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Numerical strategies to speed up CFD computations with free
surface—Application to the dynamic equilibrium of hulls

Alban Leroyer n, Jeroen Wackers, Patrick Queutey, Emmanuel Guilmineau

Laboratoire de Mécanique des Fluides, Ecole Centrale de Nantes, CNRS UMR 6598, BP 92101, 44321 Nantes Cedex 3, France

This article presents two numerical procedures to speed up computations when dealing with a Reynolds Averaged Navier Stokes (RANS) solver based on 

the Volume of Fluid (VoF) or multifluid method to treat the free surface. The first one is a time-splitting procedure for the volume fraction equation, 

enabling the use of larger time steps for the resolution of the flow, without penalizing accuracy. However, these large time steps destabilize the coupling 

with the ship motion simulation when computing a dynamic equilibrium position in marine applications. The second procedure is therefore a quasi-

static approach to solve the coupled problem of dynamic equilibrium. A comparison of these procedures with classical simulations shows that numerical 

solutions of realistic problems can be obtained up to four times faster.

1. Introduction

Free-surface capturing methods, such as the Volume of Fluid

(VoF) or level-set formulation, have become more and more

popular among the CFD developers involved in viscous marine

hydrodynamics. The reason for this increasing interest is that

these approaches are more robust than those based on a free-

surface fitting methodology since no regridding is necessary.

Moreover, the merging or breakup of the interface is also handled

in a natural way. To achieve computations with VoF-like

approach, specific compressive discretisation schemes are used

to solve the volume fraction transport equation and keep the

sharpness of the interface (Ubbink, 1997; Queutey and Visonneau,

2007). Even if the capacities and the flexibility of such an

approach are unquestionable, two drawbacks can be highlighted:

� The formulation is intrinsically unsteady since the volume

fraction is convected by the flow. Up to now, no steady

formulation has ever been successful for non-academic test

cases, to the knowledge of the authors.

� The compressive property imposes a numerically severe Cour-

ant number limitation.

It seems inappropriate and wasteful to use such a complete

unsteady approach when dealing with physically steady cases. It

is all the more a pity since for an implicit solver, the volume

fraction equation is the only equation to have such a Courant

number limitation! This issue was first underlined by Ubbink

(1997) in the conclusions of his PhD thesis: ‘‘the Courant limita-

tion is not insurmountable because it should be possible to

apply a technique of sub-cycling where the time step of the main

loop is divided into smaller steps in order to advect the volume

fractionsy’’.

In this paper, to reduce this Courant number limitation, such

an original time-splitting (also called time subcycling) procedure

for the volume fraction equation is developed and validated for

steady state cases. For instance, it enables to increase the global

time step while keeping the Courant number constant. The

procedure creates no problem for fixed bodies. However, when

coupling the flow solver with a resolution of Newton’s laws for

the ship body, in order to reach the dynamic equilibrium position

of a hull, the large time steps lead to a divergent flow–motion

coupling, due to the added mass effects (Söding, 2001). To avoid

this problem, a quasi-static approach has been implemented to

govern the motion of the body in time. This technique has been

successfully combined with the time-splitting procedure for the

volume fraction, removing the flow/motion instabilities.

Compared to a classical unsteady approach using the resolu-

tion of Newton’s law, this new numerical procedure to deal with

steady cases for hydrodynamics applications enables to reduce

significantly the CPU time.

After a brief description of the RANS solver in which this work

has been implemented (Section 2), this article outlines the time-

splitting procedure (Section 3) as well as the quasi-static approach

(Section 4). Then, in Section 5 a test-case is shown demonstrating

the capability and the efficiency of these techniques.
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2. The ISIS-CFD flow solver

ISIS-CFD is developed by the EMN group (Equipe Modélisation

Numérique) of the Fluid Mechanics Laboratory of the Ecole

Centrale Nantes. The solver is based on the Finite-Volume method

to build a second-order accurate discretisation of the RANS

equations. The flow equations are constructed face by face, which

means that cells having an arbitrary number of arbitrarily shaped

faces can be accepted. This enables the simulation of flows around

complex geometries. The velocity field is obtained from the

momentum conservation equations and the pressure field is

extracted from the mass conservation constraint, or continuity

equation, transformed into a pressure equation. In the case of

turbulent flows, additional transport equations for modelled

turbulent parameters are solved in a form similar to the momen-

tum equations: they are discretised and solved using the same

principles.

Free-surface flows are computed through an interface captur-

ing method: the flow phases are modelled with a transport

equation for the volume fraction of water cw in each cell: cw¼1

means that the cell is completely filled with water, cw¼0 means

that only air is present in the considered cell. The interface

between air and water is represented by the numerical disconti-

nuity in the solution for cw. The effective flow physical properties

(dynamic viscosity m and density r) are obtained from the

properties for each phase, (mw, ma) and (rw, ra), respectively, for

water and air, with the following constitutive relations:

m¼ cwmwþð1�cwÞma and r¼ cwrwþð1�cwÞra.

Special attention has to be paid to preserve the sharpness of

the interface when solving the transport equation of cw. Therefore,

this equation is discretised with a scheme using specific anti-

diffusive properties, which are fully activated when the amount of

fluid drained out of a cell during one time step does not exceed

the cell volume. This implies a constraint in the local Courant

number (the Courant number is an adimensional parameter

roughly defined by: DtV=Dx, where V is the velocity through the

considered cell, Dx is the size of the cell, and Dt is the global time

step of the temporal discretisation). The latter should not exceed

1 and the usual target value retained is 0.3 for 3D flows. Here, the

Blended Reconstructed Interface Capturing Scheme (BRICS)

scheme is used (Wackers et al., 2011).

An ALE (Arbitrary Lagrangian Eulerian) approach is used to

deal with moving bodies (Hirt et al., 1974; Donea et al., 2004;

Leroyer, 2004). All configurations of motion (up to six solved or

imposed DOF) can be applied. Analytical weighted deformation

techniques have been developed to preserve a mesh fitted to the

body during its motion (Leroyer, 2004; Leroyer and Visonneau,

2005).

3. The time-splitting procedure for the volume fraction

3.1. Description

With an interface capturing approach, we have to solve the

ALE convection equation for the volume fraction (cw is simply

denoted by c in the following):

d

dt

Z

V

c dVþ

I

S

cðU
!

�Ud

�!
Þ � n

!
dS¼ 0, ð1Þ

where V is the domain of interest, or control volume, bounded by

the closed surface S moving at the velocity U
!

d with a unit normal

vector n
!

directed outward. The time derivative following the

moving grid is written d=dt.

Finite-Volume discretisation leads to the following discretised

form:

cðtcÞVðtcÞ�cðtpÞVðtpÞ

Dt
þ

X

faces Sf

cf ðF
U
!�F

Ud

�!Þ¼ 0, ð2Þ

where tp and tc mean, respectively, the previous and the current

instant, and Dt¼ tc�tp is the current time step. cf denotes the

reconstruction of the volume fraction at the centre of the face,

whereas F
U
! and F

Ud

�! represent, respectively, the velocity flux

and the grid displacement velocity flux through the considered

face Sf . Since steady configurations are investigated here, accu-

rate resolution in time is not required, so the basic first order

Euler implicit scheme is applied for the time derivative.

The spirit of the time-splitting approach is to enhance the

fulfilment of the Courant–Friedrichs–Lewy (CFL) condition related

to Eq. (2), by using a specific time step for the volume fraction,

which is a fraction of the time step associated with the global

simulation. In other terms, the global time step Dt is split into a

sequence of smaller ones leading naturally to smaller Courant

numbers (Fig. 1). As a consequence, the volume fraction equation

is solved sequentially several times during a single global time

step, for only one update of the other flow equations; each

resolution is called a ‘‘subcycle’’. If we note N the number of

‘‘subcycles’’, the split time step Dti is equal to Dt=N. The inter-

mediate volumes Vi, for which no mesh is reconstructed, are

linearly interpolated between tp and tc. Thus, the convection

equation for c becomes

ciV i�ci�1V i�1

Dti
þ

X

faces Sf

cif ðF
U
!�F

Ud

�!Þ¼ 0: ð3Þ

Instead of solving Eq. (2), we solve N times Eq. (3), going forward

in time progressively. From one equation with a typical Courant

number Co for the classical approach, the time-splitting approach

leads to N equations to solve but with typical Courant numbers

around Co=N. Finally, by summing Eq. (3) from i equal 1 to N, we

obtain the following Eq. (4), similar to Eq. (2):

cðtcÞVðtcÞ�cðtpÞVðtpÞ

Dt
þ

X

faces Sf

~cf ðF
U
!�F

Ud

�!Þ¼ 0 with ~cf ¼
XN

i ¼ 1

cif
N
:

ð4Þ

The free-surface moves little by little during these small time

steps. As the CPU time related to the resolution of the volume

fraction equation is not large compared with other parts of the

solver (especially the computation of the pressure), the global

CPU time of the simulation is strongly reduced. When the steady

state of the flow is reached, the solution is obviously the same as

the one obtained with a classical approach, since the temporal

derivative term vanishes. Then, solving either once or several

times a convection equation with a null temporal derivative does

not change anything. With the time splitting approach, the way to

reach a steady state remains physically correct (even if we try to

remove the transitory state quickly without solving it accurately).

This is probably the reason why this procedure is very robust.

global time step

time

split time step

Fig. 1. Temporal diagram.

2



3.2. Example

To illustrate the time splitting procedure, a 2D configuration of

a submerged NACA-0012 hydrofoil is considered. This well-

known test-case experimentally investigated by Duncan (1983)

is often used for the validation of numerical methods developed

to compute free-surface flows. In the experimental setup, the

hydrofoil, whose chord is c¼20.3 cm, is towed in a tank with

speed U¼0.8 m/s, with an angle of attack a¼ 51 (see Fig. 2). The

relevant non-dimensional parameters based on the chord length

and the free-stream velocity are Fr¼0.5672 and Re¼1.423e5. The

distance between the profile and the bottom of the basin is kept

fixed (H¼17.5 cm from the mid-chord of the profile), whereas the

depth of submergence s is varying. Here, we are only interested in

the case s¼23.6 cm.

The simulations are performed using a mesh of 38 000 cells.

The two-equation k2o SST closure (Menter, 1993) is used to take

into account the turbulence phenomena. Boundary conditions are

imposed as follows: on the top and on the outlet, a hydrostatic

pressure is imposed. On the inlet, the velocity is imposed at its far

field value. A slip condition is applied on the bottom of the tank,

whereas wall-function boundaries are applied on the whole

surface of the foil.

Different simulations are performed with various numbers of

subcycles N. For all the simulations, the time step is such that the

Courant number Co for the split volume fraction equation remains

around 0.3. Table 1 summarizes the numerical setup and results

in terms of CPU time. As expected, the CPU time is greatly reduced

using the time-splitting approach, and the final solutions (forces

on the body and free-surface deformation) are nearly identical:

Fig. 3 shows that the converged value of the lift is the same for all

computations, but the path to convergence is slightly different.

The classical computation reaches the mean value quickly but

with oscillations, which take a long time to damp out. When the

number of subcycles is increased, the physical time to obtain the

converged value increases too, but the gain in CPU time remains

significant (the CPU time for 10 subcycles is four times shorter

than for classical approach). Above N¼10, the efficiency of the

approach saturates but robustness is kept even if a large break is

visible at t� 9 s for N¼20. Fig. 4 confirms that the converged free

surface is not influenced by the time-splitting approach.

4. The quasi-static approach

When dealing with potential flows, Delhommeau (1987)

underlined that the loads on a hull can be divided into four parts:

external forces (due to mechanical bindings or mooring lines),

gravity force, hydrostatic loads, and hydrodynamic loads. A first-

order evaluation of the hydrostatic loads around an equilibrium

position can be obtained as a function of the sink dTz, the roll dRx

and the trim dRy, as well as geometic and inertia characteristics

c

(0.0)

Y

X

top

bottom

outlet

6c 10c

H

sinlet

Fig. 2. Experimental setup.

Table 1

Numerical setup and CPU time (n): with some residual oscillations.

Time step (s) 0.0025 0.0125 0.025 0.05

Number of subcycles, N 0 5 10 20

Duration of the velocity ramp (s) 1 2 3 4

Duration of the simulation (s) 20 30 40 50

Total CPU time (min) 258 112 103 102

CPU time per second of physical time (min) 13 3.7 2.5 2.06

Physical time to reach the converged lift (min) 15 (n) 17 18 32

CPU time to reach the converged lift (min) 195 (n) 63 45 66

time (s)

li
ft

 (
N

)

0 10 20 30 40 50

40

50

60

70

80

classical computation

time-splitting procedure : N=5

time-splitting procedure : N=10

time-splitting procedure : N=20

Fig. 3. Comparison of lift force in time.
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(Delhommeau, 1987). The relation is given with the following

equation:

Fx

Mx

Mz

2

6
4

3

7
5¼

S33 S34 S35

S43 S44 S45

S53 S54 S55

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S

dTz

dRx

dRy

2

6
4

3

7
5, ð5Þ

S33 ¼ rg
Z

Sw

ð n
!

� z
!

Þ dS
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

dSz

,

S34 ¼ S43 ¼ rg
Z

Sw

ðY�YGÞ dSz, S35 ¼ S53 ¼ rg
Z

Sw

ðX�XGÞ dSz,

S44 ¼ rg
Z

Sw

ðY�YGÞ
2 dSzþV iðZC�ZGÞ

� �

,

S55 ¼ rg
Z

Sw

ðX�XGÞ
2 dSzþV iðZC�ZGÞ

� �

,

S45 ¼ S54 ¼�rg
Z

Sw

ðX�XGÞðY�YGÞ dSz:

The coefficients of the matrix S depend on the density of water

(r), the magnitude of gravity (g), the geometry of the wetted

surface of the hull (Sw), the immerged volume (Vi), the centre of

gravity (coordinates (XG,YG,ZG)) and the vertical position of the

centre of buoyancy (ZC).

By computing S
�1

, Eq. (6) can be used to provide the hydro-

static position of any hull through an iterative process, assuming

that the mass and the centre of gravity position are known:

dTz

dRx

dRy

2

6
4

3

7
5¼S

�1

Fx

Mx

Mz

2

6
4

3

7
5: ð6Þ

Coupled to a flow solver, it enables to predict a dynamic

equilibrium position. In fact, let us consider L¼ ðFz,Mx,MyÞ the

vertical force and torque (evaluated at the centre of gravity G)

along the X and Y-axis, respectively, acting on the hull (including

gravity, fluid force and possible external forces), in a given

imposed position. By computing the coefficients of the matrix S

using this current position of the ship, a prediction of the new

position can be obtained by solving the linear system equation

(6), giving dP ¼ ðdTz,dRx,dRyÞ as a result.

This amounts to extrapolating an equilibrium position with a

first order method while keeping the hydrodynamic load and the

external forces constant. This inferred new position is relaxed and

then applied progressively during the kinematic transient period

DT i. After some time steps, a new prediction of the equilibrium

position using the current fluid forces applied to the hull can be

obtained. Then the procedure can go on up to convergence. The

procedure is summed up as follows (te means the time when an

evaluation is carried out, DTh is the temporal interval between

two evaluations, with DThZDT i):

A te¼tc,

B computation of the current forces L acting on the hull,

C prediction of dP to reach the new equilibrium position using

Eq. (6),

D underrelaxation of the new position with a coefficient

aA ½0;1� : Pnew ¼P
oldþadP,

E gradual variation of the position to reach P
new within DT i,

F when tcZteþDTh, go to A.

5. An application test-case: DTMB 5415 with free trim and

sinkage

Both the techniques described previously are applied here to

the bare hull DTMB5415 test case (see Fig. 5) in the following

conditions: Fr¼0.28 and Re¼1.26e7, trim and sinkage free,

Lpp¼3.048 m. This test case was used for the CFD Workshop

Tokyo 2005 (CFDWS2005, case 1.3) and is the subject of experi-

mental and numerical studies (see Longo and Stern, 2005; Carrica

et al., 2007 for example). A mesh of 1.6 M cells around the half

body is used to compute the flow (see Figs. 6 and 7). Boundary

conditions are imposed as follows: on the top and the bottom of

the fluid domain, a hydrostatic pressure is imposed, with a

Neumann condition for velocity. On the inflow, outflow and side

boundary, the velocity is imposed at its far field value, as is the

volume fraction (in this case, a Neumann condition is prescribed

x

y

0 0.5 1

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Sim. N=0

Sim. N=10

Exp.

Fig. 4. Comparison of free-surface for N¼0 and N¼10.

Fig. 5. The DTMB5415 bare hull.
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for the pressure). Mirror symmetry is used for the plane Y¼0. On

the body, a wall function is used everywhere, except on the deck

where a slip condition is applied.

A classical computation Ref (no subcycling, time-accurate

resolution of Newton’s laws) and a computation TS�QS combin-

ing the time-splitting and the quasi-static approaches are per-

formed. For the latter, 10 subcycles are applied, using a time step

equal to 0.05 s, i.e. 10 times those of the classical computation.

The ship is accelerated from rest to its nominal velocity

(¼1.531 m/s) in 2 s and 4 s, respectively, for the classical and

quasi-static computation. Acceleration ramp follows a quarter of

sine law to reach the nominal velocity smoothly. The convergence

time is not very sensitive to the duration of this ramp, within a

certain range. However, to avoid convergence troubles, it is

recommended not to go far beyond an acceleration of 1 m/s2 for

model scale hulls. For the quasi-static computation, we prefer to

double this transient stage since the time step is far larger.

The parameters for the quasi-static approach are as follows:

a new prediction of the equilibrium position is computed each

DTh ¼ 0:3 s and the relaxation value a of the displacement is set to

0.3. While the sinkage is updated from the beginning, the trim is

released only after reaching the nominal velocity, i.e. after 4 s.

Linear laws for trim and sinkage are imposed to the ship to reach

the new predicted position within a temporal interval of DT i. For

this case, DT i is chosen equal to DTh, i.e. as soon as the ship

reaches its new position, a new prediction occurs, without any

latency period in which the boat remains fixed. This latency

period (i.e. DT ioDTh) is needed for stiffer cases like planing hulls,

to let the hydrodynamic force stabilize before a new prediction of

the equilibrium.

Figs. 8 and 9 show the evolution of trim and sinkage for both

configurations. It takes more time to reach the equilibrium

position for the simulation TS�QS, but since the time step is

multiplied by 10, this is not really a problem. However, contrary

Fig. 6. Fluid domain.

X

Z

Y

Fig. 7. Zoomed view of the mesh at the bow.
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to the classical approach in which the oscillations of the motion

are difficult to damp out quickly (even using an artificial damping

term), the quasi-static approach gives a very stable equilibrium

position. The values are in quite good agreement with the

experimental data: differences are comparable to those obtained

in Carrica et al. (2007). Here again, the free-surface is the same for

both results (see Fig. 10). The gain in CPU time is similar to that

exposed in Section 3.2.

6. Conclusions

This article describes first an algorithm related to a time-

splitting technique, in which the advance in time is not the same

for the volume fraction and for the other variables: the equation

of the volume fraction is solved using a smaller time step which

reduces significantly the Courant number. A test-case is presented

showing that the optimal number of splits is around 10. Then, a

quasi-static approach is described to be used instead of the

resolution of the Newton’s laws to reach dynamic equilibrium.

The convergence is carried out through a succession of predicted

positions reached with an imposed motion. Compared to the

dynamic approach, the transients are easier to remove, the

dynamic equilibrium is far less oscillating. As a consequence, a

criterion can be added to test automatically several velocities the

ones after the others. Moreover, the large time steps associated

with the time-splitting technique can then be used without any

flow/motion instabilities. As a consequence, both techniques

together enable to speed up computations for reaching a dynamic

equilibrium position, without penalizing accuracy. A test-case is

shown demonstrating that the results are similar to a classical

approach, but with a gain of CPU time around 4.

These techniques have been applied on various kinds of hulls.

For some of them (like planing boats), for which the resolution of

the equilibrium position is more stiff, a latency period is needed

between two predictions to let the fluid forces to be stabilized.

This approach can also be used together with an adaptive time

step law to the Courant number (Hay et al., 2006). In this case, a

target Courant number can be specified for both the split fraction

volume equation and the global time step (the ratio of these both

values give approximatively the number of subcycles). This avoids

thinking about which time step should be used to have enough

accuracy for the interface capturing.

The time-splitting method can also be used with a standard

small time step to reduce the Courant number and improve the

accuracy of the interface capturing. As a matter of fact, in real

cases, the criterion of having the Courant number lower than

0.3 is often difficult to reach everywhere.

The next step is to investigate this sub-cycling method for

unsteady physical problems, even if the accuracy of such an

approach needs to be addressed in this case.
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