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Adaptive grid refinement for hydrodynamic flows

Jeroen Wackers ⇑, Ganbo Deng, Alban Leroyer, Patrick Queutey, Michel Visonneau

Laboratoire de Mécanique des Fluides, CNRS UMR 6598, Ecole Centrale de Nantes, 1 rue de la Noë, B.P. 92101, 44321 Nantes Cedex 03, France

An adaptive grid refinement method is presented for hydrodynamic flow simulation. It is meant for appli-cation to a wide range of realistic flow problems, 
so generality and flexibility of the method are essential. Directional refinement is developed to be used with unstructured hexahedral meshes, tensor-
based refinement allows the implementation of many different refinement criteria. Good grid quality is assured by creating buffers of refined cells around 
relevant flow features. Tests are performed with two refine-ment criteria, based on the free surface and the Hessian matrix of the solution respectively; 
these show great increases in efficiency with respect to non-refined grids.

1. Introduction

Automatic grid refinement, the adaptation of a computational

grid to a flow solution by locally dividing the grid cells into smaller

cells, is an ideal way to efficiently solve flow problems that have

strong local structures whose position is not known a priori. Many

such problems appear in marine hydrodynamics. For example,

marine flows often have a free water surface. If this surface is

numerically modelled with any sort of capturing technique, a good

local resolution is needed to accurately resolve its position. Fur-

thermore, steep and breaking waves usually appear in a few spe-

cific areas only. Finally, a ship’s hull and appendages often create

coherent, highly localised vortical structures. To simulate the flow

phenomena in each of these examples, automatic grid refinement

is a very interesting technique.

Grid refinement has been used in fluid dynamics simulations for

a long time. It was used first on cartesian grids, see for example

[1–7]. These methods typically feature special interpolation tech-

niques on the boundaries between coarser and finer cells, to

circumvent the problem of the so-called ‘‘hanging nodes’’, i.e.

nodes that are present in the fine cells but not in the coarse cells.

Later, the focus shifted towards the refinement of unstructured tet-

rahedral meshes. For local grid refinement, their great advantage is

that by adding extra tetrahedra around the zones of grid refine-

ment, hanging nodes can be eliminated. Thus, flow solvers do not

have to be strongly modified to accommodate the refined grids.

Nowadays, refinement of tetrahedral grids has reached a high level

of maturity [8,9].

Recently, interest in hexahedral and quadrangular grids has

rekindled within the finite-volume community with the emer-

gence of unstructured hexahedral grid generators. The first of these

was the HEXPRESSTM grid generator from Numeca Inc. [10], re-

cently other grid generators have appeared like the snappyHex-

Mesh generator of OpenFOAM [11]. The resulting meshes (see

Fig. 1) contain large parts which have a structured character and

thus produce the accuracy associated with structured meshes;

these include body-fitted boundary layer meshes. On the other

hand, meshes in complex domains can be generated as easily as

with all other unstructured grid generators. The associated flow

solvers usually accept arbitrary cell topologies, with any number

of faces per cell and any number of nodes per face. Thus, the con-

cept of hanging nodes no longer exists: all nodes are considered

the same, the flow solver does not even need to know that the grid

is hexahedral.

This paper discusses automatic grid refinement for unstruc-

tured hexahedral grids. These meshes are ideal for adaptive refine-

ment, as their original form already contains fine cells laying next

to coarser neighbour cells. Thus, when some cells of an unstruc-

tured hexahedral grid are refined into smaller hexahedra, the re-

sult is . . . an unstructured hexahedral grid. Therefore, the solvers

that accept these meshes can use locally refined grids without

any modification.

The novelty of the adaptive grid refinement method described

in this paper is, that it is powerful and flexible enough to be used

for large-scale realistic computations on unstructured hexahedral

meshes, in marine hydrodynamics. The paper describes the need

for anisotropic grid refinement in such cases and the way to use

refinement criteria to control the locations for this grid refinement.

It introduces the application of metric tensors as refinement
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criteria, the way we adapted this technique for use with hexa-

hedral grid refinement. Furthermore, refinement criteria are

constructed which are well suited for the computation of hydrody-

namic flows and the best way to use these criteria is investigated.

The refinement method described has been developed for ISIS-CFD,

the unstructured finite-volume RANS code created by the Numer-

ical Modelling group of the Laboratoire de Mécanique des Fluides.

Section 2 briefly describes the ISIS-CFD flow solver and Section

3 gives an overview of the refinement algorithm. Then Section 4 fo-

cuses on the choice of which cells to refine: the way to evaluate a

refinement criterion on unstructured hexahedral grids and the way

in which good grid quality is assured during grid refinement. Sec-

tion 5 introduces the two refinement criteria used in this paper. Fi-

nally, Section 6 illustrates the different aspects of the method and

its practical application with several numerical examples from

marine hydrodynamics. The paper ends with a conclusion.

2. The ISIS-CFD flow solver

Before starting the discussion of grid refinement, we introduce

the methods and techniques that form the basis of the ISIS-CFD

flow solver. ISIS-CFD, available as a part of the FINETM/Marine com-

puting suite, is an incompressible unsteady Reynolds-averaged Na-

vier–Stokes (URANS) method. The solver is based on the finite-

volume method to build the spatial discretisation of the transport

equations. The velocity field is obtained from the momentum con-

servation equations and the pressure field is extracted from the

mass conservation constraint, or continuity equation, transformed

into a pressure equation. These equations are similar to the Rhie

and Chow SIMPLE method [12], but have been adapted for flows

with discontinuous density fields. In the case of turbulent flows,

transport equations for the variables in the turbulence model are

added to the discretisation. Free-surface flow is simulated with a

multi-phase flow approach: the water surface is captured with a

conservation equation for the volume fraction of water, discretised

with specific compressive discretisation schemes. A detailed

description of the solver is given by [13,14].

The unstructured discretisation is face-based, which means that

there is no limitation to the type of the cells. Fluxes are computed

face by face. The reconstructions of the cell-centred state variables

to the face centres are made with interpolations that use the two

cells next to a face and their neighbour cells. However, these inter-

polations use no a priori assumptions about the cell topologies.

And while the linearised systems, used to solve iteratively the

momentum and pressure equations, are systems of equations in

the cell-centred unknowns, these systems are constructed by sum-

ming the contributions of the faces to each cell. Thus, no cell topol-

ogy restrictions apply anywhere, which means that cells with an

arbitrary number of arbitrarily shaped faces are accepted.

The solver is mostly used with unstructured hexahedral grids.

The grid in Fig. 1 shows the typical features of such meshes: several

semi-structured regions, with fully unstructured parts and body-

fitted boundary grids near the walls, as well as sudden changes

in cell size when the grid goes from one large cell to two or four

smaller neighbour cells. Due to its face-based nature, the ISIS-

CFD solver needs no specific changes in order to use these meshes,

they are treated just the same as any other type of mesh.

The flow solver features sophisticated turbulence models: apart

from the classical two-equation k � e and k �xmodels, the aniso-

tropic two-equation Explicit Algebraic Stress Model (EASM), as

well as Reynolds Stress Transport Models, are available, see

[15,13]. The technique included for the 6 degree of freedom simu-

lation of ship motion is described by [16]. Time-integration of

Newton’s laws for the ship motion is combined with analytical

weighted or elastic analogy grid deformation to adapt the fluid

mesh to the moving ship. Furthermore, the code has the possibility

to model more than two phases.

The code is entirely parallelised, based on domain decomposi-

tion of the of the mesh. Communication between the processes is

achieved with the MPI (Message Passing Interface) toolbox. For

brevity, the technical structure of the code is not further described

here.

3. Grid refinement technique

The grid refinement method integrated in ISIS-CFD has been

developed for use in daily practice for all the applications of this

code. Therefore, the method is flexible and general, allowing aniso-

tropic refinement and derefinement for unsteady flows. Like the

flow solver, it is fully parallel. The refinement procedure is com-

pletely integrated in the flow solver.

Globally, the method works as follows. The flow solver is run on

an initial grid for a limited number of time steps. Then the refine-

ment procedure is called; if a refinement criterion, based on the

current flow solution, indicates that parts of the grid are not fine

enough, these cells are refined and the solution is copied to the re-

fined grid. On this new grid, the flow solver is restarted, again for a

limited number of time steps. Then the refinement procedure is

called again, to further refine or to derefine the mesh (i.e. to undo

earlier refinements). This cycle is repeated several times. When

computing steady flows, the procedure eventually converges: once

the flow starts to approach a steady state and the grid is correctly

adapted to this state according to the refinement criterion, then the

refinement procedure keeps being called, but it no longer changes

the grids.

From an algorithmic point of view, the computation of the

refinement criterion is decoupled from the decision of which cells

to refine. Therefore, it is easy to exchange refinement criteria with-

out modifying the remainder of the method. The refinement meth-

od contains an automatic adaptive load balancing procedure to

keep the grid evenly distributed over the processors. Further de-

tails of the algorithm can be found in [17,18].

4. Criterion and decision

The refinement criterion is that part of the algorithm which,

based on the flow solution, determines where the grid should be

refined or derefined. Our use of unstructured hexahedral grids

poses strong requirements on the way this choice is made, and

invalidates many classical strategies of refinement criterion
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Fig. 1. An example of an unstructured hexahedral grid: x-cross section through the

grid around a Series 60 ship, at the bow (x/L = 0.1).
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evaluation. In Subsection 4.1, it is explained why directional refine-

ment is mandatory for our unstructured hexahedral grids. Subsec-

tion 4.2 presents the criterion evaluation strategy that is, in our

opinion, preferable for use with directional refinement. Finally,

Subsection 4.3 shows how extra refinement is added in order to

guarantee good grid quality.

4.1. Isotropic or directional refinement

The first grid refinement methods were all isotropic (see for

example [5]). For isotropic refinement, cells are refined in all their

directions at once (a quadrangle is divided in four, a hexahedron in

eight, etc.), so the resulting refined small cells have the same shape

as the original cells. More recently, some methods have begun to

use directional refinement (e.g. [19,20]). Here, cells can be refined

in one direction only or in several directions at once, resulting in a

more complex algorithm and more possible cell topologies, but

greater flexibility in refinement. Fig. 2 gives an illustration of iso-

tropic and directional refinement.

To create refined grids of good quality, it is in principle neces-

sary to control the sizes of the cells in all their directions, in order

to guarantee that the cell size in each direction varies smoothly

and that a cell fits in well with all its neighbours. In other words,

on a general grid, the refinement must control both the size and

the aspect ratio of the cells.

Isotropic refinement controls only the size of the cells; their

aspect ratios are necessarily the same as those of the original grid.

Therefore, isotropic refinement only makes sense when the origi-

nal mesh is locally isotropic, i.e. when all the cells in a neighbour-

hood have more or less the same aspect ratio (though local

refinement is acceptable, cells may be two times smaller than their

neighbours), see Fig. 3a. In that case, cells that are being refined

still fit in correctly in the mesh, so the quality of the refined mesh

is good.

However, in unstructured hexahedral meshes, neighbour cells

may have very different aspect ratios (Fig. 3b, see also Fig. 1). Thus,

sticking to isotropic refinement will produce irregular meshes, as

refining a cell to reduce its size in one direction can produce cells

that are too fine in another (in the middle grid of Fig. 3b, the hor-

izontal cell size goes from fine to coarse to fine, which is undesir-

able). So for unstructured hex meshes, isotropic refinement is

impossible; here, it is mandatory to have a method that controls

both cell size and aspect ratio.

Another reason why directional refinement is essential for us, is

the large-scale 3D nature of our grids. Isotropic refinement in three

dimensions is very expensive: each time a cell is refined, it is

divided in 8. The only way to keep the total number of cells low,

while still obtaining sufficient resolution to capture small flow fea-

tures, is to permit high cell aspect ratios by allowing refinement in

one direction only wherever this is possible. A typical example is

the refinement around the water surface, see Subsections 5.1, 6.1

and 6.3.

For these two reasons, the only way to properly refine unstruc-

tured hex meshes is to control the refinement in each cell direction

separately; directional refinement becomes the only choice.

4.2. Metric-based refinement criteria

As a result of the choice for directional refinement, the way to

compute refinement criteria has to be adapted. Often (see e.g.

[21–23,5,7]) for the criterion, a quantity is chosen that decreases

when the mesh becomes finer, like an error estimator or a simpler

error indicator function. The grid is then refined in those cells

where the criterion is largest, with an eventual goal of producing

the same value for the criterion in all cells. This procedure is intrin-

sically isotropic: it chooses which cells to refine, but it cannot

choose in which direction to refine them.

Isotropic criteria can be made directional by applying a post-

treatment that chooses between isotropic and directional refine-

ment in cellsmarked for refinement, butwe consider this procedure

not ideal. First, there is no explicit guarantee that situations like in

Fig. 3a are prevented. And second, the procedure is not so flexible;

when the refinement criterion is changed, it is neither certain that

the existing direction finder works well with the new criterion,

nor that a new direction finder for the criterion can be found.

In the authors’ opinion, the only generally applicable way to

specify refinement criteria for directional refinement is to use a

metric: a smooth criterion that is insensitive to the size and orien-

tation of the cells and whose value indicates the locally desired cell

size. Cells are then refined to produce actual cell sizes as close as

possible to the values demanded by the criterion. Specifically, we

use tensorial metrics that allow the specification of desired cell

sizes individually in any given direction. Such metrics are in com-

mon use for the generation and adaptive refinement of tetrahedral

(a) (b)

Fig. 2. Illustration of isotropic (a) and directional (b) refinement. 2D examples.

IsotropicOriginal

(a) Locally isotropic grid.

Isotropic DirectionalOriginal

(b) Locally anisotropic grid.

Fig. 3. Isotropic grid refinement is satisfactory on an original grid where all cells have the same aspect ratios (a), otherwise directional refinement is needed (b).
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meshes [24–29] and for controlling refinement by mesh deforma-

tion [30,31]. We propose to use this technique also for the refine-

ment of hexahedral meshes. With respect to existing methods,

there are some differences in the way these metrics are used for

hexahedral grid refinement, as will be explained at the end of this

subsection.

4.2.1. Metric-based decision

The metric tensor CiðR
3 ! R

3Þ in each cell is seen as a geometric

operator that transforms each cell Xi in the physical space into a

deformed cell eXi in a modified space. Then in each cell, directional

refinement is applied to produce a grid that is as nearly uniform as

possible, in the modified space (see Fig. 4). The result is an aniso-

tropically refined grid in the real space.

The refinement decision algorithm works as follows. Let the

refinement criterion Ci be a given positive-(semi)definite 3 � 3 ten-

sor in each hexahedral cell Xi, i.e. a tensor having eigenvaluesP0.

Then, for each Xi, do:

1. Compute dk,i (k = 1 . . . 3), the distance vector between the

two face centres of the hexahedron in the direction k, which

is a measure of its size in the direction k. (If a face of the

hexahedron is divided in several smaller faces, the average

of their face centres is used.)

2. Compute the transformed distances1:

~dk;i ¼ Cidk;i: ð1Þ

3. For each k, make a decision to refine in that direction if:

k~dk;ikP T r; ð2aÞ

for a given, constant refinement threshold Tr.

4. Make a decision to derefine the cell if:

k~dk;ik 6
T r

fdr
8k 2 ½1;3�; ð2bÞ

where fdr is a factor, usually 2.5, to prevent derefined cells from

being refined again directly in the next refinement step. While the

refinement is directional, derefinement can only be performed if it

is permitted in all directions at once. Furthermore, a group of sister

cells that once formed one bigger cell can only be derefined if all sis-

ters have a derefinement decision. If not, possible derefinement

decisions in some of the sister cells are removed.

From this procedure, we can see that the resulting grid sizes are

inversely proportional to the eigenvalues of the tensors Ci.

4.2.2. Choosing refinement criteria

The procedure is a straightforward and flexible way of giving

complete control over the grid refinement to the refinement crite-

rion. By a proper choice of the Ci, desired cell sizes in any given

direction can be specified; no separate procedure is needed to

determine the direction of the refinement. As a result, it becomes

easy to exchange between different criteria, to develop and imple-

ment new criteria, as well as to refine based on several criteria at

once: the criterion in each cell is then set as the maximum over

these criteria (see Subsection 4.3.2 for the computation of the

approximate maximum of two tensors).

The combination of metric-based refinement with a fixed origi-

nal grid gives a very robust procedure. In tetrahedral mesh

generation, strong requirements are posed on admissible metric

tensors, in order to guarantee good cell orientation, to limit cell

skewness and to prevent singular tensors, that would produce infi-

nite-sized cells. For our mesh refinement, the cell skewness and

orientations, as well as the maximum cell sizes, are imposed by

the original grid. Thus, there is a limitation on the refined meshes

that can be generated, but much more freedom in the choice of the

metric tensors. For example, singular tensors are not forbidden. On

the contrary, we use them to our advantage, to specify refinement

in one direction only (see Subsection 5.1 for an example). Any sym-

metric positive-semidefinite tensor can be used as a refinement

criterion, which gives great possibilities for the development of

such criteria.

4.3. Buffer layers

The refinement criterion only ‘sees’ the solution at the instant of

refinement. However, this solution is evolving, either because a

steady solution is converging, or because the flow is unsteady. In

both cases, the grid must not only be refined where the criterion

requires it, but also in a few cells around this zone, to obtain a mar-

gin of safety that allows the solution to change without having cru-

cial flow features leave the zones of refined cells. We call these

layers of safety cells ‘buffer layers’.

Our standard type of buffer layer has the same cell sizes as

those specified by the criterion. A second type of buffer is needed

when the refinement criterion is nearly discontinuous; purely fol-

lowing the criterion would then produce a grid that goes abruptly

from very coarse to very fine cells. However, for grid quality it is

better to have cell sizes that gradually go from coarse to fine. Thus,

cells must be refined around those indicated by the criterion, to a

coarser size than those produced by the criterion, to get a gradual

variation of cell size.

4.3.1. Adjusting the criterion

Buffer layers are created by modifying the criterion; their crea-

tion can be thought of as extending the zones where the desired

cell size is small. To make one buffer layer of the standard type,

each cell looks at its neighbour cells and sets its criterion value

equal to the maximum value over itself and its neighbours. For a

cell i having neighbours nb, the kth buffer layer is set as:

ðCiÞ
k ¼ max ðCiÞ

k�1;max
nb

ðCnbÞ
k�1

� �
; k ¼ 1 � � �Ns; ð3Þ

where ðCiÞ
0 are the values originally computed by the criterion. As a

result, for each k the zone where the desired cell size is small en-

ough to give refinement is extended by one layer of cells (Fig. 5a).

Ns is the total number of layers.

The buffer type that produces gradual size changes is created in

the same way, only a cell takes the maximum of its own criterion

and a factor cb < 1 times the criterion values of its neighbours.

ðCiÞ
k ¼ max ðCiÞ

k�1; cb max
nb

ðCnbÞ
k�1

� �
; k ¼ 1 � � �Nf : ð4Þ

(b) Modified space.(a) Physical space. (c) Refinement.

Fig. 4. Tensor refinement criterion. CellXi and unit circle (reference) in the physical

space (a), deformed cell eXi and deformed circle after application of the transfor-

mation Ci (b), and refinement to create a uniform grid in the modified space (c).

1 In the literature, usually metric tensors M are used that are equivalent to our C2 ,

so k~dk;ik
2 ¼ d

T
k;iMidk;i . This is a matter of taste, it does not change the decision

procedure at all.
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Thus, the criterion values in each layer will be smaller than in the

cells inside it, so the resulting refinement will produce cells whose

size gradually increases (Fig. 5b). Our standard choice is cb = 0.6. The

standard and fractional buffer layers are created subsequently, the

fractional layers are computed last.

For steady problems, the number of buffer layers Ns and Nf is set

by the user and kept the same throughout the grid. However, for

unsteady problems there is the added possibility of anticipating

the evolution of the solution and to refine extra in the direction

where the solution is going; this corresponds to convecting the cri-

terion with the flow (Fig. 5c). We create this buffer by making use

of the cell face CFL number:

Cof ¼
uf � nf SfDt

V c

; ð5Þ

where uf,nf and Sf are the velocity, normal vector, and surface of a

cell face, Vc is the cell volume of the neighbouring cell and Dt is

the time step. Roughly speaking, Cof indicates the number of cell

distances that the solution is displaced in one time step, due to

the flow through the face. For each cell, buffers are made looking

only at those neighbour cells that give inflow into the cell; the num-

ber of times that a neighbour value is copied is the integer value of

the CFL number for the face between the cell and its neighbour,

multiplied by the number of time steps between successive refine-

ments nD. This roughly approximates the displacement of the solu-

tion between refinements, in the direction of the face.

ðCiÞ
k ¼ max ðCiÞ

k�1
; max
nbjuf �nf <0;k6Cof nD

ðCnbÞ
k�1

� �
; k ¼ 1 � � �Ncmax ; ð6Þ

Thus, the larger the face CFL number, the more buffer layers are cre-

ated in the direction of the face; the buffer layers follow the motion

of the fluid. Ncmax is the maximum over all the faces of the number of

layers to be generated.

The reason for creating buffer layers using the criterion instead

of the decision, is that it is much easier to spread the criterion

(which indicates desired cell sizes in a global reference frame),

than the decisions that do not only take into account the desired

size of a cell, but also its actual size, and that furthermore are based

on each cell’s local reference frame. Also, on unstructured grids it is

not always possible to create perfectly regular increases in cell size

like in the examples of Fig. 5; this depends on the available cell

sizes in the original grid. Creating the buffer layers with the crite-

rion ensures at least that the target cell sizes are well spread out

and smooth, the refinement decision then does the best it can to

get the actual cell sizes close to this target. Real buffer layers can

be seen in the impacting prism test of Subsection 6.3.

4.3.2. Maximum of two tensors

Finally, the computation of the maximum of two criteria which

is needed for the creation of buffer layers is far from trivial. Ideally,

the maximum of two tensors AM ¼ maxðA1;A2Þ would transform

any unit vector into one at least as long as the ones produced by

the two original tensors. Computing this maximum exactly is com-

putationally expensive, so we use an approximation that is based

on an improvement of the procedure proposed by George and

Borouchaki [27]. Let kk,j, vk,j, k = 1 . . . 3, j = 1, 2 be the eigenvalues

and eigenvectors of Aj, with the order of the eigenvalues (index

k) for each tensor chosen such that the directions of the eigenvec-

tors in the two tensors correspond as closely as possible, i.e.

vk,1 � vk,2P vk,1 � vm,2"m– k. To get a uniquely defined ordering,

let v1,1 � v1,2P v2,1 � v2,2P v3,1 � v3,2. Then compute the modified

eigenvalues:

k̂k;j ¼ maxðkk;j; kAj2vk;jkÞ; ð7Þ

where Aj2 is the other matrix: j2 = 3 � j. Both tensors bAj (having k̂k;j
and vk,j as eigenvalues and eigenvectors) are approximations to the

maximum tensor. AM is computed as a weighted average of these

two:

kk;M ¼
d1k̂k;1 þ d2k̂k;2

d1 þ d2

; ð8Þ

where

dj ¼
X3

k¼1

maxð0; k̂k;j � kk;jÞ: ð9Þ

The eigenvectors are averaged in the same way:

~vk;M ¼
d1vk;1 þ d2vk;2

d1 þ d2

; ð10Þ

then corrected to make them orthogonal:

v1;M ¼ ~v1;M; v2;M ¼
~v2;M� ~v1;Mð~v2;M � ~v1;MÞ

k~v2;M� ~v1;Mð~v2;M � ~v1;MÞk
; v3;M ¼v1;M�v2;M:

ð11Þ

The advantages of this procedure are, first, that when A2 is

smaller than A1 in all directions, the procedure keeps AM ¼ A1,

and the opposite (this is not the case for the method of George

and Borouchaki), and second, that it can be computed entirely

using an eigenvalue–eigenvector decomposition of the tensors.

So to save computational effort, we compute the eigenvalues and

eigenvectors of the refinement criterion in each cell once (using

the method of Scherzinger and Dohrmann [32]), then create all

the buffer layers, and finally transform the criterion back to stan-

dard matrix form.

5. Refinement criteria

In practice, there are two logical ways to construct tensorial

refinementcriteria. Thefirst is tobase thecriteriononaquantity that

is in itself a tensor; an example is the well-known Hessian-based

(a) Standard buffer.

(b) Fractional buffer.

(c) Convection buffer.

current

Fig. 5. Three types of buffer layer: refined mesh without and with application of the

buffer.
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refinement.Anotherway is to start fromtheeigenvalue–eigenvector

decomposition of the tensor Ci:

Ci ¼ VKVT ; ð12Þ

whereK = diag (k1,k2,k3) is the eigenvalue matrix of Ci and V has its

orthonormal eigenvectors v1, v2 and v3 as columns. Based on a given

criterion, these eigenvalues and eigenvectors can be specified. The

tensor criterion is then computed with Eq. (12).

In this section, two criteria that are well suited for ship flow

computations are presented, one based on each of the two con-

struction methods described above. The first criterion, refinement

around the water surface, is given in Section 5.1. Our version of

the Hessian-based refinement is explained in Section 5.2. For each

criterion, its computation as well as the way to use it are described.

5.1. Free surface criterion

For flow simulation with a free water surface, refinement at the

position of the water surface is a logical choice, especially for flow

solvers like ISIS-CFD where the water surface is resolved with a

multi-phase approach. For these methods, the water surface ap-

pears as a numerical discontinuity in the volume fraction of water,

so a good grid resolution is essential to resolve the surface well.

Therefore, a criterion is introduced that refines in the neigh-

bourhood of the water surface. Directional refinement is employed

to refine the grid in the direction normal to the surface only: where

the free surface is diagonal with respect to the grid directions, iso-

tropic refinement is used, but where the surface is horizontal,

directional refinement is chosen. Thus, directional refinement is

used at the undisturbed water surface and in smooth wave crests

and troughs. Directional refinement is essential to keep the num-

ber of grid cells low, as the water surface is often nearly undis-

turbed in most of the domain. Fig. 6 gives an illustration of this

refinement principle, images of actual refined grids can be found

further on in Figs. 17 and 21.

In the context of tensorial criteria, refinement normal to the free

surface is obtained by specifying tensors with only one non-zero

eigenvalue, associated with an eigenvector normal to the surface.

The result is, that the modified cells eXi have size zero in all other

directions: when the dk,i are transformed to ~dk;i (Eq. (1)), only the

component normal to the surface remains. When a cell is aligned

with the surface, its two dimensions parallel to the surface are

transformed to zero, so according to Eq. (2a), the cell will never

be refined in those directions.

The criterion is based on the volume fraction of water ci: cells

are refined when they have a value of ci that is neither zero nor

one. The normal direction is computed from the gradient of ci.

The criterion is computed as follows:

1. Starting from the field ci, this field is copied to a temporary

variable ciA, which is then smoothed to smear out the numer-

ical discontinuity.

2. From the smooth ciA, the gradientrciA is computed using the

Gauss method which is standard in ISIS-CFD.

3. In each cell, a vector es is computed as:

es ¼
rciA
krciAk

if 0:1 6 ci 6 0:9;

0 otherwise:

(
ð13aÞ

This is a unit normal vector in all the cells where refinement is

desired.

4. The tensor criterion is constructed with an eigenvector in the

direction of es having an eigenvalue of 1 or 0 and with the

two other eigenvalues always equal to zero. So Eq. (12)

becomes:

Ci ¼ es � es; ð13bÞ

where � denotes the tensor product.

As a result of choosing all non-zero eigenvalues of Ci equal to

one, the refinement threshold in Eq. (2) can be interpreted directly

as the target value for the cell size normal to the free surface. This

makes it very easy to choose the threshold.

The criterion as computed above is non-zero in a very narrow

strip of cells only. To account for small movements of the water

surface, buffer layers (Section 4.3) are essential for this criterion.

Our usual practice is to apply two layers of the standard type, or

more (up to four) for unsteady problems. Due to the discontinuous

nature of the criterion, it may also be necessary to use fractional

buffers to let the grid size go gradually to the unrefined size. The

number of fractional buffer layers that are necessary depends on

the size difference between the original and maximally refined

cells.

Using grid refinement at the water surface has two effects. First,

small details of the water surface are resolved better. Secondary

waves in a ship’s wake become sharper and clearer, bow waves

steepen up and overturning breaking waves become more pro-

nounced. Droplets, jets and spray are sharper and stay resolved

longer before breaking up. And second, numerical dissipation of

waves is reduced, which means that wave systems travelling far

from their source are better resolved; this is interesting for com-

puting the far field of a ship’s wake, or for generating an incoming

wave train that interacts with an object.

However, the refined grid generated by the criterion alone is not

enough to resolve waves well. In order to capture the orbital veloc-

ity field associated with the waves, a reasonably fine grid is needed

in a zone below the water surface. This grid must be part of the ori-

ginal mesh, as the criterion does not create it. Experience suggests

that for ISIS-CFD, waves are best resolved when the automatically

refined grid at the surface is twice finer than the original mesh

around it; refining more than that at the water surface does not

improve the accuracy. Thus, a sensible meshing strategy is to gen-

erate an original grid having rather fine cells in a large zone around

the expected location of the water surface and then to set the

refinement threshold for a grid refinement target of half that exist-

ing mesh size. In the following Section 6, applications of the free-

surface criterion to different ship flow problems can be found.

5.2. Hessian-based criteria

In flows that are not dominated by free-surface waves, other

refinement criteria are needed. For such flows, the matrix of

second spatial derivatives of the solution is a common choice as

a refinement criterion, often used with success in practice.

Depending on the state variable chosen for the computation, such

a criterion reacts to most of the relevant features of a flow. Con-

trary to the free-surface criterion, it is therefore able to generate

a fine grid all by itself, starting from an original grid that is
Fig. 6. Isotropic and directional refinement at the free surface. The curves represent

volume fraction isolines.

6



uniformly coarse. For numerical methods that use a linear approx-

imation of the solution, the interpolation error on the grid is pro-

portional to the second derivatives. Thus, the matrix of second

spatial derivatives is generally interpreted as a local error estima-

tor [24,25,33,34,29].

The Hessian matrix of second spatial derivatives Hq, for a given

state variable q, is a 3 � 3 symmetric tensor:

Hq ¼

qxx qxy qxz

qxy qyy qyz

qxz qyz qzz

2
64

3
75 ð14Þ

Therefore, it can be used almost directly as a tensor refinement cri-

terion. However, assuming that an indication of the local error is gi-

ven by Hq times the cell sizes squared (which is reasonable for a

second-order accurate discretisation), equidistribution of this error

indicator leads to:

Ci ¼ H
1
2
q

� �
i
; ð15Þ

where H
1
2
q has the same eigenvectors as Hq and eigenvalues that are

the square roots of the absolute values of those ofHq. We adopt this

Ci as refinement criterion.

5.2.1. Third-order least-squares approximation

The major difficulty in using the Hessian tensor as a refinement

criterion is the evaluation of the second derivatives in a sufficiently

smooth and accurate way, independent of the mesh. A danger in

grid refinement is that local refinement may perturb the computa-

tion of the criterion. Thus, it starts to react more to the presence of

an already refined grid than to the quantity it is based on. To pre-

vent this undesired effect, numerical errors in the computed sec-

ond derivatives must be significantly smaller than the derivatives

themselves in all cells. In practice, this requires at least a second-

order accurate discretisation.

A particular problem of unstructured hexahedral meshes is, that

the grid regularity does not increase when the mesh becomes finer.

For structured grids, and even for most unstructured tetrahedral

meshes, when the grid is refined the cells get more and more the

same shape and size as their neighbours. On unstructured hex

meshes however, independent of the cell sizes, there will always

be cells that are two times smaller than their direct neighbours. This

means that numerical schemeswhich rely onmesh regularity to get

good accuracy are not suited for these meshes; a useful scheme

must give sufficient accuracy for arbitrary cell configurations.

For the computation of second derivatives, we use a least-

squares method based on third-order polynomials. Let Pj(x),

j = 1 � � � 20 be the set of basic three-dimensional polynomial

functions in x of up to third order (i.e. P1(x) = 1, P2(x) = x,

P3(x) = y, . . ., P5(x) = x2,. . ., P11(x) = x3, . . ., P20(x) = xyz). Let I be the

vector of cell indices of a cell i, its neighbours and its neighbours’

neighbours. Then we shall search coefficients b such that the

polynomial:

piðxÞ ¼
X20

j¼1

bjPjðx� xiÞ; ð16Þ

is the closest fit to the values of q in the cell centres of I, within the

space defined by the set Pj(x � xi). The computation of this least-

squares fit is standard. Define the matrix A and vector b as:

Ajk ¼ PjðxIk � xiÞ; bk ¼ qIk
; j ¼ 1 � � �20; k ¼ 1 � � � sizeðIÞ: ð17Þ

Then b is found as:

b ¼ ðATAÞ�1ATb: ð18Þ

The approximated Hessian is based on the second derivatives of pi.

The least-squares procedure guarantees that the difference between

pi and the exact function q is not in the space of Pj(x � xi), therefore

it is at least a fourth-order polynomial in x � xi. Thus, for suffi-

ciently smooth q the second derivatives of pi are a second-order

accurate approximation to those of q, independent of the geometry

of the cells in I.

5.2.2. Tests of the least-squares scheme

To assess the effectiveness of the third-order least-squares (LS3)

method, we shall compare it with two simpler methods. The first

(LS2) uses the same least-squares technique, but with quadratic

polynomials, i.e. Pj(x), j = 1 � � � 10. The second is the well-known

Gauss integration technique that is advised for Hessian computa-

tion by many authors (e.g. [24,20]) and that is used in ISIS-CFD

for the evaluation of gradients [14]. The Gauss method starts with

a linear interpolation of q from the cell centres to the faces. This is

followed by an integration over the cell faces of qmultiplied by the

component of the face normal in a certain direction, to give the

cell-centre gradient in that direction. The procedure is repeated

with the gradients, to find the second derivatives.

As a first test, we explicitly evaluate the (5-point) schemes pro-

duced by the three methods on two 1D grids, a regular grid and an

irregular one having two cells smaller than the other three (Fig. 7).

The accuracy of each scheme is determined by inserting a Taylor

series development of q into the scheme and computing the

continuous equivalent of each scheme. The results are given in

Table 1. As we can see, on the regular grid all three methods pro-

duce second-order accurate schemes (the LS2 and LS3 schemes

q q q q
i−1 i i+1 i+2

q
i−2

x

h

qq
i−2

q q q
i i+1 i+2

x

h

i−1

h/2

(a) Regular grid (b) Irregular grid

Fig. 7. 1D regular and irregular mesh. In the regular mesh (a), all cells have size h; in the irregular mesh (b) the two leftmost cells have size h
2
.

Table 1

Explicit evaluation of the schemes produced by three second-derivative computation

methods on the regular and the irregular 1D mesh, and the continuous equivalent of

each scheme (up to the leading-order truncation error).

Method Scheme Equivalent scheme

Regular grid

LS 3 (0.2857qi�2 � 0.1429qi�1 � 0.2857qi
� 0.1429qi+1 + 0.2857qi+2)/h

2

qxx + 0.3690h2qxxxx

LS 2 (0.2857qi�2 � 0.1429qi�1 � 0.2857qi
� 0.1429qi+1 + 0.2857qi+2)/h

2

qxx + 0.3690h2qxxxx

Gauss (0.2500qi�2 � 0.5000qi + 0.2500qi+2)/h
2 qxx + 0.3333h2qxxxx

Irregular grid

LS 3 (0.8941qi�2 � 0.6020qi�1 � 0.8206qi
+ 0.3908qi+1 + 0.1377qi+2)/h

2

qxx + 0.1911h2qxxxx

LS 2 (0.4303qi�2 � 0.0523qi�1 � 0.4473qi
� 0.3599qi+1 + 0.4293qi+2)/h

2

qxx + 0.3760h qxxx

Gauss (0.6667qi�2 � 0.3333qi�1 � 0.6667qi
+ 0.0833qi+1 + 0.2500qi+2)/h

2

0.9688qxx
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are the same). On the irregular grid, the results are very different.

The formally second-order LS3 scheme produces indeed a second-

order accurate scheme. The LS2 scheme is first-order accurate, as

can be expected. The Gauss scheme, that is a succession of two

first-order accurate gradient evaluations, produces a truncation

error of order zero.

Similar results are found when we compute the second deriva-

tives of a known function (f(x) = sinx siny sinz) on a realistic ship

grid, using the least-squares and Gauss methods as implemented

in ISIS-CFD (Fig. 8). The error for the LS3 scheme is smooth and rel-

atively small. The LS2 scheme produces a larger error, that is con-

centrated near the jumps in cell size. The error for the Gauss

Y Y Y

Fig. 8. Error in the computed Hessian of a known function (Frobenius norm), for the LS3 scheme (left), LS2 scheme (centre) and Gauss scheme (right). The grid is the original

grid for the KVLCC2 test (Section 6.2), the figures show 10 isolines with a maximum of 0.05, in a cross-section at x = 1.

x/L x/L

Fig. 9. Improvement in solution quality on a refined grid, compared with the non-refined original grid, for the Virtue Container ship at model scale. Model scale (left) and full

scale (right).

Fig. 10. Improvement in solution quality for the Virtue Container ship: comparison of computations at model scale on refined and non-refined grids with experiments. y

Cross-sections of the free surface are compared at the side of the ship (left) and behind the ship (right).
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scheme is unacceptably large. Thus, to accurately evaluate second

derivatives on our grids, the LS3 method is the only acceptable

method.

6. Applications

The complexity of ship flow simulation puts very strong

requirements on the performance of an automatic grid refinement

method. In this section, the different aspects of grid refinement for

such flows are illustrated with four examples. The computation of

the steady flow around a modern container ship (Subsection 6.1)

shows the ability of our free-surface criterion to accurately capture

large and small waves. In Subsection 6.2, the Hessian-based

criterion is applied to the steady flow around the KVLCC2 tanker.

The impact of a prism on a water surface (Subsection 6.3), an un-

steady case with rapid interface movement, is used to illustrate

the different types of buffer layers. Finally, the simulation of the

DTMB 5512 combatant in head waves (Subsection 6.4) shows the

effectiveness of our refinement procedure when combined with

unsteady flow, ship motion, and mesh deformation.

6.1. Virtue Container ship

The first test case is a performance evaluation of the free-sur-

face criterion from Section 5.1. The interest of this case, the steady

flow around a typical modern container ship with a bulbous bow, is

the simulation of the water surface and the waves generated by the

ship. This particular ship generates a complex wave pattern,

Fig. 11. Scale effects in the breaking wave at the stern, for the Virtue Container ship. The topology difference in the model- and full-scale flows on refined grids (left) cannot

be observed on the original grids (right).

Fig. 12. Surface grid on the hull and in the y-symmetry plane for the KVLCC2 with Tr = 0.04 and Gmax = 2. Bow region (top) and stern region (bottom).
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consisting of sharp breaking bow and stern waves and many small,

secondary waves. Thus, good grid resolution near the water surface

is essential.

The ship is the Virtue Container ship, a test case in the European

project VIRTUE (VIRtual Tank Utility in Europe) in which ECN

participated. Model tests for this ship have been performed by

the Hamburg Ship Model Basin HSVA [35]. The computations are

performed at Fr = 0.272; both the model scale Re = 1.84 � 107 and

the full ship scale Re = 2.89 � 109 are computed.

The computations with refinement are started from the con-

verged solutions on original grids that have a vertical grid spacing

of Dz = L/1000 (where L is the ship length). The target for refine-

ment is chosen twice finer: Tr = L/2000. Two standard buffer layers

and one fractional layer are used; this is sufficient for steady flow.

Refinement is performed every 50 time steps, the computations are

continued until the global forces converge, which takes about 1000

time steps.

Results on the adaptively refined grids are compared with the

results on the unrefined original grids. The results in Fig. 9 show

the great increase in solution accuracy obtained with refined grids.

The bowwaves are higher andmore sharply defined; the bowwave

pattern suffers less from numerical diffusion as it moves away from

the ship. The strong breaking stern wave systems are resolved in

much greater detail near the ship hull and, like the bow wave, they

are damped out less as they move out. Between the bow and stern

waves, the representation of small flow details has improved.

A comparison of the model scale computation with the HSVA

experiments is given in Fig. 10. This figure confirms the better res-

olution of the larger waves and the presence of more small wave

details. In most places, the experiments are reproduced well on

the refined grids; even in those places where differences remain,

the shape of the waves is reproduced better. At the stern, the

breaking of the wave system is resolved notably better, which im-

proves the entire wave fields behind the ship.

The possibility to compute full-scale flows is one of the major

advantages of CFD for ship flow computations. Among others, mod-

el- and full-scale computations can be compared to evaluate scale

effects and give a better interpretation of model tests. Due to the

greater resolution of the solutions on refined grids, scale effects

can be observed inmore detail on these grids. An example of a scale

effect can be seen in Fig. 11, that shows a detail of the sternwave. On

the refined grids, a small breaking wave is observed just behind the

stern for the model scale computation; this wave disappears at full

scale. On the original grids, it is impossible to detect this scale effect.

y/L

Fig. 13. Mesh and axial velocity in the propeller plane x/L = 0.0175, for the KVLCC2.
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Thegridrefinement requiresonlyasmall increase inthenumberof

cells. For themodel scale computation, the refined half-body grid has

3.88 M cells and the original grid 3.07 M cells: an increase of 26%. For

the full scale computationwith its furtherdevelopedboundary layers,

the refined grid has 4.92 M cells and the original grid 3.87 M cells,

which represents an increase of 27%. This good efficiency is mainly

dueto theuseofdirectional refinement,whichgreatly limits thenum-

ber of refined cells needed far away from the ship.

6.2. KVLCC2

To investigate the behaviour of the Hessian criterion from

Section 5.2, the double-model flow around the KVLCC2 tanker is

computed. For grid refinement, this is a particularly hard case, as

there are no dominating flow features (like a free surface, or flow

singularities) that clearly demand refinement; to get good overall

accuracy, grid refinement has to be applied correctly all around

the ship hull. The interest of this case is the computation of the

drag and the vortex-induced flow in the propeller plane. The grid

refinement for this case is controlled with the threshold Tr and

by limiting the maximum number of refinements for each cell

(called ‘‘generations’’) Gmax. Our goal for this test case is to show

that the solution depends smoothly on these parameters and that

it converges when Tr is lowered and Gmax increased. Also, we study

the optimal choice for these parameters.

The KVLCC2 is simulated in towed condition (no propeller)

at model scale, Re = 6.4 � 106 (see [36] for conditions and

experimental results). Computations with refinement are based

on a very coarse original grid of 45 k cells, without locally refined

zones (except for some refinement around the cut-off propeller

hub). The EASM turbulence model [15,13] is used to get good res-

olution of longitudinal vortex structures. For this steady case with

a smooth criterion, no buffer layers are used. As we do not want the

refinement to react directly to the boundary layers, the criterion is

based on the pressure which is nearly constant over the boundary

layer thickness.

Fig. 12 shows the refined surface grid with Tr = 0.04 and

Gmax = 2. As seen in this figure, the refinement is concentrated in

the regions near the bow and the stern. The criterion has created

both isotropic and directional refinement; the latter appears close

to the bow, in front of the bow, and in the wake. Using directional

refinement clearly reduces the total number of refined cells.

Fig. 13 gives the mesh and the axial velocity in the propeller

plane at x/L = 0.0175. The ‘hook’-shaped pattern of low axial veloc-

ity is due to vortex-induced roll-up of the separated flow on the

ship aft body; the finest cells in this plane appear in the ‘hook’ re-

gion where the flow derivatives are strongest. The three images

show the influence of Tr and Gmax. Decreasing the threshold for

the same number of generations (figures (a) and (b)) changes the

grid in the entire propeller region: many cells that were refined

only once are now refined two times. Increasing the maximum

number of generations for a given threshold (figures (a) and (c))

mostly changes the grid in the centre. It has the effect of giving

the criterion more freedom. For Gmax = 2, the refinement is limited

by the cell sizes of the original grid, especially in (b) where almost

all cells are refined twice. For (c), few cells are refined three times,

so the refinement is imposed completely by the criterion. Thus, the

structure of the propeller disk flow can be clearly seen in the grid.

The flow fields compare well with the experimental result of

Fig. 14.

Fig. 15. Convergence of global quantities for the KVLCC2. h: Gmax = 1, M: Gmax = 2, �: Gmax = 3. The thresholds used are Tr= 0.14, 0.12, 0.10, 0.08, 0.06, 0.04, 0.03, 0.02, and 0.01

(except for Gmax = 3). The dashed lines indicate experimental values.
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Finally, we study the convergence of two global quantities

(Fig. 15): the drag coefficient CT ¼ Fx=
1
2
qU2S

� �
, with S = 0.2655L2,

and bUpr , the average value of the axial velocity over the propeller

disk lying in the x/L = 0.0175 plane, centred at y/L = 0, z/

L = � 0.0469 and with outer and inner radius 0.0154L and

0.0024L. The results are encouraging: the curves are smooth, there

is good correlation between the curves for different Gmax, and the

curves for two and three generations converge to approximately

the same values. This means that the refinement criterion is not

noisy: different threshold values produce grids that form a logical

sequence. The correspondence with experiments is good for CT and

reasonable for bUpr , the difference may be explained by small uncer-

tainties in the exact shape of the propeller hub.

Concerning efficiency, the figures show that refinement in

zones of moderate criterion values is most important for accuracy.

Low Gmax and low Tr, which cause moderate refinement in a large

zone, gives much better accuracy than high Gmax and high Tr, which

only puts very fine cells in the criterion peak zones. To get suffi-

cient convergence in the propeller disk zone at least Gmax = 2 is

needed, but Gmax = 3 adds little extra accuracy for a large increase

in number of cells. The best choice for Tr is the one that gives some

refinement in the propeller disk, but does not refine all cells

maximally.

6.3. Prism impacting on a water surface

As a third test, we present the impact of a freely falling 2D prism

on a water surface. This test is based on experiments by Peterson

et al. [37], earlier numerical results are reported among others by

Azcueta [38] and Hay et al. [22,39]. In the present context, the

interest of the case is that the 2D nature and the rapid movement

of the water surface allow us to see in detail the functioning of the

directional refinement (Sections 4.2, 5.1) and especially the differ-

ent types of buffer layers (Section 4.3).

The setup of the case is given in Fig. 16. The prism for this test

has a bottom angle of 20�, a widthW and an initial height H both of

61 cm, and a mass of 50 kg/m. The water has a density of 998.4 kg/

m3, the gravity is 9.81 m/s2. Viscosity is neglected. The only move-

ment allowed for the prism is vertical translation.

The numerical setup of the case is as follows. The free motion of

the prism is computed using Newton’s laws based on the

H

W

free surface

Fig. 16. Prism impacting on a free water surface: geometry and initial conditions.

Fig. 17. Mesh and ci = 0.05 and 0.95 isolines for the falling prism at t = 0.0175s after initial impact. The figure is zoomed in on the left tip of the prism. The refinement

threshold is Tr = 0.0033 (a), Tr = 0.00165 (b), and Tr = 0.000825 (c). Figure (d) represents the Tr = 0.00165 case with convection buffer layers.
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integrated fluid forces on the prism, the motion is incorporated in

the flow computation by block movement of the mesh [16]. The

same original mesh is used for all computations, this mesh has

some local refinement around the prism. Refinement is called

every 4 time steps. The free surface criterion is used with 4

standard buffer layers (to account for the movement of the free

surface through the grid) and 8 fractional layers (to provide a

smooth transition to the original grid size, even in the most highly

refined case). For this case, refinement is only applied to cells hav-

ing ci = 0.3 or more (instead of 0.1, see (13a)), in order to damp

numerical instabilities coming from droplets of very low ci; this

does not affect the global behaviour of the prism, as the low-ci
zones exert only small forces on the prism.

Fig. 17a–c show the mesh and the location of the zone where ci
is between zero and one, at a given moment, for three settings of

the refinement threshold Tr (Eq. (2)). Directional refinement is ap-

plied where possible, notably around the horizontal water surface

and in the wall-aligned grid on the prism. The effect of full and

fractional buffer layers can be clearly seen. Finally, since the refine-

ment criterion imposes a uniform size for the grid around the

surface, the cells in the fine part of the original grid are not refined

as often as cells further from the prism. Note that the mesh is not

refined around the tip of the water jet, due to the limitation to

ci > 0.3.

The solution is characterised by a very strong pressure peak that

moves outward over the prism during impact. As this peak is a

highly localised feature, grid refinement is an effective way of

resolving it well. Fig. 18 shows the highest pressure on the prism

as a function of time for the three simulations, compared with an

asymptotic analytic solution by Scolan et al. [40]. As can be seen

from this figure, the threshold has a very strong influence on the

magnitude of the pressure peak; the agreement for the finest

threshold is excellent. Also in Fig. 18, while the total number of

cells increases with the reduction of the threshold, this increase

is moderate, due mainly to the use of directional refinement.

Finally, as this is a case where the water surface moves rapidly,

convection buffer layers can be applied (see Section 4.3.1). To see

their effect, the case with Tr = 0.00165 is recomputed with 1 + 8

buffer layers instead of 4 + 8, but with convection layers added

as well. In the grid, Fig. 17d, we can see that the refined mesh still

envelops the water surface. The surface below the prism is

approaching the end of the fine grid, as this snapshot was taken

just before a grid adaptation step; during this step the location

of the fine grid will move up and left. The main difference with

the case Fig. 17b is, that fewer buffer cells are applied normal to

the direction of motion of the surface (i.e. normal to the prism

wall). Thus, the total number of cells decreases. However, as the

convection criterion guarantees that the surface is always cap-

tured, the pressure peak is still well resolved (Fig. 19). The only

disadvantage of the convection buffers is, that the thinner refined

grid layer increases the chance of the solution growing unstable;

therefore, the finest threshold case was not computed with

convection layers. The use of standard buffer layers is a safer

choice.

6.4. DTMB 5512 free in head waves

As a final test case, we compute the interaction of a wave field

with a ship hull. The free ship movement is resolved, which proves
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Fig. 18. Pressure peak (left) and total number of cells (right) as a function of the time after initial impact, for the computations at three settings of the refinement criterion Tr,

without convection buffer layers. The pressure peak is compared with the asymptotic solution of Scolan et al. [40].
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Fig. 19. Pressure peak (left) and total number of cells (right) for the case with convection buffer layers at Tr = 0.00165. As a comparison, the same case without convection

buffer layers is given in dotted lines.
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the successful interaction of the grid refinement method with the

ship motion and mesh deformation algorithms in ISIS-CFD.

For this case, a fine grid is made with a grid spacing of L/1000 in

z-direction at the free surface, as advised for ISIS-CFD, which corre-

sponds to 12 cells per wave height of the incoming waves. Between

the inflow boundary and the ship, the grid spacing is 50 cells per

wave length in x-direction. Next to the ship, a large box of fine cells

in x- and y-direction is placed around z = 0 to capture the diffract-

ing waves from the hull. This fine half-body grid has 2.31 M cells. A

coarse grid is made as a basis for the grid refinement, with L/500 in

z-direction, 30 cells per wave length and 2 times coarser cells in x

and y-direction in the fine box. This grid has 0.83 M cells.

Automatic grid refinement is then used to get a grid spacing of L/

1000 normal to the water surface. The refinement procedure is

called every two time steps.

An important question for this case is, if the flow solution

produced by the grid refinement is smooth enough not to perturb

the computation of the ship motion. This motion is computed

using Newton’s laws for the ship hull, the mesh is adapted to the

movement of the ship with the analytical weighed grid deforma-

tion of ISIS-CFD [16]. As the grid refinement mainly modifies the

connectivities between cells, faces and nodes (the grid topology),

Fig. 20. Comparison of wave patterns on the refined and the fine grid for the free DTMB. The images show four different instants; Te is the wave encounter period and t = 0

corresponds to a wave crest passing x = 0.

Fig. 21. Refined and deformed surface/symmetry plane mesh at the bow for the DTMB with free pitch and heave. The thick lines represent the 0.05 and 0.95 isolines of the

volume fraction.
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while the grid deformation changes only the position of the nodes

(the grid geometry), combining the two techniques can be done

without major modifications to either.

In Fig. 20, the wave pattern is shown at four instants. The

refined-grid and fine-grid solutions are nearly identical. The free

ship motion creates strong wave breaking, like the secondary

breaking wave around x = 0.5 in Fig. 20d. This wave breaking is

notably better resolved on the adaptively refined grid.

Fig. 21 gives two examples of the surface grid for this case. The

grid size oscillates between 1.1 M and 1.4 M cells, depending on

the moment. The two images display the grid at the moments

when the extreme values for the heave occur. The figure shows,

how effectively the zone of refined cells is displaced and adapted

to the water surface by the refinement and derefinement. Note also

the examples of isotropic and directional refinement in the grid left

of the bow.

The motion of the ship during the simulation is found in Fig. 22.

The correspondence with the measurements from IIHR [41] is rea-

sonable but most notably, the results for the refined-grid and fine

grid case are nearly indistinguishable. The good quality of the ship

motion simulation is confirmed by Fig. 23 which shows the vertical

and angular acceleration of the ship, during the time when the ship

accelerates from rest and the encounters with the first waves. If the

refinement procedure had created any significant pressure jumps,

the accelerations would have been very irregular. In fact, some

small-scale roughness can be seen in az right after t = 0, but overall,

the accelerations are smooth.

So using 50–60% of the fine grid cells, the refined grid gives

comparable wave fields, better resolution of wave breaking, and

smooth ship motion. Thus for this free-motion case, the refinement

procedure is highly effective.

7. Conclusion

We have presented a grid refinement method on unstructured

hexahedral grids, for use in marine hydrodynamics simulations.

The method is integrated in the ISIS-CFD finite-volume flow solver.

As this solver is face-based, it accepts arbitrary grids, so locally re-

fined grids can be used directly, without requiring modifications of

the flow solver.

On unstructured hexahedral grids, where the aspect ratios of

neighbouring cells vary strongly even on unrefined grids, direc-

tional grid refinement is mandatory to guarantee a smooth varia-

tion of the cell sizes in all directions. Thus, it is adopted for our

method. The use of metric tensors, that specify the desired cell

sizes in arbitrarily orientated orthonormal bases, is considered to

be the most general and flexible way of specifying refinement cri-

teria for directional refinement. This methodology permits the

implementation of many different types of refinement criteria

and the straightforward combination of several criteria. There is

much freedom in the choice of the tensors, including the possibility

to specify singular tensors.

Extra cells are refined around those who are indicated by the

criterion, in order to allow the solution to change without having

the relevant parts of the solution leave the refined grid zone. These

buffer layers exist in three types: standard layers that have the

same cell size as those produced by the criterion, fractional layers

that give a smooth transition in cell size from coarse to fine cells,

and convection layers for unsteady flow, that give refinement in

the direction of the local velocity and thus anticipate the move-

ment of the solution. These buffer layers are created by modifying

the refinement criterion.

Two refinement criteria for ship flow computation are pre-

sented. The first of these is the refinement at the water surface

location, in order to reduce wave dissipation and to better capture

small wave details. Directional refinement normal to the surface is

achieved by specifying metric tensors having only one non-zero

eigenvalue, associated with an eigenvector normal to the surface.

The second criterion is the classical Hessian matrix of second spa-

tial derivatives of the solution. On unstructured hexahedral grids, it

is essential to compute these tensors in a way that is formally sec-

ond-order accurate on any mesh. Therefore, a least-squares meth-

od based on third-order polynomials is used.

Fig. 22. Motion of the free DTMB in head waves, heave Tz and pitching angle Ry compared with experiments from [41]. t = 0 corresponds to the beginning of the computation.
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Four test cases show, first, that the grid refinement method

works together seamlessly with the other features of the ISIS-

CFD flow solver: free-surface and single-fluid flow computation,

resolved body motion, and mesh deformation. Second, in the test

cases, significant gains are made. Either overall accuracy is in-

creased with respect to unrefined reference grids and flow details

(small waves, pressure peaks) are better resolved, or similar accu-

racy is obtained with much fewer cells. Thus, it is shown that for

realistic, high-complexity flow computations in marine hydrody-

namics, grid refinement is a successful technique.
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