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A fast approach coupling Boundary Element Method and plane wave 
approximation for wave interaction analysis in sparse arrays of wave 

energy converters

Jitendra Singh n, Aurélien Babarit
LUNAM Université, Ecole Centrale de Nantes-CNRS, 1 rue de la Noe, 44300 Nantes Cedex 3, France

A computational approach is developed to investigate wave interaction effects in sparse arrays of floating 
bodies (such as wave energy converters) based on linear potential theory. In particular, the wave 
diffraction and radiation problems in a multiple body array are solved in reasonable time and accuracy. 
In contrast to previous approaches that have considered all bodies in the array as a single module, the 
present approach treats each body in the array as an isolated body. The interactions resulting from the 
scattered wave field among the bodies are then taken into account via plane wave approximation in an 
iterative manner. The boundary value problem corresponding to an isolated body is solved by the 
Boundary Element Method (BEM). The approach is useful for wave periods in the range 4–15 s, provided 
that the bodies are separated by at least five times the characteristic dimension of a body. The main 
advantage of the approach is that the computational time and memory requirements are significantly 
less than that of conventional BEM. In this paper, first, the numerical results for hydrodynamic 
coefficients computed by the proposed approach are validated against conventional BEM. Next, the 
wave interaction effects on power production are investigated in arrays of 50 wave energy converters. 

1. Introduction

This study investigates wave interaction effects in arrays of

oscillating wave energy converters (WECs). It is anticipated that

for power production at a commercial scale, tens of WECs would

be deployed in arrays, the so-called WEC farms. Therefore, in order

to make reliable estimates of energy production, it becomes

necessary to take into account wave interaction effects. This aspect

has been covered in many studies, c.f. Budal (1977), Falcaode

(2002), Cruz et al. (2009), Ricci et al. (2007), Babarit (2010) and

Borgarino et al. (2012), in regular and irregular wave fields for a

variety of WECs. In developing oscillating WEC arrays with device

dimensions �10–20 m, the distance between the devices could be

as much as a few hundred meters due to practical considerations,

such as mooring, installation and maintenance issues. Conse-

quently, this study investigates wave interaction effects in such

sparse WEC arrays, where the ratio of separating distance to

device dimension is large.

A viable approach to solving full hydrodynamic interaction

phenomena in a multiple body array is to model the problem

using linear potential theory. This requires solving the diffraction

and radiation problems over the frequency domain; the hydro-

dynamic coefficients (excitation force, added mass and wave

damping) can then be easily post-processed. A judicious choice

for solving these problems is the Boundary Element Method

(BEM), since the domain is unbounded and only discretization of

the boundary is required. However, when the array consists of

several bodies, the number of discretization elements increases,

and use of the BEM becomes prohibitive due to the computational

requirements of solving a dense linear matrix system. In addition,

a comprehensive analysis requires that the solution of diffraction

and radiation problems be sought at several frequencies in the

range of interest, thereby further increasing the computational

time requirements. It is worth noting that developing fast algo-

rithms to solve dense matrix system in BEM is an active area of

research. There have been successful attempts to accelerate the

BEM by coupling it with fast methods, such as fast multipole

methods (FMM) (Greengard and Rokhlin, 1987), pre-corrected fast

Fourier transforms (FFT) (Phillips and White, 1997) and other

methods. In the field of wave hydrodynamics, the BEM–FMM

coupling for solving diffraction and radiation problems has been

used in Utsunomiya and Watanabe (2002), Teng and Gou (2006),

and Borgarino et al. (2011) for specific applications. Acceleration using

fast Fourier transforms has been performed in Kring et al. (2000) and

others. However, these approaches have some limitations. In FMM,
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numerical convergence of the existing multipole series expansion of

the free surface Green's function can be difficult, thereby limiting the

scope of developing this approach for generic three-dimensional

bodies; whereas, in FFT methods, construction of a grid and projec-

tion operations over the full domain of the sparse array would lead to

a sub-optimal algorithm.

Besides the aforementioned fast methods, interaction approaches

have also received a significant attention, particularly for axisym-

metric bodies. A multiple scattering theory (Ohkusu, 1974) combined

with a direct matrix method has been developed in Kashiwagi

(2000). An extension of this theory, the so-called hierarchical

interaction theory, has been presented in finite (Kagemoto and Yue,

1986) and infinite depths (Peter and Meylan, 2004). The plane wave

approximation (PWA), also known as wide space approximation,

coupled with direct matrix approach has been proposed in Simon

(1982). The PWA approach is based on the assumption that waves

diffracted by or radiated from a body can be approximated at large

distances by a plane wave. This approach has been further improved

to reduce the spacing requirements by taking into account non-plane

correction terms in the formulation (McIver and Evans, 1984).

A comparison of the multiple scattering and the PWA approaches

for arrays consisting of five vertical cylinders with varying radii and

separating distances has been presented in Mavrakos and McIver

(1997), in which it was deduced that the PWA provides very good

results for all the hydrodynamic coefficients in comparison to those

provided by multiple scattering approach when the ratio of separat-

ing distance to body dimension is greater than five.

In this study, we propose a simple approach for estimating the

wave interaction effects in sparse arrays of a large number of

bodies of arbitrary shape. The approach couples the efficiency of

the BEM with the core idea of PWA mentioned above. Essentially,

when the bodies are sufficiently distant in an array, the effects of

the wave field emanating from one body are taken into account by

the other body as an additional plane incident wave. Here we use

this approximation efficiently and develop a fast approach. The

computational time and memory requirements using the pro-

posed approach are significantly less than the conventional BEM

(CBEM), and the approach is applicable to bodies of arbitrary

shape. Furthermore, the approach is simple and can be easily

implemented in existing diffraction/radiation solvers.

The remainder of the paper is organized as follows. We begin

by recalling in Section 2 the problem formulation in potential

theory and detail the necessary equations that must be solved to

calculate power extraction by a WEC array. In Section 3, we

illustrate our approach of coupling BEM with PWA, and in

Section 4 we present numerical results to validate the approach.

Section 5 analyze wave interaction effects on power production in

WEC arrays. The final section presents some concluding remarks.

2. Problem statement

The wave interaction phenomenon in a multiple body array is

modeled within the framework of linearized potential theory.

Specifically, the fluid is inviscid and incompressible and the flow

is irrotational. The wave amplitude and body motions are small

with respect to the wavelength and body dimensions, respectively.

Under these assumptions, the problem can be formulated in terms

of a velocity potential, Φ, satisfying the Laplace equation in the

fluid domain with appropriate boundary conditions. For simplicity,

we consider that the fluid domain is of infinite depth and

unbounded in horizontal directions. The motion is time harmonic

with circular frequency ω, i.e. Φðx; y; z; tÞ ¼Rfϕðx; y; zÞe� iωtg. Lin-

earization allows the velocity potential ϕ to be expressed as sum

of the incident potential ϕin, the diffraction potential ϕd and the

radiation potential ϕr. The explicit form of the incident potential is

ϕin ¼
gA

ω
ekzeikðx cos βþy sin βÞ ð1Þ

where k¼ω2=g is the wave number, g is the acceleration due to

gravity, A is the wave amplitude and β is the angle between the

direction of propagation of the incident wave and the positive x-

axis. The diffraction and radiation potentials correspond to the

potentials generated in response to the incident waves and the

fluid disturbance due to the motions of the bodies in still water,

respectively. The diffraction and radiation boundary value pro-

blems can be summarized as follows:

� Diffraction problem:

Δϕd ¼ 0 in the fluid domain

∇ϕd-0 z-�1

∂ϕd

∂z
�kϕd ¼ 0 at mean free surface position z¼ 0

∂ϕd

∂n
¼ �

∂ϕin

∂n
on mean wetted body surface
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� Radiation problems:

Δϕ
j
ri
¼ 0 in the fluid domain

∇ϕ
j
ri
-0 z-�1

∂ϕ
j
ri

∂z
�kϕ

j
ri
¼ 0 at mean free surface position z¼ 0

∂ϕ
j
ri

∂n
¼ nj

i on mean wetted body surface

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð3Þ

where indices i and j correspond to motion in any of the six

degrees of freedom and the numeration of the body (j¼ 1;…;N),

respectively. Using this convention, ni
j denotes the component of

the normal vector in the direction of motion on body j.

Having solved the set of diffraction and radiation problems, it is

straightforward to compute the hydrodynamic coefficients: exci-

tation force FexðωÞ, added mass AMðωÞ and wave damping BðωÞ.

Further, to compute the motion of a system of N floating bodies for

unit wave amplitude and wave frequency ω we solve

ðMþAMðωÞÞ €XþðBPTOþBðωÞÞ _XþðKHþKPTOÞX ¼ FexðωÞ ð4Þ

where X is the position vector, X ¼RðXe� iωtÞ, _X and €X being,

respectively, the velocity and acceleration vectors. M and KH are

the mass and hydrostatic matrices of the system. An idealized

power take off (PTO) is considered in this study, composed of a

linear spring and damper system with stiffness kPTO and damping

coefficient bPTO. These are the diagonal elements of the stiffness

and damping matrices in (4) , i.e. KPTOii
¼ kPTO and BPTOii

¼ bPTO.

In regular waves, the mean power extracted by each device in

the array per unit square of wave amplitude is

piðωÞ ¼ 1
2 BPTOω

2 Xij
2:

�

� ð5Þ

For the whole array, the mean power is simply the sum of the

mean power from each of the individual devices. For irregular

waves, characterized by a wave energy spectrum S (we use a

standard Jonswap spectrum with frequency spreading parameter

γ ¼ 3:3), the mean power extracted is

PiðHs; TpÞ ¼

Z 1

0
SðHs; Tp;ωÞpiðωÞ dω ð6Þ

where Hs is the significant wave height and Tp is the peak period.

The yearly average power of a body i, given the probability of

2



occurrence CðHs; TpÞ of sea state Hs; Tp, is calculated by

〈Pi〉¼ ∑
Hs ;Tp

PiðHs; TpÞCðHs; TpÞ ð7Þ

For the whole array, the mean absorbed power is again simply the

sum over all the bodies.

3. Solution procedure

The most time-consuming task is to solve the diffraction and

radiation problems (2) and (3), usually by the BEM. It is straight-

forward to transform (2) and (3) into boundary integral equations,

either by using Green's identity involving potentials only (direct

formulation), or involving particular source distribution (indirect

formulation). We prefer the source formulation, because both the

diffraction and radiation problems can be formulated in a common

framework as a Fredholm equation of the second kind and

implemented in the software AQUAPLUS (Delhommeau, 1993).

First, the following integral equation is solved for the unknown

source distribution s on the body surfaces S¼⋃N
k ¼ 1Sk:

sðxÞ

2
�

1

4π

Z

S
sðx0Þ

∂Gðx0; xÞ

∂nx
dSðx0Þ ¼

�
∂ϕin

∂n
ðxÞ

nj
iðxÞ

8

>

<

>

:

; ð8Þ

where x0 and x are the source and the field point, respectively. The

function Gðx0; xÞ is the free surface Green's function taking into

account the linearized free surface conditions, conditions at the

sea bottom and radiation conditions at infinity (Newman, 1985).

Having solved (8) for the density s, the velocity potential can be

computed at any arbitrary point by the following equation:

ϕðxÞ ¼ �
1

4π

Z

S
sðx0ÞGðx0;xÞ dSðx0Þ: ð9Þ

Let us point out that the discretization of (8) leads us to a dense

matrix system. For an array consisting of N bodies, the number of

diffraction and radiation problems to be solved for motion in one

degree of freedom is ð1þNÞnf , where nf is the number of

frequencies. When N is large, it follows that the number of

boundary elements representing the body surface is large, and

so it is not feasible to solve the problems using CBEM in reasonable

time. Keeping this in mind, we now describe a simple and fast

approach to solve the radiation and diffraction problems by

coupling BEM with PWA.

3.1. BEM and plane wave approximation coupling strategy

We now describe how to take into account interactions using

PWA when the bodies are sufficiently well separated. For simpli-

city, we first consider the interaction phenomenon in an array of

two bodies. Due to incident waves (diffraction problem) or

independent motion (radiation problem), body 1 scatters waves

that excite body 2. Body 2 responds to this excitation and in turn

sends outgoing waves towards body 1, which also responds to this

excitation, and so on. In the same vein, body 2 interacts with body

1 due to incident waves or independent motion of the former. In

what follows, as demonstrated by Simon (1982), we can approx-

imate the impact of outgoing waves from a body on all other

bodies by an incident plane wave of appropriately chosen ampli-

tude. From a visual perspective, it can be observed that far from

the generating body the outgoing waves have small curvature and

they act as plane waves on the incident body. However, for

numerical accuracy the criterion ‘sufficiently far’ requires careful

stipulation. On the basis of our numerical experiments, we can

state that when the separating distance between the bodies is

greater than approximately five times the characteristic dimension

of the body, the approximation provides reliable results for wave

period ranging 4–15 s. The algorithm based on the above can now

be formulated for an N-body array in three steps, which are

described below:

� Step 1: Contributions of individual bodies. In this step, we

compute the potential on each body by considering them to

be isolated, i.e. hypothetically assuming that the bodies have no

interaction with each other. The computation required is

straightforward: solve integral Eqs. (8) and (9) on the wetted

body surface of each individual body. In the first iteration, the

usual boundary conditions in (2) and (3) for diffraction and

radiation problems are assigned locally to the body. The

boundary conditions for the subsequent iterations, taking into

account wave interactions, are obtained in step 2. It is worth

noting that there is an additional advantage when bodies are of

the same shape: the influence matrices corresponding to

Green's function, and the inverse of the left-hand side of (8)

corresponding to a single body, are computed once and stored,

to be used for all other bodies when their contribution is

sought.
� Step 2: Contributions due to wave interaction. As already stated,

we approximate the potential due to body i on body j by the

potential of an incident plane wave. Since we know the source

distribution on an arbitrary body i from step 1, the potential at

the mean center position of all other bodies ðxj; yj;0Þ (ja i) due

to sources on body i is computed by solving (9); this is denoted

by ϕij. The total effect at body j is taken as the sum of the effects

from all other bodies in terms of incident plane waves of

complex amplitude ϕij, i.e.

ϕ
n

j ¼ ∑
N

i ¼ 1

ϕije
kzeikððx� xjÞ cos θij þðy�yjÞ sin θijÞ; ja i; ð10Þ

where θij is the angle subtended by the mean center position of

body i while considering the origin to be the mean center

position of body j (Fig. 1). Having computed this effect at each

body in the array, we then compute the contribution of all the

bodies as isolated (as in step 1) due to the excitation induced

by ϕ
n

.
� Step 3: Check for convergence. At each iteration, steps 1 and

2 contribute to the total potential on the body surface. This

process is repeated until either the amplitude of the incident

waves jϕijj becomes smaller than 10�2 for all bodies, or the

maximum number of iterations is reached. This maximum is

set to twice the number of bodies in the array. A shortcoming of

the approach is that there may be resonance effects for some

frequencies, resulting in non-convergence of the iterative

procedure. This situation is handled by making a simple

Fig. 1. Notation of the interacting bodies.
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treatment that provide reasonably accurate results, namely that

at any given iteration, if the amplitude jϕijj is larger than the

previous two iterations, we stop including the interactions

from body j on body i.

4. Test arrays

Here, we present numerical results to validate the approach.

For this purpose, two arrays of 25 heaving cylinders and 25

x(m)

y
(m
)
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Fig. 2. Top view of array layout and surface mesh of a cylinder.
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Fig. 3. Left: excitation forces on cylinders 2 (red) and 9 (blue). Right: excitation forces on cylinders 5 (red) and 24 (blue). (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this paper.)
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Fig. 4. Left: added mass coefficient of cylinders 8 (red) and 11 (blue) due to the motion of cylinder 6. Right: wave damping coefficient of cylinders 4 (red) and 6 (blue) due to

the motion of cylinder 6. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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surging rectangular flaps were chosen. Each cylinder in the array

has diameter and draft 10 m and each rectangular flap has length

10 m and draft and width 7.5 m. These are typical values for

prototypes of oscillating WECs. Comparisons are made with CBEM

for accuracy and computational time. All the numerical computa-

tions were performed on a Dell workstation with an Intel Xeon

CPU E5520@2.27 GHz and 4 GB RAM.

4.1. Heaving cylinders

The cylinders are arranged in a staggered array with a separa-

tion of 50 m laterally, as shown in (2). The wetted surface of each

cylinder is discretized with 240 panels and the direction of

propagation of the incident waves is β¼ 0. The amplitudes of

the heave excitation force computed by the proposed approach

and by CBEM are shown in Fig. 3. In all cases, the results obtained

from CBEM are marked with ‘þ ’, and the results of our proposed

approach are indicated by a line. The computations are carried out

in the frequency range [0.4–1.6] rad s�1, keeping in mind that

most of the energy absorption through a WEC occurs in this range.

The added mass and damping coefficients are plotted in Fig. 4 for

arbitrarily selected cylinders. In terms of computational time, the

present approach took 20 min, whereas the CBEM took more than

140 min to solve for 61 frequencies. The number of iterations

required for convergence in the proposed approach for the

diffraction and radiation problems (when the cylinder at the

center of the array is in motion) is shown in Fig. 5. As expected,

the number of iterations required decreases with decreasing

frequency.

4.2. Surging rectangular flaps

In this example, the array consists of 25 flaps arranged in a

regular array with separating distance of 100 m, shown in Fig. 6.

Each flap is discretized with 272 panels and the direction of

propagation of the incident waves is β¼ 0. The amplitude of the

surge exciting force on selected flaps is shown in Fig. 7. The phase

of excitation force on arbitrarily selected bodies is shown in Fig. 8.

The added mass and wave damping coefficients are plotted in

Fig. 9. For 61 frequencies, the CBEM required 190 min, whereas the

proposed approach took only 9 min. The convergence pattern for

diffraction and radiation problems is shown in Fig. 10. The number

of iterations required for this array configuration was less than

that of heaving cylinders, suggesting that the number of iterations

decreases as the separating distance increases.

4.3. Impact of separating distance on accuracy and computational

time

To investigate the impact of the separating distance on the

overall accuracy of the computations, we consider two arrays

consisting of 9 heaving cylinders and 9 surging flaps arranged in a

regular array with distance ranging from 25 to 150 m. The relative

errors in the calculation of the excitation forces using the proposed

approach

Error¼
jFCBEMex �Fpresentex j

jFCBEMex j
; ð11Þ

computed at one frequency (1.2 rad s�1) for the body at the center

of the array are plotted as a function of separating distance in

Fig. 11. As expected, the error decreases as the separating distance

increases, dropping to less than 5% when the separating distance is

greater than five times the characteristic dimension of the body.

Further, to show that the approach is useful for larger arrays,

we assess the computational time required by the present
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Fig. 5. Number of iterations required for convergence of the diffraction (red) and

radiation (blue) problems. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this paper.)

Fig. 6. Top view of array layout and surface mesh representation of a rectangular flap.
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approach as a function of the number of bodies. For simplicity, the

layout of the cylinders is again in a regular array. The comparison

of computational time using the present approach and CBEM is

shown in Fig. 12. For CBEM, the computational time is simply the

CPU time required to solve for one wave period using the direct

Gauss solver, whereas for the present approach we plot the

average time over 12 wave periods. This is because the number

of iterations required to achieve convergence depends on the

period, as shown in Figs. 5 and 10. Since we use a direct solver, the

CBEM shows third order complexity, while the present approach is

slightly less than first order complexity. This is because we store

the inverse of the matrix computed in the first iteration and use it

in subsequent iterations. We may point out that the memory

requirements using the present approach are less than that of
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Fig. 7. Left: excitation force on flaps 1 (red) and 5 (blue). Right: excitation force on flaps 7 (red) and 21 (blue). (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this paper.)
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Fig. 8. Phase of excitation force on arbitrarily selected bodies in an array of 25 rectangular flaps.
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Fig. 9. Left: added mass of flaps 3 (red) and 12 (blue) due to the motion of flap 7. Right: wave damping of cylinders 11 (red) and 20 (blue) due to the motion of flap 7. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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CBEM even when we store the influence coefficients correspond-

ing to a single body.

5. Wave interaction effects on power production

The power production by an array of WECs is usually altered by

the wave interaction effects (also called park effects), depending

on the type of WEC, array layout, PTO mechanism, etc. Assessing

the effects of wave interactions is thus critical when designing a

WEC array; c.f. Babarit (2013) for a recent review.

We first consider power production by an array of 16 WECs,

again to validate our approach against the results obtained by

CBEM. The devices are surging rectangular flaps of the same

dimensions as in the previous example, and they are arranged in

a regular array (four rows with four WECs in each row) with a

separating distance of 100 m in lateral directions. The stiffness and

damping PTO characteristics of the flaps are KPTO ¼ 1402:1 kN m�1

and BPTO ¼ 444:2 kNs m�1, respectively. The damping PTO coeffi-

cient corresponds to the highest power production of an isolated

WEC over the year. The wave data statistics measured at Yeu island

on the French Atlantic coast are used (Fig. 13). Table 1 shows the

annual average power for each row of flaps; row 1 contains those

bodies that will face the incident waves first and so on. Good

agreement is obtained between the results of proposed approach

and CBEM.

We now consider arrays of 50 surging flap WECs. The purpose

is to investigate the impact on power production of separating

distance and number of rows, in both regular and staggered arrays.

In doing so, our objective is to find an optimal array layout.

Benefiting from previous studies we try to find such a layout

while keeping the number of rows to a minimum; therefore, the

number of rows is limited to either two (25 WECs in each row) or

three (17, 16, 17 WECs in rows 1, 2, 3 respectively). Further
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Fig. 10. Number of iterations required for convergence of the diffraction (red) and

radiation (blue) problems. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this paper.)
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Fig. 11. Error in calculation of the surge (red) and heave (blue) excitation forces.

(For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this paper.)
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Fig. 12. CPU time comparison of conventional BEM and the present approach.

Fig. 13. Wave scatter diagram for Yeu island. Color layers: probability of occurrence

CðHs; TpÞ. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this paper.)

Table 1

Annual average power (kW) produced by a regular array of 16 WECs.

Present method Conventional BEM

Row 1 136.50 137.05

Row 2 120.93 119.29

Row 3 99.95 99.08

Row 4 84.31 83.68
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increasing the number of rows has a negative impact on power

production, in both regular and staggered arrays, and hence is not

considered here. In a single row array, the average power produc-

tion by a single device is 132.92 kW. There is negligible difference

when the separating distance is increased. For reference, the

power production by a single WEC is 130.6 kW.

5.1. Regular arrays

The results for annual average power per device for two and

three row arrays are shown in Fig. 14. The notations used are as

follows: Pyr-R1 is the annual average power produced by a device

in Row 1, and Pyr-A is the annual average power produced by all

WECs in the array. The first row in both two and three row arrays

benefits from the wave interactions from the rows at the back. This

effect occurs for all values of separating distance, but decreases as

separating distance increases. Addition of a row decreases the

overall power production, particularly at short distances, with the

effect mitigated by increasing distance. The results corroborate

previous studies, which suggested that the power produced by the

row at the back is less than that at the front (Borgarino et al.,

2012). It is also worth noting that the wave interaction effects on

power production decrease with the square root of the separating

distance (as opposed to separating distance per se). Therefore, it

can be noted that after a point, increasing the distance slightly

increases the power production.

5.2. Staggered arrays

The results for yearly average power production for two and

three row arrays are shown in Fig. 15. There are notable differences

in the wave interaction effects in staggered arrays as compared to

regular arrays. For small separating distances, the wave interaction

effects are significantly destructive, with 8% less power production

than in the regular array. The rows at the back (rows 2 and 3)

suffer from destructive wave interaction effects. After increasing

the separating distance to 200 m, the interaction effects are clearly

constructive in both arrays: rows at the back gain significantly,

with an increment of 30–40%. Similar to the regular array, we can

observe that after a point, further increases in separating distance

do not modify the power production significantly. Moreover, the

power production is highest for a two-row array when the

separating distance is 200 m.

6. Conclusions

We have proposed a computational approach based on BEM

and PWA to investigate wave interaction effects in sparse arrays of

multiple bodies. The PWA allows us to split the full hydrodynamic

problem into a sequence of smaller ones that are defined for an

isolated body. The BEM is used to compute the contribution of an

isolated body, while interaction effects are taken into account in

an iterative manner. In each iteration, the wave interaction effects

on a body from all other bodies in the array are approximated by a
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Fig. 14. Power production as a function of separating distance by regular arrays with two rows (left) and three rows (right).
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Fig. 15. Power production as a function of separating distance in staggered arrays with two (left) and three rows (right).
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plane wave with appropriately chosen amplitude. It has been

shown that the accuracy of such an approximation depends upon

the separating distance between the devices: it is valid when the

bodies are sufficiently far apart from each other. Our numerical

experiments suggest that when the separating distance is greater

than five times the characteristic dimension of the body, the

approach provides reasonably accurate results for a wide range

of frequencies. This is consistent with the results obtained when

PWA alone is used to solve the hydrodynamic problems.

In addition, due to the decomposition strategy, the computational

resource requirements are significantly reduced. We were able to

study the impact of wave interaction effects on the power

production in arrays consisting of up to 50 WECs, which is difficult,

if not impossible, using conventional BEM. Our findings related to

the interaction effects on power production by arrays consisting of

varying number of devices and different array layouts can be

summarized as follows:

� It is economical to limit the number of rows to two or three.
� Up to a point, increasing the separating distance increases the

power production; however, after this point, further increases

in power production are small. For a 50 WEC array in a

staggered layout, this distance is 200 m. This means that

further increasing the separating distance will only contribute

to additional cable cost.
� The staggered arrays appear to be more profitable than regular

arrays for the surging flap type of WEC.
� It is advisable to find typical array layouts for which wave

interaction effects can be constructive.
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