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SUMMARY

This paper presents a comparison in terms of accuracy and efficiency between two fully nonlinear poten-
tial flow solvers for the solution of gravity wave propagation. One model is based on the high-order spectral
(HOS) method, whereas the second model is the high-order finite difference model OceanWave3D. Although
both models solve the nonlinear potential flow problem, they make use of two different approaches. The
HOS model uses a modal expansion in the vertical direction to collapse the numerical solution to the
two-dimensional horizontal plane. On the other hand, the finite difference model simply directly solves
the three-dimensional problem. Both models have been well validated on standard test cases and shown to
exhibit attractive convergence properties and an optimal scaling of the computational effort with increasing
problem size. These two models are compared for solution of a typical problem: propagation of highly non-
linear periodic waves on a finite constant-depth domain. The HOS model is found to be more efficient than
OceanWave3D with a difference dependent on the level of accuracy needed as well as the wave steepness.
Also, the higher the order of the finite difference schemes used in OceanWave3D, the closer the results
come to the HOS model.

KEY WORDS: hydrodynamics; water waves; high-order finite differences; high-order spectral; Ocean-
Wave3D; numerical comparisons

1. INTRODUCTION

The study of surface gravity waves (propagation, wave—wave interactions, etc.) is of major interest.
The accurate description of wave fields is necessary in the ocean and naval engineering context to
determine precisely the nonlinear wave loads acting on structures at sea, for instance.

A wide variety of nonlinear wave models have been developed in the last decades to take care
of this problem. Most of them were developed in the framework of potential flow theory consid-
ering that ocean wave propagation is essentially irrotational and inviscid (until the point of wave
breaking). It has to be noted that attempts have been made to solve the full Euler or Navier-Stokes
equations (see Park et al. [1], for instance). However, the computational effort required here restricts
the solution to very small scales. At the same time, the efficient and accurate solution of the fully
nonlinear potential problem is still very challenging.

This study compares two of the fully nonlinear potential flow models. The first model is a
pseudo-spectral model, namely, high-order spectral (HOS), initially developed by West et al. [2]
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and Dommermuth and Yue [3]. This model has been widely used [4-6], and it has shown its abil-
ity to simulate efficiently wave evolution (propagation, nonlinear wave—wave interactions, etc.) in
domains of large scale with reasonable computational effort (cf. Ducrozet et al. [7]). The second
model, OceanWave3D, is dedicated to the simulation of wave-wave, wave-bottom and wave—
structure interactions. It is based on a high-order finite difference solver which has also shown
its ability and efficiency (see e.g. Bingham and Zhang [8] (2D) and Engsig-Karup et al. [9] (3D)).
Finite differences solution of unsteady free-surface flows is also a widespread numerical method
[10-12]. Note that the pseudo-spectral formalism of the HOS model restricts the model to a rectan-
gular domain (in the horizontal plane) and imposes limits on the total variation of the water depth,
whereas OceanWave3D is more flexible with regard to the geometry and bathymetry.

Firstly, the two numerical methods which will be compared are presented. The general potential
formulation and framework of both methods are reviewed. Then, the numerical approach based on
high-order finite differences adopted in OceanWave3D is described. It is followed by the presenta-
tion of the HOS numerical scheme. The second and third parts are dedicated to comparing the two
models. Firstly, the numerical properties of both methods are presented and particularly the scaling
of computational effort and RAM memory use with respect to the space discretization. This leads to
a first comparison of the general behaviour of these methods. Then, the two models are compared in
terms of efficiency and accuracy. A highly nonlinear wave is computed, and the error of evaluation
of the vertical velocity is studied as well as the relative efficiency of both models. The comparison
is pursued with the long-time propagation of the previous nonlinear periodic wave. Errors for both
models on the phase shift between the computed and analytical solutions are investigated.

2. NUMERICAL METHODS

In this section, we present the two models of interest in this comparison. The general framework
of the fully nonlinear potential flow solution process is first given. Then, the high-order finite dif-
ferences model OceanWave3D is detailed. Finally, the HOS model is described. The details of the
models are reviewed, whereas the effective comparisons will be presented in Sections 3 and 4. More
details on the methods can be found in [7-9].

2.1. General framework

We consider a rectangular fluid domain D of horizontal dimensions (L, L,). We choose a Carte-
sian coordinate system with the origin O located at one corner of the domain D. The z axis is
vertical and oriented upwards, with the level z = 0 corresponding to the mean water level. The
notation x stands for the (x, y) vector.

We work in the following with a potential flow formalism. We assume that the fluid is incompress-
ible and inviscid and that the flow is irrotational. With these assumptions (relevant in the context of
wave propagation), the velocity V derives from a potential V(x, z,t) = (V, ;) ¢ (X, z,t), V repre-
senting the horizontal gradient, d, the partial derivative with respect to z and ¢ the velocity potential.
The continuity equation: (V, d;) .V = 0 becomes the Laplace equation in the fluid domain D

Ap =0 1)

On the free surface, the elevation is supposed to be single valued and thus described by z =
n(x, t). On this boundary, the slip condition and the continuity of the pressure give, respectively,
the kinematic and dynamic free-surface conditions. Following Zakharov [13], these fully nonlinear
free-surface boundary conditions can be written in terms of surface quantities, namely » and the
surface potential ¢(X,1) = ¢(X, n,t)
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To account for the time evolution of the quantities of interest (1, ¢), one only needs to evaluate
the vertical velocity at the free surface W(x, ) = ¢, (X, 1, ¢). The solution process chosen to evaluate
this vertical velocity differs in the two models of interest and is the subject of the next paragraphs.
The set of Equations (2) and (3) then provides the time derivatives of the unknowns 1 and ¢, which
are further used in a time-marching classical fourth-order Runge—Kutta scheme in both methods. In
the following, time steps At are chosen fixing the Courant number C, = CA—AX’ with C standing for
the phase velocity of the solved wave and A x the space resolution.

2.2. OceanWave3D model

In OceanWave3D, the evaluation of the vertical velocity at the free surface is done by solving the
following Laplace problem for the velocity potential ¢

~

¢ = ¢l =7 (4)
V2p+¢,, =0, —h<z<n (5)
(n,nz).(V,9,)¢ =0, (X,z) €0 (6)

with (6) the kinematic boundary conditions on the different boundaries 952 of the finite domain,
including the bottom whose profile can be chosen arbitrarily.

A direct solution of the Laplace problem is computed thanks to the following o transformation
o(X,z,t) = 7(5 :; }er()i(z)(x)' This non-conformal mapping allows the transformation of the physical
domain (X, z;7(vx;hich evolves during time) onto a fixed computational domain (X, o).

The Laplace problem expressed in (x, o)-coordinate is then solved by a finite difference method.
Arbitrary high-order schemes are used with possibly stretched grid in both directions. These
developments are found to be advantageous relative to classical second-order schemes on even grids.

The obtained linear system is solved with a preconditioned iterative method. Note that to impose
boundary conditions (lateral walls, bottom), ghost point strategy is used. The original generalized
minimal residual (GMRES) method (without restarts) is formally not memory limited, which may
lead to excessive memory requirements. Instead, a defect correction method can be employed as
an alternative iterative solver at comparable efficiency, and this reduces the memory requirements
significantly (see Engsig-Karup [14]).

One initial LU factorization for each preconditioning step is effective in 2D, but for large 3D
problems, the direct solution of the preconditioning step is replaced with a multigrid solver (to
retain optimal scaling in computational effort and RAM memory use [9]). Note that the multigrid
solution of the problem was previously developed by Li and Flemming [12] before the enhancement
proposed in Bingham and Zhang [8] or Engsig-Karup et al. [9]. One refers to those two papers for
more details about the method and different validations performed.

2.3. High-order spectral model

The HOS method was first introduced by West et al. [2] and Dommermuth and Yue [3]. The domain
D is assumed periodic in both the x and y horizontal directions, and a slip condition is imposed
on the bottom of the domain (if there is one). This allows us to define a spectral basis on which
the velocity potential will be expanded. Note that this decomposition on spectral basis enforces the
geometry of the computational domain (typically rectangular domains in the horizontal plane with
constant depth). The spectral basis for ¢ is defined with the basis functions v,,, which individually
satisfy the set of equations: Laplace and periodicity

d(X,z,1) ZZAmn([)I//mn(X,Z) )

cosh (kmnlz + h])
cosh(k,nh)

mn(X,2) = eXp(ikmx) exp(ikyy) (8)



where k,, = 2mn/Ly, k, = 2nw/L, and k,, = /k2 + k2 are the wavenumbers associated
with modes (m,n) € Z2. A similar basis based only on the horizontal coordinates is used for the
free-surface elevation n and surface velocity potential ¢. The spectral basis for the potential taken
at z = 0 and the one for surface quantities are adequate for use of Fourier transforms. It has to be
noted that a numerical wave tank has also been designed with HOS method, thus accounting for
reflective condition in the horizontal directions (see Ducrozet et al. [15, 16]).

The evaluation of the vertical velocity w(x,t) = ¢.(x, n,t) in the free-surface boundary con-
ditions is performed thanks to the order-consistent HOS scheme of West et al. [2]. It consists in a
double expansion of the potential ¢ to solve the Dirichlet problem ¢ (z = n) = ¢. First, the potential
¢ is expressed as a truncated power series of components ¢ for m = 0 to M, each component
being of magnitude n™. Second, the potential taken at the free surface is expanded in a Taylor series
about the mean water level z = 0. Combining these two expansions gives a triangular set of Dirichlet
problems for the components that can be solved by means of a spectral method (using efficient fast
Fourier transforms). Then by evaluating the vertical derivative of the potential and using the same
ki(nd) of double expansion, we obtain the vertical velocity on the free surface from the components
V.

The products involving Vi and W in free-surface boundary conditions are evaluated thanks to
the order-consistent formulation of [2]. Note that in this process, it is crucial to perform a careful
dealiasing to preserve the method convergence and accuracy for waves close to Stokes’ limit [17].

This HOS model demonstrates its accuracy and efficiency (see [7, 17]). It has been validated
on several test cases: propagation of highly nonlinear regular and irregular waves and study of
wave-wave interactions (with application to the formation of freak waves).

3. SCALING OF COMPUTATIONAL EFFORT AND MEMORY USE

In this section is provided a preliminary study of the models of interest. The scaling of computa-
tional effort as well as the RAM memory use is studied with respect to the number of points in the
simulation with both models (firstly with OceanWave3D code and then with the HOS model).

3.1. OceanWave3D

Figure 1 gives the scaling in terms of RAM memory use and computational effort for the Ocean-
Wave3D code with MultiGrid preconditioning for typical 3D computations (nonlinear periodic wave
studied in Section 4.1) run on an Intel Xeon E5520 2.27 GHz. The total RAM memory used (left
part of the figure) is given as well as the CPU time per defect correction (DC) iteration (right part
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Figure 1. Scaling RAM memory use and computational effort—3D simulation, sixth order.



of the figure) as a function of the number of points in the computational domain N = N, Ny N;.
The dashed lines represent the expected linear scaling. Note that a typical sixth-order finite differ-
ence schemes is used in this study, but results are similar to any order of the finite differences (FD)
scheme.

It appears from this figure that the memory requirement evolves linearly with the number of points
in the domain. At the same time, the computational effort scales are also perfectly linear (even for
quite a large number of points in the domain: here up to 2.4 x 106 points). This study is made on 3D
configuration because the OceanWave3D model has been especially designed for this and this is the
most demanding test case (to achieve this linear scaling). This is the multigrid preconditioning strat-
egy which allows to retain the linear scaling of both computational effort and memory requirement
(see Engsig-Karup et al. [9]). Note that these linear scalings are also obtained for 2D computations.

3.2. High-order spectral model

Figure 2 presents the same plots as in the previous paragraph with the scaling of RAM memory use
(left part) and computational effort per Runge—Kutta step (right part) with respect to the number of
points (N N,) for the HOS method. This figure was obtained for a typical 3D simulation with a
HOS order fixed to M = 5. The right part of this figure is slightly different from the one obtained
with OceanWave3D, which plots the computational effort per DC iteration. Furthermore, note that
the HOS model takes full advantage of the Laplace equation and thus has unknowns only on the
free surface: the number of points involved in this figure is N = Ny N, (the vertical direction is
not discretized). However, the global behaviour of each of the methods may be compared, keeping
these features in mind.

Results indicate that the memory requirements scale linearly with the number of points in
the domain. Dealing with the computational effort, it appears that the HOS model scales with
N log(N), as expected. The N scaling is included on this figure to point out that it is also close
to the behaviour of the HOS model. The same behaviour is observed for typical 2D simulations.

3.3. Discussion

In order to compare both models in terms of efficiency and accuracy from the previous results, one
has to recall the details of each model:

o Firstly, as noted before, the number of points taken into account in the two models is different
because the HOS method solves the problem on the free surface only, whereas in the Ocean-
Wave3D code, the vertical direction is also discretized. The number of points N in Figures 1
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and 2 is thus not equivalent. However, it has been shown [8, 9] that the high-order finite dif-
ferences scheme of OceanWave3D requires few points in the vertical direction to achieve good
accuracy.

o Secondly, the results will be strongly dependent on the choice of the order of the finite differ-
ence scheme and the DC or GMRES tolerance for OceanWave3D model and dependent on the
order of nonlinearity M for the HOS model. This will influence both RAM memory use and
computational effort. However, note that the O(N) and O(N log(N)) scalings are conserved
with all choices of parameters in both methods.

o Finally, in Figures 1 and 2 is given the evolution of computational effort respectively per DC
iteration and per Runge—Kutta step. The comparison is thus subtle even if the solution with
OceanWave3D is obtained in O(10) DC or GMRES iteration per Runge—Kutta step almost
independent of number of points in the domain and physics of the studied phenomenon.

Consequently, memory use appears to be equivalent between both models, whereas computa-
tional effort probably admits a break-even point between both models (O(N) versus O(N log(N)
behaviour). However, previously listed details indicate that it will be complicated to esti-
mate/determine this break-even point for 2D or 3D problems (number of points different in both
approaches and results dependent on the numerical parameters).

Next, Section 4 proposes a comparison of the efficiency and accuracy of both models. It is based
on a study of numerical methods which have to reach a given level of accuracy for the solution of a
standard 2D test case.

4. EFFICIENCY AND ACCURACY

The efficiency and accuracy of both models is now analysed. The approach chosen is to study
OceanWave3D and HOS models on a typical test case (propagation of nonlinear periodic wave). A
given level of accuracy has to be achieved, and the corresponding computational effort needed with
both models is studied. A first test case is studied in which the vertical velocity at the free surface of
a 2D nonlinear periodic wave is computed at one time step and compared with the stream function
reference solution. A second test case is then studied where the same 2D nonlinear periodic wave is
now propagated (i.e. advanced in time) with the two models, and phase shift observed after a long
propagation time (1000 periods) is monitored.

4.1. First test case—vertical velocity of a 2D periodic wave

Recall that both methods consider the fully nonlinear free-surface boundary conditions formulated,
following Zakharov [13], Equations (3) and (2). In order to advance in time the unknowns on the
free surface n and ¢, one needs to evaluate the vertical velocity w. This first test case proposes to
study, for a nonlinear periodic wave, the error made on this evaluation of the vertical velocity at a
given time step. We therefore consider for now only errors due to the spatial solution (time-stepping
errors being considered in Section 4.2).

This wave is described by its height H (or equivalent amplitude « = H/2), wavelength A (or
wavenumber k£ = 2/A) and water depth /. The nonlinear wave we choose here has the following
characteristics: H/A = 0.0955 = 67.5% of limiting steepness, that is ka = 0.3 and kh = 27 (i.e.
deep water). The computational domain is periodic in both models and of length A. The initial con-
dition (free-surface elevation n and velocity potential ¢) is known from stream function theory [18].
The vertical velocity obtained using those n and ¢ with both models is compared with the stream
function theory assumed to be exact (convergence up to machine accuracy achieved).

The results obtained with OceanWave3D are first presented. Then, the computations are per-
formed with the HOS method. Finally, a comparison between both methods is proposed.

4.1.1. OceanWave3D. In this study, regular grid is used in the horizontal direction with periodic
boundary conditions. In the vertical direction, a clustering of the nodes towards the free surface is
applied to enhance the efficiency of the solution (similar to the one used in Bingham and Zhang [8],
i.e. a cosine spaced grid). The tolerance of the GMRES method is fixed to 107! to ensure a correct



convergence with respect to the number of points. Note that for the effective comparisons, it will be
adjusted to the level of accuracy needed (see Section 4.1.3).

Figures 3, 4 and 5 present the influence of the discretization N, and N on the error of evaluation
of the vertical velocity w. The error is defined as the maximum of |W — W, with Wer standing for
the reference solution obtained from stream function theory [18]. In these figures, different orders
of the finite difference scheme are tested (respectively, fourth, sixth and eighth orders). The left part
of the figure gives the convergence with respect to the vertical discretization N,, whereas the right
part deals with the horizontal discretization N,. On these plots is given in dashed line the theoretical
convergence rate of each one of the finite differences schemes used (respectively, fourth, sixth or
eighth order).

These plots indicate the effective convergence of the solution with respect to the number of points
in the domain (in both directions N, and N;). An asymptotic slope is obtained with the finest
discretizations (N, = 1024 for left plots and N, = 129 for right plots). This slope is in perfect
agreement with the expected convergence rate.

It is also noticeable that the level of accuracy achieved with the models at a given number of points
is greatly improved with high-order finite differences schemes. In addition, it must be emphasized
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that the computational effort required to go from fourth-order to eighth-order scheme at a given
number of points is roughly an increase of 25%. Then, using high-order finite differences schemes
possibly leads to a great improvement of computational effort. Thus, two types of convergence may
be used with OceanWave3D code, namely h-type and p-type, corresponding to convergence relative
to the discretization and to the order of finite differences scheme, respectively (which order is left
arbitrary).

Figure 6 presents the convergence plot with respect to the order of the finite difference scheme.
It appears, as expected, that one achieves an exponential convergence rate (note the log scale in y
direction versus the linear scale in x). The left part of the figure depicts the behaviour at different
discretizations in horizontal plane N, with N, = 65. The right part gives the results for different
discretizations in vertical plane N, with N, = 512.

4.1.2. High-order spectral model. The same convergence study done previously with Ocean-
Wave3D is performed with the HOS model. Figure 7 shows the evolution of the error on the vertical
velocity w with respect to the number of points/modes N, and the HOS order M. These are the



two parameters involved in the convergence process of the HOS method. Because one deals with
pseudo-spectral method, an exponential convergence rate is expected with respect to the number of
points.

The proposed 3D-schematization enables a global view of both convergence with respect to num-
ber of points N and HOS order M. This is a typical plot for such studies obtained with HOS method.
It has to be noted that the error is given in log scale (vertical axis), whereas N and M are plotted
in a linear scale in this figure. Two planar surfaces are sketched on Figure 7 (right), which confirms
that (i) at high HOS order M, the convergence rate is exponential with respect to the number of
points (surface A) and (ii) at high number of points N, the convergence rate is also exponential with
respect to the HOS order M (surface B).

Figure 8 is a 2D representation of the 3D plots in Figure 7. The convergence with respect to the
number of points on the free surface N is given at different HOS orders M (left part) as well as the
one with HOS order M at different numbers of points N. This allows a clearer comparison with
OceanWave3D results as well as more accurate view of the level of accuracy reached with the HOS
model.

The exponential convergence rate appears clearly (straight lines obtained in semi-log plot). This
is deduced as a function of number of points (left part of the plot) and as a function of the HOS order
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(right part of the plot). One obtains the asymptotic behaviours of the HOS model for this nonlinear
periodic wave test case:

Error on w = 10C016IN=115)  f5r A1 5 03N
Error on @ = 10C0-508M—0.718)  for A7 5 330

4.1.3. Comparison of models. Results with both methods have been presented in Sections 4.1.2
and 4.1.1 and will be now compared. The comparisons are realized with the following procedure to
ensure that each model is used in an optimal configuration (at least the closest to this optimal one):

e From the convergence plots of OceanWave3D (Figures 3, 4 and 5), one chooses an optimal
couple N, /N, for each finite differences scheme.

o This optimum is expected to be the intersection between horizontal flat parts (at given N,
or N;) and the part which follows the asymptotic convergence rate (—4, —6 or —8 slope,
respectively).

o Look at both plots Error = f(N) and Error = f(Ny) to determine the optimal choice for
the couple N,/ N;.

o We note that Figures 3, 4 and 5 are obtained with a tolerance of the GMRES method fixed to
10~1>. However, this can be adjusted to the level of accuracy that has to be reached. For each
couple N, /N, one determines the largest tolerance which gives the same accuracy as the one
obtained with tolerance 10715,

e From the convergence plots of the HOS method (Figures 7 and 8), one chooses an optimal
couple N, /M with a similar procedure as the one used for OceanWave3D.

o The optimum is expected to be the intersection of the planar surfaces observed in Figure 7.
o At each level of accuracy needed, a couple N, /M corresponds along this intersection.

Table | presents for different accuracies the optimal choices of parameters to make the compari-
son between the models (N,, N, and GMRES tolerance for OceanWave3D and N, and M for the
HOS method).

Figure 9 presents the comparison between the HOS method and OceanWave3D with the set of
parameters described in Table 1. The total CPU time per period of propagation T is presented as a
function of the accuracy on the vertical velocity w. The time integration is the same for both models
(i.e. Runge—Kutta 4 method with same Courant number). Different orders of the finite differences
scheme in OceanWave3D are presented and compared with the HOS method. One can see that the
HOS model is always faster than OceanWave3D. As a result, we chose to plot the following results
in terms of the efficiency ratio of OceanWave3D versus HOS. This is simply defined as the ratio, at
given accuracy, between the computational effort required by the OceanWave3D computation and
that by the HOS. Figure 9 (right) shows this efficiency ratio for the same results as in Figure 9 (left).

One may note on the left part of the figure that the HOS model is more efficient than Ocean-
Wave3D for the solution of the propagation of nonlinear periodic waves over flat bottom. At a given
order of the finite differences scheme, the difference between HOS and OceanWave3D is greater as
the level of accuracy required on w is improved. This is not surprising considering the exponential
convergence rate of the pseudo-spectral method. By the way, interesting features can be deduced
from the previous figure. For instance, comparing sixth-order and eighth-order schemes informs us
about the general behaviour of the numerical model. Break-even points (in terms of efficiency) exist
(as the one for accuracy ~ 6.10~°) which indicate that typically, the lower orders finite differences
schemes will be more efficient for solution with low level of accuracy needed. Other break-even
points may be observed between fourth and sixth or eighth order for very low accuracy.

At the same time, the higher the order is, the closer to the pseudo-spectral method result it will
be at high accuracy levels. Note that this feature has been noted by Fornberg [19], which compares
in a general formalism pseudo-spectral methods and finite differences schemes. His conclusion is
that for periodic cases, the two approaches are equivalent, comparing a pseudo-spectral method and
a finite difference solution involving all points in the domain N, (consequently of order N, — 1).
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Table I. Optimal choices for comparison of efficiency (periodic waves
ka =0.3and kh = 2r).

Accuracy on w Nx Ny Tol.
OceanWave3D 4th order
23x1073 16 7 1077
1.6 x 1073 32 7 1078
1.4x1074 32 17 10~8
9.4x107¢ 64 33 10~11
6.1x 1077 128 65 10~12
3.9%x 1078 256 129 10713
OceanWave3D 8th order
1.9% 1073 10 9 1077
43 %1074 16 9 1072
3.5%x 1073 32 9 1072
2.1x1077 64 17 10~ 11
1.3%x107° 128 33 10713
6.0 x 10712 256 65 10715
OceanWave3D 6th order
1.0x 1073 16 7 1070
6.0x 1075 32 9 10~8
2.5%x 1076 64 17 10~10
4.7 %1078 128 33 10~12
7.7x 10710 256 65 10713
1.3x 10711 512 129 10715
Accuracy on w Ny M
HOS
3.4x 1073 8 5
1.9x 107* 16 7
59x10°¢ 27 9
8.0x 1077 32 11
1.6 x 107° 48 17
3.5x 10712 64 23
—g— HOS
—e— OceanWave3D 4'" order ——e— OceanWave3D 4'" order

—— OceanWave3D 6" order —— OceanWave3D 6'" order
- —p—— OceanWave3D 8" order N —— OceanWave3D 8" order
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Figure 9. Comparison of CPU time with respect to accuracy on vertical velocity w for OceanWave3D and
HOS method.
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The previous tests have been performed with the study of a nonlinear periodic wave over flat bot-
tom with the following parameters: H/A = 0.0955 = 67.5% of limiting steepness, that is ka = 0.3
and ki = 27 (i.e. deep water). It seems interesting to ensure that the previous efficiency comparison
is representative of a large range of k& and ka values, that is that there is no dramatic change for
some regimes.

OceanWave3D and HOS models have been shown to be able to treat efficiently the problem of
wave propagation over a large range of wave steepness ka and relative water depth k4. In the fol-
lowing, one studies the efficiency ratio introduced previously as a function of these two parameters
ka and kh. Note that we fix the order of the finite differences scheme used in OceanWave3D to 8
for this study (because this is assumed not to play a key role in the study of interest here).

4.1.4. Influence of ka. First, we fix the relative water depth to ki = 2x (i.e. deep water case),
and we look at the evolution of the efficiency ratio between eighth-order OceanWave3D and the
HOS model for different wave steepnesses ka = 0.1, ka = 0.3 (previous case) and ka = 0.4
(i.e. H/A = 0.0127 = 91% of limiting steepness). Results are presented in Figure 10. Then, it
seems clear that when one increases the steepness, the relative efficiency of OceanWave3D is better
(i.e. closer to HOS) up to a ratio 6-7 for ka = 0.4, whereas for ka = 0.1 the ratio is at least 50.
However, the same behaviour is observed at the different wave steepnesses: the difference between
HOS and OceanWave3D is greater as the accuracy required on w is improved. Thus, only the mean
level of this efficiency ratio is changing with steepness of the studied wave. One may note that
for the steepest case (ka = 0.4) which is at 91% of limiting steepness, HOS model is close to its
stability limit.

4.1.5. Influence of kh. The same study is provided with the analysis of the influence of the relative
water depth, k4. In this concern, the ratio to steepness limit is fixed to H/A ~ 67.5%. The different
test cases are consequently as follows: (i) kh = 2w, H/A = 0.0955; (ii) kh = 1, H/A = 0.0732;
and (iii) kh = 0.5, H/A = 0.04. Corresponding results are presented in Figure 11. In contrast to
the ka parameter, it appears here that the relative efficiency between HOS and OceanWave3D is not
influenced by the relative depth of the simulated wave. Both models are able to simulate wave in
relatively shallow water with high accuracy.

To conclude on these first results, a first comparison of the efficiency of OceanWave3D code and
the HOS model has been performed. The error of evaluation of the vertical velocity of a nonlin-
ear periodic wave over a flat bottom has been studied. One looks for optimal choices of numerical
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Figure 10. Influence of ka on efficiency ratio between OceanWave3D and HOS.
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Figure 11. Influence of k& on efficiency ratio between OceanWave3D and HOS.

parameters in order to reach a given level of accuracy for both methods. Then, the HOS method
appears to be more efficient than OceanWave3D code with an efficiency ratio which appears to be
highly dependent on the order of accuracy one wants to achieve (HOS model is more efficient as
the accuracy required on w is improved). Furthermore, it appears that the higher the order of the
finite differences scheme in OceanWave3D is, the closer to the pseudo-spectral method result it will
be at high accuracy levels. Those results are dependent on the computed wave and particularly its
steepness (relative water depth appears to have no influence): the steeper the wave is, the closer are
efficiencies between models.

4.2. Second test case—long-time propagation and phase shift

The nonlinear periodic wave used in the first part of Section 4.1 is studied (H /A = 0.0955 = 67.5%
of limiting steepness, that is ka = 0.3 and kh = 2). After the accuracy on the vertical velocity at
one time step, one studies here the phase shift observed after a long propagation time (typically 1000
periods of propagation) compared with results from stream function theory [18]. This allows now
to consider errors due to the spatial solution as well as time stepping. Such a study was proposed by
Fructus et al. [20]. Particularly, the stream function theory gives the initial condition as well as the

nonlinear period, which is different from the linear period Tji, = % = m.

The results achieved with OceanWave3D code are presented in a first section, followed by the
ones with the HOS method. Finally, the two numerical approaches are compared.

4.2.1. OceanWave3D. Following the results obtained in subsection 4.1.3, the optimal configura-
tions for this study of phase shift are assumed to be the same as the ones deduced during the analysis
of the vertical velocity w. Consequently, the most efficient set-up of numerical parameters in terms
of computational effort are deduced from Figure 9 for the OceanWave3D code. Table 11 presents the
results of the phase shift observed after 1000 periods of propagation as well as the relative error on

. . t = 10007T) — t=0
the amplitude of the wave ¢,. The latter is evaluated as e, = [7max )~ max(t = 0)| .The

Nmax(t = 0)

Courant number C, is chosen equal to 0.64.
The results presented in Table Il indicate that the behaviour with respect to accuracy is conserved,
and it is expected that the parameters chosen are the optimal ones for this long propagation study.
At the same time, the convergence properties of OceanWave3D code have been checked with
respect to the different parameters involved in the solution: N,, N, order of the finite differences
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Table Il. OceanWave3D: Error of phase shift and wave amplitude ¢, after 1000 periods of propagation,
C, = 0.64 (periodic waves ka = 0.3 and kh = 2x).

Ny Nz FD order Tol. CPU Time (s) Phase Shift (deg) €aq

16 7 6 1076 2.3 x 10! 2.9 x 103 2.0x 1071
32 9 6 1078 1.4 x 102 2.3 x 102 3.3 %1072
32 9 8 1072 2.8 x 102 7.8 x 10! 1.5x 1072
64 17 8 10~ 11 1.6 x 103 3.8 1.0x 1073
128 33 8 1013 2.1 x 104 4.4 %1071 1.3x 1074
256 65 8 10715 2.8 x 10° 9.7x 1072 25%x107°

scheme, GMRES tolerance (Tol) and Courant number (C;). Figure 12 presents results of the influ-
ence of these several parameters on the phase shift after 1000 periods of propagation. All parameters
are fixed except the one of interest on each of the subfigures. OceanWave3D thus appears to properly
converge with respect to all numerical parameters involved in such a computation.

4.2.2. High-order spectral model. The same study as in the previous paragraph is made with the
HOS model, and corresponding optimal results are presented in Table I11.

One may note that similar levels of accuracy are obtained with both methods, which confirms that
the optimal choices of parameters are probably conserved between w and phase-shift analyses.

We indicate that a similar study has been made in Bonnefoy et al. [17] with slightly better results
in terms of phase shift. This is due to the time integration process which is chosen to be fourth-order
Runge-Kutta scheme here for consistency with OceanWave3D, instead of fourth-order Runge—
Kutta Cash—Karp scheme with adaptive step size in [17]. Furthermore, some choice of numerical
parameters are also slightly different in [17].
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Figure 12. Convergence checking with respect to N, N, order of FD scheme, tolerance of GMRES and
Courant number C,- for OceanWave3D.



Table I1l. HOS: Error of phase shift and wave amplitude ¢, after 1000 periods of propagation, C, = 0.64
(periodic waves ka = 0.3 and kh = 2x).

Ny M CPU Time (s) Phase Shift (deg) €aq
8 5 25 4.1 x 102 1.1x 1072
16 7 9.2 3.5 x 101 20x 1073
27 9 4.5x 10! 3.6 1.9x 1074
32 11 8.6 x 101 1.5 8.5x 10™3
48 17 6.7 x 102 1.0x 1071 7.0x 1076
64 23 2.5x 103 53x 1072 3.5x 1076
5 —6— OceanWave3D - optimal param.
10 §' o OceanWave3D - other param.
? : .
» 10* -
O
E 5 o a
5 10° I : : %" o
% ; o o o -
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Figure 13. Comparison of CPU time with respect to accuracy on phase shift for OceanWave3D and
HOS method.

4.2.3. Comparison of models. As a final comparison, the relative efficiency between OceanWave3D
code and HOS model is presented in Figure 13.

In this plot, the line with symbols gives the efficiency of OceanWave3D code with optimal param-
eters defined from the study with vertical velocity w compared with HOS model (Tables Il and 111).
The symbols give the relative efficiency of other tests performed during the convergence study (i.e.
different choices of parameters). This indicates that one is fairly close to the optimal choices in
terms of parameters because the curve is approximatively the lower limit of symbol cloud (except
the point at best accuracy ~ 8.8 x 1072).

The same behaviour as previously observed during the comparison on the vertical velocity w is
obtained. When the required accuracy is refined, the HOS method is more efficient. It appears that,
comparing with Figure 9, the relative efficiency of OceanWave3D with respect to HOS is greatly
reduced (a factor around 10 when dealing with this long-time propagation).

5. CONCLUSION

An extensive comparison between two models is presented. Firstly, both methods solving the gen-
eral problem of nonlinear potential flow problems are presented, namely, OceanWave3D, based on
high-order finite differences schemes, and the pseudo-spectral HOS method.

A first analysis of both models is provided with respect to the scaling in terms of RAM memory
use and computational effort. Several conclusions can be given: the RAM memory use evolves like
the number of points N, whereas the computational effort evolves like N and N log(N), respec-
tively, for the OceanWave3D and the HOS model. Memory use appears to be of the same order of
magnitude between both models, whereas computational effort probably admits a break-even point
(O(N) versus O(N log(N) behaviour). However, it will be complicated to estimate/determine this
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break-even point for 2D or 3D problems in terms of computational effort as a function of the num-
ber of points. It appears indeed that the comparison is not straightforward because of the following:
(i) the number of points taken into account for OceanWave3D and in the HOS method is different
because the HOS method is discretized on the surface only, whereas in the OceanWave3D code the
vertical direction is also discretized, and (ii) the results will be strongly dependent on the choice of
the order of the finite difference scheme and the GMRES tolerance for OceanWave3D model and of
the order of nonlinearity M for the HOS model.

Afterwards, the simple case of the solution of the propagation of a nonlinear periodic wave over a
flat bottom is studied. A first comparison of the efficiency of OceanWave3D and the HOS model has
been performed regarding the error on the evaluation of the vertical velocity. We selected optimal
choices of numerical parameters in order to reach a given level of accuracy for both methods. Then,
the HOS method appears to be more efficient than OceanWave3D code with an efficiency ratio which
is highly dependent on the order of accuracy one wants to achieve. Break-even points (in terms of
efficiency) exist, which indicate that typically, the lower-order finite differences schemes will be
more efficient for solution with low level of accuracy needed. At the same time, the higher the order
is, the closer to the pseudo-spectral method results it will be at high accuracy levels. Furthermore,
it appears that these results are independent of the relative depth of the periodic wave simulated.
However, the relative efficiency between both models is dependent on the wave steepness of the
computed wave (the steeper the wave is, the closer are the efficiencies between both models).

The study of the phase shift observed after a long propagation time (typically 1000 wave periods)
compared with the results from stream function theory [18] confirms the previous conclusions. It
appears that on this long-time propagation case, the relative efficiency of OceanWave3D code com-
pared with HOS model is reduced by a factor around 10 compared with the previous study (i.e.
efficiency ratio at least 40 in the range of accuracy studied).

The proposed benchmarks in this paper are performed with 2D waves. However, it is assumed
that results would be equivalent when dealing with 3D sea states. Indeed, both methods retain
their numerical features (accuracy and efficiency) for 3D configurations. Consequently, differences
between models may be slightly modified, but the main conclusions should be the same.

However, one may keep in mind that the flexibility of the OceanWave3D model in terms of the
geometry of the computational domain is not exploited here. Indeed, it has been designed to treat the
problem of wave-wave, wave-bottom and wave-structure interaction. Nevertheless, it is interesting
to point out its relative efficiency compared with a method designed to solve the wave propaga-
tion only in rectangular domain. Furthermore, it has to be noted that extension of HOS to variable
bathymetry exists in the literature. An update of this comparison for configurations with wave—wave
and wave—-bottom interactions would be interesting.
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