained in
Table 4. To minimize wave reflection from the downstream (right hand side) end of the wave tank,
the outflow boundary condition was applied together with stretched cells adjacent to this boundary.
1.5.1.3. Turbulence model. The RNG model was employed throughout all simulations unless stated
otherwise. This model is based on the Renormalization Group (RNG) methods. In this approach the
derivation of the turbulence quantities such as turbulent kinetic energy and the corresponding dissi-
pation rate is accomplished using statistical methods.

The RNG model is based on the similar equations as the k� e model but the constants of these
equations are found explicitly whereas in k� e model these coefficients are obtained empirically.
RNG model is known to describe strong shear regions of the flow more accurately. The minimum value
of the rate of the turbulent energy dissipation eT is limited according to the following equation
eT;min ¼ CNU

ffiffiffi
3
2

r
kT

3=2

TLEN
; ð25Þ
where CNU is a parameter (0.09 by default), kT is the turbulent kinetic energy and TLEN is the turbu-
lent length scale. A constant value for this length scale is chosen according to the rule of 7% of the
dominating moving body’s dimension. Further detail about underlying mathematical model and
numerical scheme is available in [33].
Fig. 9. Mesh profile of the computational domain of a CFD simulation for wave structure interaction.

Table 4
Boundary conditions explained.

Face Number Face of NWT Boundary condition

1 Left – X min Wall or wave boundary
2 Right – X max Outflow
3 Front – Y min Symmetry
4 Back – Y max Symmetry
5 Top – Z max Fixed pressure
6 Bottom – Z min Wall

12



1.5.2. Convergence
Solver convergence is controlled through automatic time step adjustment. This offered maximum

possible time step size without compromising stability and convergence criteria. Pressure conver-
gence is insured through defined number of iterations and in case convergence is not achieved within
this limit then the solver is aborted (see [33]). In addition, mesh convergence check was performed. As
discussed in [34], wave height attenuation can occur in CFD simulations therefore the optimum mesh
structure employed in all simulations insured that the desired wave achieved at the device location is
within a reasonable accuracy. Results for three different mesh structure are shown in Fig. 10a where
device displacement in response to an incoming wave of amplitude 2 m and wave period 8 s is drawn,
it can be seen that negligible differences are observed between each mesh however MeshF1 was used
for the comparison. Mesh independence test for radiation force computation is shown in Fig. 10b
where mesh refinement allows to reduce noise and spikes. Although further mesh refinement may
be needed to fully resolve this issue. However, it is a peculiar effect occuring within limited time dura-
tion and it is observed that it does not affect the motion response and the overall aspect of the force is
converged. Thus it is believed that it does not affect the estimates for Cd.

CFD simulations for each case study (diffraction, radiation and WSI) comprise varying mesh struc-
ture depending on the corresponding requirements of each scenario. Cell size information of the mesh
used for results of Fig. 10 is listed in Table 5. CPU time for a specific CFD simulation of WSI problem of
50 s wall clock time is given below:

Dimension of the computational domain: 190 m, 50 m, 60 m (x, y, z); total number of cells:
2,042,044; smallest cell size: 0.3; CPU time of a typical simulation: 8 h 8 min; Computational
resource: RAM: 6GB, processor: Intel(R) Xeon(R) CPU E5620 @2.40GHZ 2.39GHZ; system: Windows
7 Professional 64 bits.
2. Radiation

Radiation refers to the cases where the surface piercing profile of the wave energy converter is
made to oscillate in otherwise calm fluid. The rocking structure then generates waves that appear
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Fig. 10. Results of mesh convergence check for CFD simulation (a) displacement from coupled wave structure motion, (b)
radiation force from radiation case study.
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Table 5
Mesh information for convergence test.

Mesh Min cell size [m] X-axis Total cells

Coupled WSI MeshC1 0.4 731,768
MeshF1 0.3 1,536,480
MeshF2 0.2 2,705,039

Radiation force Mesha 0.4 1,604,768
Meshb 0.3 2,630,700
Meshc 0.2 3,017,774

Table 6
CFD simulations for radiation tests of surging WEC.

Case study Amplitude [m] Period [s] KC

SB2 3 5 1.5
SB3 5 8 4.0
to radiate as the rigid body moves back and forth. Table 6 presents case studies considered for the CFD
simulations of the surging WEC.

The amplitude and frequency shown in Table 6 refer to the amplitude and the frequency of the pre-
scribed/imposed velocity. The last column of this Table show the corresponding KC number.

The in-line force from the above mentioned CFD simulations (Table 6) is compared against the
results of the frequency domain analysis. The methodology of computing the radiation force from
the frequency domain analysis is presented below. Following the computations from the BEM fre-
quency domain in-house research code Aquaplus, the frequency dependent hydrodynamic coefficients
A, B and Fe are known, where; A is added mass, B is radiation damping, and Fe is the excitation force. It
is worth noticing that the excitation force where a rigid structure is held still, in a wave climate, is also
taken as being equivalent to the diffraction force.

Frequency domain radiation force coefficient (FradðxÞ) can be written as
FradðxÞ ¼ UmðixA� BÞ ð26Þ
Here Um is the amplitude of the velocity of the moving structure. The corresponding time domain
equivalent FradðtÞ is:
FradðtÞ ¼ RðFradðxÞeixtÞ ð27Þ
Here R refers to the real part of the complex value. Drag force is
Table 7
CFD simulations, wave diffraction cases.

Case study Wave amplitude [m] Wave period [s] KC

DB1 1 5 0.6
DB2 2 8 1.2

Table 8
CFD simulation case studies for regular waves.

Case study Wave amplitude [m] wave period [s]

RWAB1 2 8
RWAB2 3 10
RWAB3 5 10
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Table 9
CFD simulation case studies for irregular waves.

Wave spectrum Significant wave height [m] Peak wave period [s]

Sf1 2.5 7
Sf2 3.5 9
Sf3 5 12
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Fig. 11. Wave spectra for random wave scenarios.
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FdragðtÞ ¼ �
1
2
qACd

_Xj _Xj ð28Þ
The in line force obtained from the sum of Eq. (27) and Eq. (28), that is FRDðtÞ (Eq. (29)), is then com-
pared to the total force obtained from the CFD results.
FRDðtÞ ¼ FradðtÞ þ FdragðtÞ ð29Þ
3. Diffraction

This section presents simulations of the cases where a wave energy converter is held still whilst the
wave loadings are computed numerically. As the wave interacts with the still structure, a diffraction
wave field emerges and the resulting in-line wave force is, in this case, termed as diffraction force and
is denoted as FDiff . The time history of the diffraction force is obtained from the excitation force coef-
ficient evaluated using Aquaplus. Eq. (30) shows the calculation of the time series of the FDiff .
FDiffðtÞ ¼ AwaveRfjFeðxÞjeixtg ð30Þ
Here Awave is the amplitude of the incoming wave.
For this type of analysis the rigid device is non-moving. Performed CFD simulations are shown in

Table 7. Results of these CFD simulations were then compared with the ones obtained through Eq.
(30).
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Fig. 13. In-line wave force – (a) case study DB1, (b) case study DB2.
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4. Coupled wave structure interaction

This section deals with the CFD case studies of the wave propagation and the resulting response of
the wave energy device. Coupled wave structure interaction refers to a scenario where the wave ener-
gy converter is allowed to respond to a wave force of the incoming wave profile. Additional control
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Fig. 14. Displacement of Surging WEC from CFD and PTDV mode, case study; (a) RWAB1, (b) RWAB2, and (c) RWAB3.
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forces like power-take-off damping as a function of the velocity and restoring force which is a function
of the displacement were added into the CFD model. This was achieved by customization of the rele-
vant Fortran source code of the FLOW3D. The code was then recompiled and the customized version
was used for rest of the simulations presented here on wards. This additional power take off and
restoring force can be written in the form of the following Eq. (31):
(a)

(b)

(c)

Fig. 15.
and (c)
f x ¼ �Bpto
_X � K11X ð31Þ
Here Bpto is the power take off damping coefficient, and K11 is the restoring (stiffness) coefficient. X; _X
being the position and velocity of the body mass center, respectively.

For the CFD analysis a numerical wave tank was established and the wave energy device was tested
in regular (sinusoidal) monochromatic and irregular (random) incident waves. Resulting instanta-
neous displacement of the WECs was then compared with the outcome of the PTDV model. In doing
so a comprehensive inspection of the methodology employed in PTDV is conducted. The nominal value
of the drag coefficient is used for this comparison.

CFD simulation setup in these cases comprised a wave boundary specified at the left (minimum X
axis) end of the wave tank. Whereas the far end boundary (maximum X axis) was set to the available
option of the outflow boundary which allowed the circulating fluid to re-enter the fluid domain hence
minimizing the wave reflection effect. Moreover as in other cases of the CFD simulations the mesh at
this far end boundary was set to a bigger cell value, this enabled the achievement of a gradually
stretched cell structure towards this outflow boundary. Whereas the mesh cells at the wave boundary
was kept to a smaller cell value so that to aid the wave propagation in order to diminish the wave
height decay. This issue of wave propagation regarding commercial CFD packages including FLOW3D
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has also been pointed by [34]. In order to address this issue, the wave energy converter was placed
slightly closer to this wave boundary rather than in the middle of the tank.

4.1. Regular waves

Case studies of CFD simulations of the wave energy converters in regular (sinusoidal) incoming
wave climate are shown in Table 8. Through these case studies, motion of the surging wave energy
converter against linear waves is studied via CFD analysis. The CFD computations are then examined
against the one obtained through state of the art methodology: PTDV model.

4.2. Irregular (or random) waves

This section describes CFD and PTDV model results for a set of irregular monochromatic waves. Like
regular wave case studies the PTO damping force and additional stiffness, as explained in Section 4, are
included into the CFD model. Irregular wave is defined according to the Bretschneider spectrum.
Table 9 shows the input wave parameters for each numerical test case. Irregular wave spectrum for
each numerical case study is shown in Fig. 11. This wave spectrum and the angular frequencies were
used as input parameters to the FLOW3D and it was observed that random wave being generated by
FLOW3D is based on the amplitude which are given by
(c)

(a)

(b)
AðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðSfkÞDx
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Here x is the angular velocity in rad/s, Sfk is the spectrum corresponding to the individual case study
for k ¼ 1;2;3 and Dx is the angular frequency step for the frequency points.
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5. Results

5.1. Radiation

Results from the sum of the radiation and drag force are compared against the CFD data for the
surging WEC. The surging WEC described earlier was made to oscillate at various sets of sinusoidal
velocities illustrated in Table 6. CFD simulations were set-up so that the free surface response can
be taken into account. The radiated waves were then generated and the resulting radiation force is
investigated alongside the radiation force obtained via frequency domain model.

In Fig. 12a force time history from the CFD and resultant force of (Frad þ Fdrag, Eq. (29)) are shown
for test SB2. Although for this specific case of small amplitude linear monochromatic wave, the drag
force is relatively small as compared to the radiation force and therefore the corresponding sum of the
drag force and the radiation force offers only a slight increment and is able to capture the peak of force
curve as observed in the CFD model.

Radiation force comparison for SB3 is presented in Fig. 12b where It can be seen that the addition of
the drag term offers an improved force prediction as the upper limit of the CFD force amplitude is
recovered by the additional drag term. It seems that for relatively large KC value the surrounding fluid
becomes more turbulent and coupling of the low pressure vortex formation and the possible reflection
from the outer boundaries appear to be as a major reason for the high frequency noise on the in-line
force curve.
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5.2. Diffraction

Results of case studies DB1 and DB2 are shown in the form of the wave force in Fig. 13(a and b,
respectively). In Fig. 13 the diffraction force which comes through the Eq. (30) is labeled as Frequency
domain whereas the CFD-FLOW3D is the total in-line force computed via CFD simulations of FLOW3D.
A reasonably good comparison of the two force curves raises confidence in the frequency domain
approach that for such a small amplitude motion the linear potential model provides competitive
results when compared to the RANSE solver.

Fig. 13b shows diffraction force comparison for the case study of relatively higher wave amplitude.
Here the incoming wave corresponds to the case study DB2. A reasonably good comparison for this
case of relatively higher KC number flow is evident.
5.3. Coupled wave structure interaction

5.3.1. Regular wave
Fig. 14 show displacement of the surging WEC for three different wave conditions (Table 8), respec-

tively. Fig. 14a shows displacement of the surging wave energy converter for a regular wave of ampli-
tude 2 m and time period 8 s. PTDV model results with and without drag force; (that is Cd: 1.8 and 0);
are shown along corresponding displacement curves from the CFD model. It is quite prominent that in
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Fig. 19. Free surface elevation; (a) case study Sf1, (b) case study Sf3.
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the absence of the drag force (for Cd ¼ 0) the PTDV model is over-estimating the response of the device
and hence, it was leading to a higher estimate of the power output.

Fig. 14b presents displacement of the surging device for case study RWAB2. It is shown that the
drag value of 1.8 insures good agreement when compared to the CFD lead results. Similar conclusions
are observed for case study RWAB3 as seen in Fig. 14c where displacement of the surging WEC in
response to the wave forces of a linear wave of amplitude 5 m and wave period 10 s is shown. Cd value
of 1.8 is shown to produce better agreement with the CFD output.

Wave profiles from both numerical models are shown in Fig. 15. Here the corresponding wave
elevation from all the three simulations from CFD wave tank and the analytical wave elevation from
the time domain model is presented. It can be seen that the wave elevation from CFD model is asym-
metrical which is a typical feature of the nonlinearity and therefore show deviations from the linear
model.
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Fig. 16(a–c) are the corresponding instantaneous power curves for the three test cases; it can be
seen that the PTDV model (with a suitable Cd value) reduces the over-estimation of the power produc-
tion to a greater extent. The mean power value for each above mentioned case studies (RWAB1,
RWAB2 and RWAB3) are shown with the help of a bar-plot in Fig. 21 which concludes that the PTDV
model carries a capability of predicting the power output competently when compared to the CFD
simulation output.

5.3.2. Irregular or random waves
Fig. 17 shows time history of the instantaneous position of the surging wave energy converter for

the three cases (Sf1, Sf2 and Sf3). It can be observed that the drag damping force when included into
time domain model offers a considerable improvement.

For the first case of wave spectrum Sf1, device displacement from all models is shown in Fig. 17a,
considering the complexity in generating random wave in CFD simulations, a good agreement with
modified time domain model is reported.

Fig. 17b shows the displacement of the surging WEC for the second case study where a random
wave field from spectrum Sf2 was generated. The time domain results for two values of the drag coef-
ficient i.e., Cd ¼ 0; Cd ¼ 1:8 are plotted alongside the CFD findings. Here Cd ¼ 1:8 corresponds to a
nominal value of the drag coefficient calculated via CFD [13]. Results shown in this Fig. 17b highlight
a number of important aspects of the CFD and the PTDV model. It is noted that, firstly, the PTDV model
over-estimates the motions of the WEC in the absence of the additional drag force. Secondly, when the
drag force corresponding to the nominal value of the Cd is included into the PTDV model the compar-
ison with the CFD is reasonably quite good for the first 30 s of wave structure interaction. This is
because the wave amplitude and hence the motion amplitude of the device were relatively small.
Thirdly, when the wave with much greater height approaches, at t = 32 s to 40 s, the resulting peak
of the displacement amplitude undergoes a sudden jump. In this case the displacement peak obtained
through PTDV model with Cd, although an improvement, but is still about 40% under-estimation as
compared to the CFD data. Resulting claim of the PTDV model can also be demonstrated by the
Fig. 20 where time history of the power output is shown.

Results of the third wave spectrum Sf3 are shown through Fig. 17c. Looking at the device displace-
ment with and without the drag term at time instants of 20 s and 30 s, it can be noted that the addition
of the viscous drag not only reduces the extent of the over-estimation of the device motion but also
introduces nonlinearity in the resultant motion like the one shown by CFD simulations.

Spectral density of the device displacement is also shown for the three irregular wave cases; see
Fig. 18a, b and c, respectively. Certain discrepancy in the spectral density may also be due to the num-
ber of data points available from each simulation.

The surface elevation of wave propagation for the two simulations (Sf1 and Sf3) of irregular wave
are shown in Fig. 19a and b. As the significant wave height of 5 m with a peak wave period of 12 s pro-
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duces relatively energetic random wave which is beyond the scope of the linear potential approach.
Therefore the comparison of free surface elevation from CFD verses analytical linear model are tend
to show certain discrepancies. However it can be seen from Fig. 20c that the instantaneous power out-
put show similar trend as in previous case studies.

To further illustrate these outcomes and to aid the conclusive remarks the instantaneous power
profile from the both numerical tools – the CFD and the PTDV model – is presented in Fig. 20. And
the correspond mean power output all cases of coupled motion is shown given in Fig. 21.

Contours of turbulent energy from CFD simulations of wave spectrum Sf2 are presented in Fig. 22
where wave structure interaction for a sequence of four time instants are shown, it can be seen that
some extent of wave breaking is also considered in CFD. Furthermore it is worth mentioning that the
CFD model computes fluid forces on the instantaneous position of the moving object whereas in the
presented PTDV model fluid loading calculation is made with reference to the mean position of the
WEC. This can be another major reason of the small differences observed.
Fig. 22. CFD contour profiles showing turbulent energy corresponding to case study Sf2. Below each contour profile the
diamond shaped mark on the displacement curve of WEC shows the corresponding instantaneous position of the WEC.
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6. Conclusions

Using wave to wire model it is shown that the APP is prone to the magnitude of the drag damping.
Once this drag damping force is quantified for a given device a further tuning of the power take off
damping may improve the power output (see Fig. 7).

The radiation force from the frequency domain model is found to be an under-estimation as com-
pared to the CFD results. The inclusion of the drag term (Eq. (28)) into the radiation force Frad leads to a
considerable improvement.

For wave diffraction scenario, it is observed that the CFD results are in accordance with the poten-
tial theory based frequency domain model for a small amplitude incident wave field. This serves a
validation case study for the CFD model. However as the amplitude of the incident wave increases
the difference between the two methodologies appear more widened.

For regular waves, a good agreement of CFD and PTDV model is observed. In case of irregular wave
scenario a number of key points are noticed: for relatively smaller amplitude waves (amplitude 63 m)
the resulting displacement is within a range of 61.5 m and the numerical results obtained through the
addition of the drag force into the state of the art wave to wire model show good agreement. It is also
shown that without the addition of the drag term the displacement of the buoy is being overestimated
which in-turn gives an amplified APP value of the device. For those parts of the irregular waves where
the wave amplitude is relatively larger (i.e., in the range of wave amplitude P3 m) the difference
between the time domain model and the CFD is quite significant.

A methodology for identification and incorporation of the drag damping force in potential flow
based models is presented and is shown to be in reasonable agreement with CFD simulations.
Although comparison of PTDV and CFD results is not perfect at every instant; inclusion of quadratic
drag damping of the Morison force is shown to control the APP over-estimation to a considerable
extent, concluding that the methodology can be applied in practice for improving power output pre-
dictions of the wave to wire model of WECs.
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