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Discrete control of resonant wave energy devices
 A. H. CLÉMENT* AND A. BABARIT

LUNAM Université, Ecole Centrale de Nantes, Laboratoire de Mécanique des
Fluides (CNRS UMR6598), 1 Rue de la Noë, BP 92101 44321 Nantes

Cedex 3, France

Aiming at amplifying the energy productive motion of wave energy converters (WECs)
in response to irregular sea waves, the strategies of discrete control presented here
feature some major advantages over continuous control, which is known to require, for
optimal operation, a bidirectional power take-off able to re-inject energy into the WEC
system during parts of the oscillation cycles. Three different discrete control strategies
are described: latching control, declutching control and the combination of both, which
we term latched–operating–declutched control. It is shown that any of these methods
can be applied with great benefit, not only to mono-resonant WEC oscillators, but also
to bi-resonant and multi-resonant systems. For some of these applications, it is shown
how these three discrete control strategies can be optimally defined, either by analytical
solution for regular waves, or numerically, by applying the optimal command theory in
irregular waves. Applied to a model of a seven degree-of-freedom system (the SEAREV
WEC) to estimate its annual production on several production sites, the most efficient of
these discrete control strategies was shown to double the energy production, regardless
of the resource level of the site, which may be considered as a real breakthrough, rather
than a marginal improvement.

Keywords: wave energy; wave energy converter; wave energy device; discrete control

1. Introduction

Many different principles have been conceived to harvest the energy of water
waves [1,2]. Among them, wave energy converters (WECs), which exploit the
motion of a body in response to the waves, generally exploit one or several
mechanical resonances of the system to enhance their performances. Basically,
they are mechanical oscillators, thus performing better as the wave frequency
approaches their natural frequency. However, because random seas have a
distributed frequency spectrum, the efficiency of these devices may fall rapidly
in narrow-banded sea states. One of the means to counteract this loss is to equip
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the device with an active controller, able to adapt the response of the mechanical
system to the continuously varying wave properties.

In the early 1980s, Budal & Falnes [3] showed that, for point absorbers in
long waves, one condition for maximizing the energy production is to keep
the velocity in phase with the excitation force. As a result, they introduced
a special kind of phase control, called latching control, in order to achieve
this phase condition on a heaving buoy WEC. Latching consists of locking the
motion of the body at the instant when its velocity vanishes at the end of one
oscillation, and waiting for the most favourable instant to release the body. The
determination of the duration during which the system remains locked is the
problem to be solved. The optimal solution is non-causal relative to the wave
excitation, but can be found in the frequency domain where one knows the future,
which, by definition, is the same as the past. In the real world, which is in
the time domain, however, sub-optimal solutions must be sought to overcome
this difficulty. The main advantage of latching control is that it is passive,
which means that it does not need reactive energy to be fed into the system.
Latching has been the subject of many studies in the last few years, showing
the capability of this discrete control to substantially increase the amount of
absorbed energy in regular and irregular waves. Most of these studies dealt with
a one degree of freedom (1 d.f.) heaving buoy WEC [4–6], but some of them also
considered several d.f. WECs [7–9]. Following a review of some general results
obtained with latching, we focus here on the possibility to extend its applicability
throughout the whole frequency range, beyond the first natural frequency of
the system.

Declutching control (also called unlatching in Salter et al. [10]) consists of
uncoupling the power take-off (PTO), which means that the PTO force is set
equal to 0 in the equations, during some portion of the power cycle. As with
latching control, it allows the generation of parametric resonance in the response
of the mechanical system, and hence an improvement in energy production. It is
even simpler than latching control to implement practically, since it requires only
valves in the case of a hydraulic PTO [11] or a switch in the case of an electric
PTO, instead of mechanical brakes or locks as required for latching control.
Declutching has already been considered by Justino & Falcao [12], using relief
valves, for the Portuguese oscillating water column in Pico. However, declutching
control was used in the Pico study in order to prevent damage in the system
rather than to improve the energy production. In Babarit et al. [13], declutching
was applied to the SEAREV WEC, and it was shown that such control can lead
to a large increase in energy production.

In the present study, we additionally consider the combination of latching
control and declutching control in a new discrete control mode called latched–
operating–declutched (LOD). We will apply it successively to (i) a mono-oscillator
WEC and (ii) a bi-oscillator WEC, both in regular and irregular wave conditions.
Even in regular waves, solutions and simulations are performed in the time
domain, which allows us to find non-harmonic solutions. Practically, the switching
sequences are derived by the optimal command method, which was first applied
to the wave energy area by Hoskin & Nichols [14]. Simulations in regular
and irregular waves show that this new three-state mode of control enhances
dramatically the performance of both two-state control philosophies (latching or
declutching).
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2. A mono-oscillator system

(a) Mathematical model

A linear approach will be adopted here for modelling the hydrodynamic forces,
under the usual assumptions of a perfect fluid, small wave steepness and small
body motions. We will start by considering the simplest generic wave energy
device, a heaving cylinder of mass m, as described in figure 1. The body is
able to heave in response to the excitation of the waves, all the other motions
being perfectly restrained. The vertical motion of the cylinder is measured
by the variable x . All the restoring forces (hydrostatic and mooring) are
gathered and represented by a simple linear spring of stiffness k. The PTO
unit is represented as a simple linear damper of coefficient b. Under the above
assumptions, the behaviour of the body in waves is governed by the following
integro-differential equation:

(m + m∞)ẍ +
∫ t

0
ẋ(t)K (t − t) dt + bẋ + kx = Fex(t), (2.1)

in which we recognize the so-called Cummins decomposition [15] of the radiation
forces into an instantaneous added mass term m∞ẍ , and a memory term expressed
by a convolution product

∫t
0 ẋ(t)K (t − t) dt.

The kernel K of this integral, generally named the impulse response function
or sometimes the retardation function, depends fundamentally on the shape of
the body. It has been computed directly in the time domain by the seakeeping
boundary-element method computational codes ACHIL3D [16]. In the present
time-domain linear formulation, the free motion x(t) of the device may be
calculated by integrating (2.1) for a given history of the wave excitation forcing
term Fex(t), and any given initial conditions x(0) and ẋ(0). But the convolution
integral prevents the use of compact methods developed in systems theory to
work with the state equation representation of linear systems. In order to get
such a form for the system in (2.1), the impulse response function K is first
approximated by a sum of complex exponential functions using Prony’s method
[17] as detailed by Duclos et al. [18],

K (t) �
N∑

j=0

aj ebj t , (2.2)

where (aj , bj)j=0,N are a set of complex coefficients. Since the radiative impulse
response function for such a simple floating body has a regular behaviour,
five to six pairs of complex conjugate coefficients generally give an excellent
approximation. Given this approximation, the convolution product

∫t
0 K (t −

t)ẋ(t) dt appearing in (2.1) is itself approximated by a sum of additional complex
radiative states Ij ,

I (t) =
N∑

j=0

Ij =
∫ t

0
K (t − t)ẋ(t) dt, (2.3)
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Figure 1. The heaving cylinder: a generic 1 d.f. wave energy converter.

where each Ij(t),

Ij(t) =
∫ t

0
ẋ(t)ai ebi(t−t) dt, (2.4)

is the solution of a simple ordinary differential equation

İ j = bj Ij + aj ẋ . (2.5)

Denoting the real and imaginary parts of the complex state Ij as I R
i and

I I
i , respectively, equation (2.1) can then be replaced by a system of ordinary

differential equations,

(m + m∞)ẍ(t) +
N∑

i=0

Ii(t) + bẋ(t) + kx(t) = Fex(t),

İ R
i (t) = bR

i I R
i (t) − bI

iI
I
i (t) + aR

i ẋ(t)

and İ I
i(t) = bR

i I I
i (t) + bI

iI
R
i (t) + aI

i ẋ(t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)

Defining an extended state vector as X = [ x ẋ IR
1 I I

1 ... IR
N I I

N ]T incorporating the
additional wave radiation states Ii , the system of equations in (2.6) can now be
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written under the classical state equation matrix form

Ẋ(t) = AX(t) + B(t). (2.7)

The fully developed form of the matrices A and B are found in Babarit &
Clément ([9], eqns (20,21)). Given the known excitation force in a time interval
[0, T ], and the initial conditions X(0), the linear system (2.7) is then solved
numerically by any standard integration algorithm, e.g. Runge–Kutta as used
here. The mean power P̂ extracted by the PTO over [0, T ] is then given by

P̂ = 1
T

∫T

0
bẋ2(t) dt. (2.8)

(b) Which control strategy optimizes power extraction?

The ultimate goal of the control strategy discussed here is to maximize the
power extracted through the PTO of the system in a realistic situation, namely
in irregular waves. As described above, the device is a linear mechanical oscillator,
set into motion by the external forcing term Fex(t). It has a single natural resonant
frequency u0.

The optimization of such a device in regular waves (i.e. the frequency domain)
has been performed previously [19–21]. It consists of determining the PTO
characteristics (k(u), b(u)) that maximize the mean extracted power when the
incident waves are plane monochromatic waves at a frequency u. In the present
case of a 1 d.f. heaving device, with a damping coefficient CA33(u) and added
mass coefficient CM33(u), it is easy to establish that

— if only the PTO coefficient b can be tuned, then its optimal value is

bopt,k =
√

CA2
33 +

[
u(m + CM33) − k

u

]2

, (2.9)

resulting in a mean power capture

P̂opt,k = 1
4

|Fex|2

CA33 +
√

CA2
33 +

[
u(m + CM33) − k

u

]2
(2.10)

and
— if both of the coefficients k and b are adjustable, then the square brackets

in (2.10) can be cancelled by setting k = u2(m + CM33). The mechanical
system is therefore in a resonance state, and we get the simple result

bopt = CA33(u),

P̂opt = |Fex|2
8bopt

,

⎫⎪⎬
⎪⎭ (2.11)

with, as a consequence,

ẋopt = Fex

2bopt
= Fex

2CA33(u0)
. (2.12)
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Since, the coefficients b and CA are essentially real, this last relation (2.12)
indicates that, in the optimal device configuration, the velocity of the buoy and
the excitation force are exactly in phase. This is the basis of the so-called phase-
control proposed by Budal & Falnes [22] in the late 1970s. The above relations
have been derived in the frequency domain, and are valid when and only when
the waves are regular and monochromatic, and the system is linear.

From these results, we can derive a basic principle for the control we seek to
develop and ultimately use in the real world (i.e. in the time domain), by trying
to continuously vary the PTO parameters k and b as the wave frequency u varies
continuously in the time domain, in order to maintain this state of resonance
(phase condition) and to satisfy the condition on amplitude (2.12). In fact, this
continuous optimal control cannot be transposed straightforwardly in the current
form, in the time domain, for several reasons.

— In the time domain and irregular waves, Fex will be a random signal and
the ‘phase’ concept is meaningless with such a signal. One can possibly
require the two signals to have their peaks at the same instant, but not to
be ‘in phase’, which should mean that they are proportional to each other.

— An ‘instantaneous frequency’ needs to be defined if one wants to directly
apply the above rules in the time domain; this has been attempted with
limited success by some authors [23], using Kalman filtering or other signal
processing tools. Otherwise, one must revert to the time domain using the
inverse Fourier transform of the frequency domain results, which is the
only mathematically justifiable way to proceed.

— When proceeding via the inverse Fourier transform route, we are led, at
last, to the fundamental property that the optimal controller derived in
the time domain is not causal [24], which means that one must know the
future wave excitation force to adapt the PTO in real time.

Another drawback of a continuous optimal control is the fact, established
rigorously in the frequency domain, that the total power flowing out of the system
through the PTO is not always positive during a cycle, meaning that one must
be able to feed reactive power into the device in order to achieve optimal control.
This is not really a great problem as long as we consider the problem in the
mathematical space, but it could become a serious drawback when we have to
devise the technology of the PTO to transfer energy in both directions, inward and
outward. The required level of reactive power can become very large, sometimes
10 times larger than the mean output power. If the efficiency of the converter is
not sufficient, then all the energy production could potentially be dissipated via
energy losses.

In contrast to this continuous control approach, the discrete control modes
that we are presenting in the following sections circumvent this implementation
inconvenience.

(c) Latching control

Basically, we consider that we have added a technological component (e.g. a
brake) to the original system, which is able to lock the moving body in its current
position x0 at the exact instant t0 when its velocity vanishes (ẋ(t0) = 0), and is
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Figure 2. The generic 1 d.f. wave energy converter in latching mode.

able to release it instantaneously on demand (see the lock on figure 2). Proposed
in 1980 by Budal & Falnes [3], this control strategy was introduced primarily to
satisfy the phase condition between excitation force and body velocity implied
by (2.12), in the cases where the wave frequency does not match the natural
frequency of the system. It was called phase-control for this reason. More precisely
the principle was to ‘slow down’ the natural response of the heaving buoy when
the wave frequency was lower than the natural frequency, in order to have the
velocity and the force reaching their maxima at the same time.

This principle was validated by experiments in the Norwegian University of
Science and Technology in the early 1980s. A significant amplification of the WEC
motion was obtained (by parametric resonance) compared with the uncontrolled
system, without feeding any energy into the system, and expending only a tiny
fraction of the available energy in the locking system.

(i) Optimized latching control of a 1 degree-of-freedom system in regular waves

There are two important instants in this control mode, one when the system
is switched from operating mode to latched mode, the other when the body
is released (‘unlatched’) from the latched mode to return to the operating
mode. This is why this control mode is termed discrete. The latching instant
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is determined by the system itself when the velocity vanishes, the remaining
practical problem one has to solve to implement latching control in a real system
is to determine the release time (or equivalently the duration of the latched state).

If we assume a regular monochromatic plane wave, then the problem can
be solved quasi-analytically by a time-domain approach, as shown in Babarit
et al. [25]. Under this assumption, with the wave excitation force given by
Fex(t) = |Fex| cos(ut + 40 + 4ex), the system is simply switched between two state
equations, namely,

(m + m∞)ẍ(t) +
N∑

i=0

liIi(t) + bẋ(t) + kx(t) = |Fex| cos(ut + 40 + 4ex),

İ R
i (t) = bR

i I R
i (t) − bI

iI
I
i (t) + aR

i ẋ(t)

and İ I
i(t) = bR

i I I
i (t) + bI

iI
R
i (t) + aI

i ẋ(t),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.13)

or in matrix form
Ẋ = AX + �(B ei(ut+40)) (2.14)

in operating mode, and the second system

ẍ(t) = 0,

ẋ(t) = 0,

İ R
i (t) = bR

i I R
i (t) − bI

iI
I
i (t)

and İ I
i(t) = bR

i I I
i (t) + bI

iI
R
i (t),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.15)

or
Ẋ = A′X + �(B′ ei(ut+40))

when the system is latched.
The analytical solution method for the determination of the optimal latching

delay d, for various wave frequencies [25], is based on the general solution of (2.14)
in the time domain under a sinusoidal forcing, which can be expressed as

X(t) = exp(A(t − ti))Xi + �((Ieiu(t−ti) − exp(A(t − ti)))

× (iuI − A)−1B ei(uti+40)), (2.16)

with exp(At) the notation for the matrix exponential, and Xi = X(ti) the initial
condition. Requiring the solution to be periodic with a period as a multiple of
the wave period 2p/u when a steady-state regime is established, we found two
sets of optimal solutions. The first one corresponds to these responses where
the latching occurs at alternating positions xmax, −xmax, xmax, . . .; we call it
alternating maxima modes. In these modes, the period of the response, given
by Tout = (2k + 1)2p/u, k ∈ [0, 1, 2, . . .], is successively T , 3T , 5T , . . . (figure 3).
Therefore, using the time-domain formulation and representation of the solution,
we have found latching modes with periods greater than the excitation period.
These sub-harmonic modes are optimal solutions when the waves have a frequency
higher than the natural frequency u0 of the device. More precisely, the device
period Tout is three times the wave period T if u0 < u < 3u0, five times when
3u0 < u < 5u0, and so on.
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Figure 3. Optimal solutions for latching with alternated maxima in regular waves; harmonic (k = 0)
and sub-harmonic (k = 1, 2) solutions (dashed lines, no control; solid lines, latching control).

Other sets of optimal solutions can be found when we require the body to be
always latched at the same position xmax, in a mode we have called equal ending
ramps (figure 4). The period of the optimal response is now Tout = 2lp/u, l ∈
[0, 1, 2, . . .] in a series T , 2T , 3T , . . .

These new sub-harmonic modes allow us to extend the application of latching
control beyond the natural frequency of the system, with a real gain in the heaving
amplitude of the body. This can be observed in figure 5 showing the absorbed
power curve versus wave frequency for a 1 d.f. heaving cylinder of 5 m radius,
10 m draft, m = 360 T, k = 240 kN m−1 and b = 27 kN s−1 m−1.

In figure 5, we have also plotted the maximum power absorbed by an
axisymmetric body, P = rg3/4u3, as established by Evans [20] and Falnes [21].
One can clearly see the benefit of latching control even beyond the natural
frequency (0.62 rad s−1), provided one switch to the first sub-harmonic mode
with Tout = 3T . One must also realize that when the system runs in such
a sub-harmonic mode, the situation is drastically different from the optimal
harmonic response described in §2b, based on a frequency-domain approach and,
in particular, that the optimal condition consisting of phasing the body velocity
with the excitation force is no longer valid.

(ii) Optimized latching control of a 1 degree-of-freedom system in irregular waves

Since the ultimate goal is to apply such discrete control strategies in real sea
conditions, let us now turn to the case of irregular waves for this simple 1 d.f.
system. As usual in such a linear approach, we shall consider irregular wave
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Figure 4. Optimal solutions for latching with equal ending ramps in regular waves; harmonic (l = 0)
and sub-harmonic (l = 1, 2) solutions (dashed lines, no control; solid lines, latching control).
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Figure 5. One degree of freedom heaving device; power absorbed in harmonic and first sub-harmonic
latching modes, compared with uncontrolled, and ideal modes (solid line, without control; squares,
latching: Tout = Tin; circles, latching: Tout = 3 × Tin; dashed dotted line, maximum power).

trains as the sum of regular waves. The free-surface elevation, h(t) is a sum of
Nc elementary sinus functions whose amplitudes (aj)j=1,Nc are derived from the
standard Pierson–Moskowitz energy spectrum [26] and whose phases (4j)j=1,Nc are
chosen randomly. The problem to be solved remains the same as above, namely
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finding the optimal latching delay d that determines the instant when the body is
released from the latched mode (2.15), and the system is switched to the operating
mode (2.13). As stated above, it is now impossible, in this context of irregular
waves, to rigorously define a phase for the signals involved, and therefore to base
the release criterion on a phase condition.

The solution of the problem can be found using optimal command theory and
Pontryagin’s principle, as first suggested in this context by Hoskin & Nichols [14].

A time series of the irregular wave excitation force Fex(t) is supposed to be
known over an interval of time [0, T ]. The latching force that is necessary to cancel
the acceleration is represented here by an infinite damper added in parallel to the
PTO damper at the instant when one wants to lock the system. A control variable
u ∈ [0, 1] is used to command this force, cancelling it when u = 0. Therefore,
Flatch = −uGẋ . When G is infinite and u �= 0, we recover an absolute latching
control with this additional term [27]. In simulation, we have rather implemented
a weaker version of latching with G large compared with the PTO damper,
but not infinite. When G is large enough, the correct behaviour of the latching
sequences, as described above, is obtained numerically. With this implementation
of latching, systems (2.6) and (2.15) can be merged into a single system,

(m + m∞)ẍ(t) +
N∑

i=0

Ii(t) + (b + Gu(t))ẋ(t) + kx(t) = Fex(t),

İ R
i (t) = bR

i I R
i (t) − bI

iI
I
i (t) + aR

i ẋ(t)

and İ I
i(t) = bR

i I I
i (t) + bI

iI
R
i (t) + aI

i ẋ(t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.17)

The problem is now to find u(t), which maximizes the energy recovered through
the PTO damper during the complete time range [0, T ],

max
u

E(u) =
∫T

0
bẋ2 dt. (2.18)

Let X(t) be the generalized state vector of the system in (2.17) when written
in the compact form Ẋ(t) = f(t, X, u). A Hamiltonian H can be defined by

H = bẋ2 + lt f, (2.19)

where lt is an adjoint vector solution of the adjoint system

l̇i = − vH

vXi
(t, X, u), (2.20)

with final conditions li(T ) = 0.
From (2.17) and (2.19), we have that

H = bẋ2 + l1ẋ + l2

[
Fex − 1

m + m∞

(
(b + Gu)ẋ + kx +

N∑
i=1

I R
i

)]
(2.21)

+
N∑

i=0

lR
i (bR

i I R
i − bI

iI
I
i + aR

i ẋ) + lI
i(b

R
i I I

i + bI
iI

R
i + aI

i ẋ), (2.22)
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 and hence the adjoint system is given as

l̇1 = k
m + m∞

l,

l̇2 = −2bẋ − l1 + l2(b + Gu) −
N∑

i=1

(lR
i aR

i + lI
ia

I
i),

l̇R
i = −lR

i bR
i − lI

ib
I
i + l2

m + m∞
and l̇I

i = lR
i bI

i − lI
ib

R
i .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.23)

The solution principle is based on a double time-stepping integration of the
two dynamical systems (2.17) from 0 forward to T , and (2.23) backwards, from
T (with initial conditions li(T ) = 0) to 0. During this backward integration, we
determine u(t) by applying Pontryagin’s principle, requiring that the optimal
command should maximize the Hamiltonian at each time t ∈ [0, T ]. Since the
Hamiltonian is a linear function of the command variable u (see equation (2.21)),
its maximization will require u to be either 0 or 1 depending on the sign of its
coefficient, so

u =
{
1, if (−l2Gẋ) < 0,
0, otherwise.

(2.24)

This procedure of forward and backward integration is initialized by a given
sequence for u(t), and then iterated up to final convergence of the absorbed energy
over [0, T ] [9].

Two noteworthy properties follow from (2.24).

— The optimal control is a ‘bang-bang’ control, u being either 0 or 1, but
never an intermediate value in [0, 1]. Thus, in that case, discrete control
is superior to a continuous control.

— The system switches every time ẋ vanishes and changes its sign. This
(re)establishes the latching control principle mathematically, by applying
the Hamilton–Pontryagin principle, as proposed heuristically by Budal &
Falnes [22] in the late 1970s.

A simulation of latching control in irregular waves is illustrated by figure 6.
One can easily see the magnification of the response, especially for t > 260 s. It
seems that after this time value, a regime of parametric resonance is reached
by the system. Since the absorbed energy is a quadratic function of the motion
amplitude, one can understand the interest in getting such an amplified response.

(d) Declutching control

Latching control is not the only way of getting such parametric resonance by
switching, at discrete times, between sub-models of the system. Latching was
implemented here as switching between a finite and an ‘infinite’ PTO damping
coefficient; namely between b and b + G. We will now instead consider that we
have the possibility of uncoupling the PTO at chosen discrete instants. In a real
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Figure 6. 1 d.f. heaving device in irregular waves. Natural- and latching-controlled heave response
versus excitation force (solid lines, latching control; dashed lines, no control).

device, this could be done by a by-pass valve, if the PTO is hydraulic [28],
or using a power-electronic switch in the case of a direct electrical generator,
or via a mechanical clutch. We named this action declutching, as opposed to
unlatching, which was used in Salter et al. [10], but which could also be mistakenly
interpreted as the release action during latching control. In declutching control,
the system will now switch between a finite and a null PTO damping coefficient,
namely between b and 0. Since the switching occurs at discrete instants (to
be determined), this control mode also belongs to the class of what we call
discrete control. Retaining the heaving cylinder as an example, the system of
differential equations will differ from the previous one (2.6) only with respect to
the damping term,

(m + m∞)ẍ(t) +
N∑

i=0

Ii(t) + vbẋ(t) + kx(t) = Fex(t),

İ R
i (t) = bR

i I R
i (t) − bI

iI
I
i (t) + aR

i ẋ(t)

and İ I
i(t) = bR

i I I
i (t) + bI

iI
R
i (t) + aI

i ẋ(t),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.25)

where the command variable v ∈ [0, 1] must be set to 0 to model declutching.
The complete study for latching control was repeated with this new discrete

mode of control, following the same steps.
We found that declutching can also be profitable, based on the same principle

of modifying (online) the natural frequency of the system to best fit the incoming
wave properties. In regular waves, figure 7 shows a simulation of the heaving
response of a cylinder computed by integrating (2.25) by a standard (Runge–
Kutta) iterative method.
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Figure 7. Response of a heaving cylinder in regular waves with (solid lines) and without (dashed
line) declutching control.

In irregular waves, the same methodology was applied, using the Hamiltonian
formulation as exposed above, but now applied to (2.25). Again, owing to the
linearity of the Hamiltonian with respect to the control variable v, a bang-bang
control is shown to be optimal.

Figure 8 shows the response of the cylinder to a sequence of irregular waves.
The amplification of the response with declutching observed here is smaller than
with latching control. Nevertheless, declutching control alone is still beneficial.
As with latching control, declutching has the property that it does not require
any energy to be fed into the system. Furthermore, we will see in §2e that the
combination of latching and declutching can further enhance the performance of
such oscillating wave energy devices.

(e) Latching and declutching applied to a bi-oscillator system

We consider now a more complex wave energy device featuring 2 d.f. as
described in figure 9. It is composed of the following.

— A positively buoyant free-surface piercing cylindrical hull of mass m1,
moored to the sea bottom and restrained to move only in heave motion
(measured by x1). We will assume all its other motion to be perfectly
restricted.

— An internal moving mass m2, which can slide without friction along
the vertical axis x inside the floating cylinder. Let x2 be the relative
displacement of m2 from its equilibrium position.

When the system is excited by the wave forces, both the cylinder and the
internal mass are set into motion, in such a way that the relative motion between
the two parts can be converted into energy by means of an appropriate PTO.
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Table 1. Mechanical parameters of the wave energy converter.

m1 705 032 kg
m2 100 000 kg
k1 789 736 N m−1

k2 700 000 N m−1

We assume, as before, that the PTO can be modelled by a linear spring and
damper with coefficients, k2 and b2, respectively. The equations of motion for this
2 d.f. system in the time domain are

m1ẍ1 + m2(ẍ1 + ẍ2) = Fex − m∞ẍ1 −
∫ t

0
K (t − t)ẋ1(t) dt − b1ẋ1 − k1x1

and m2(ẍ1 + ẍ2) = −b2ẋ2 − k2x2,

⎫⎪⎬
⎪⎭ (2.26)

where

— b1 is a damping force coefficient associated with an external linearized
viscous force; it can be set to zero (b1 = 0) here without essentially changing
the conclusions of the paper;

— k1 is the model for the restoring force applied to the buoy (mooring +
hydrostatics), we can further neglect the contribution from the moorings,
and k1 is simply the hydrostatic force given by k1 = rgSWP; and

— Fex , m∞ and K have been defined in preceding sections.

Using King’s approach [29], let Kex(t) be the force response associated with
an impulsive elevation on the free surface at a given reference point propagating
along the x-axis. Using the superposition principle, the excitation force can be
expressed as

Fex(t) =
∫ t

0
Kex(t − t)h(t) dt, (2.27)

where h(t) is the free-surface elevation. For simulation, we have considered a 5 m
radius and 10 m depth vertical cylinder as the hull of the WEC, figure 9, the
mechanical characteristics of which are summarized in table 1.

The equations of motion now become

(m1 + m∞)ẍ1 + m2(ẍ1 + ẍ2) =
∫ t

0
Kex(t − t)h(t) dt −

N∑
j=0

Ij − rgSWPx1, (2.28)

m2(ẍ1 + ẍ2) = −b2ẋ2 − k2x2

and İ j = bj Ij + aj ẋ1.

}
(2.29)

Fundamentally, this system comprises two oscillators with two distinct natural
frequencies: one for the heaving buoy and the other for the moving mass. These
oscillators are coupled through equation (2.28). A Runge–Kutta second-order
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scheme was used to numerically integrate the equations of motion in order
to perform time-domain simulations of this 2 d.f. WEC, with a time step of
0.01 s.

(i) Latching control

In this 2 d.f. device, latching control consists of locking the relative motion
x2 when the velocity ẋ2 vanishes, and releasing it after an optimal time, to be
determined. As above, latching control is implemented in the model by adding in
the equation of motion a very large damping force on the relative motion x2 into
the equations of motion, as

flatching = −u1G(m2 + m∞)ẋ2, (2.30)

where u1 ∈ [0, 1] is the control variable. This weak modelling of latching control
may have a lower efficiency than an absolute formulation, but it allows the more
convenient implementation of optimal command theory in order to compute the
control law in a time-step numerical procedure, as described in previous sections.
It is also more realistic when one wants to model real mechanical components,
e.g. brakes, which do not necessarily have instantaneous action.

Practically, a delay or lag will exist between the time when the controller
decides to apply the control and the time when brakes will hold the body. In
order to take this delay into account, we refine the PTO model and we now
consider the coefficient G to be time-varying, instead of a constant, solution to
the differential equation

G(t) + tlatchingĠ(t) = u1G0. (2.31)

When the controller switches to the latching mode, the control variable u1 is set
to 1, and G(t) grows exponentially to its final value G0 with a time constant
tlatching. When the controller switches the system back to the normal operating
mode, u1 is set to 0 and G(t) decays exponentially to 0.

(ii) Declutching control

For the 2 d.f. device, we also consider declutching control, which effectively
disconnects the PTO between the buoy and the moving mass at some instants
of the motion, which have also to be determined. Again, to take into account
possible delays or lags in the response of the real actuators, with a time constant
tPTO, we consider the b2 coefficient as a function of time, as

b2(t) + tPTOḃ2(t) = u2B0. (2.32)

For declutching, the control variable is u2.

(iii) Latched–operating–declutched: a three-state discrete control mode

As for the single degree of freedom device, and using the same methodology, we
have shown that latching control or declutching control are also efficient with the
2 d.f. device. Now, we want to go further, to assess the result that may be obtained
by combining these two modes of control. We shall therefore implement a three-
state discrete control, where the PTO can be alternatively latched, operating or
declutched (we use LOD control as an abbreviation).
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Hence, we have defined a three-stage controller, depending on the combinations
of the value of the control variables u1 and u2:

— when u1 = 1, irrespective of the value of u2, the system is latched;
— when u1 = 0 and u2 = 0, the system is operating; and
— when u1 = 0 and u2 = 1, the system is declutched.

The optimal command method is again used to solve for the determination of
the switching times in the time-domain simulation.

Let X = ( x1 x2 x3 x4 G b2 I1 ... IN )T be the new state vector, with x3 = ẋ1 and
x4 = ẋ2. One can rewrite the equation of motion as a standard state equation,

Ẋ = f(t, X, u), (2.33)

with

f(t, X, u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3
x4

M−1
(

Fex − k1x1 − ∑N
j=0 Ij

−(b2 + G(m2 + m∞)x4 − k2x2

)
1
t latching

(u1G0 − G),

1
t PTO

(u2B0 − b2)

b1I1 + a1x3
...

bN IN + aN x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.34)

M−1 = 1
(m1 + minf )m2

(
m2 −m2

−m2 m1 + m2 + minf

)
(2.35)

and the initial conditions
X(0) = X0. (2.36)

The optimization problem is to maximize the energy extracted,

max
u

E =
∫T

0
b2ẋ2

4 dt. (2.37)

Now define the Hamiltonian

H = b2ẋ2
4 + lt f, (2.38)

where l ∈ R
N+6 is the adjoint state vector. l is the solution of the set of adjoint

differential equations

l̇i = − vH

vXi
(X, u), (2.39)

with the final condition l(T ) = 0.
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Using equations (2.34) and (2.40), one can show that the Hamiltonian is linear
in u,

H(t) = h(X, l) + u1l5 + u2l6. (2.40)

Hence, the switching instants will be determined by the signs of the adjoint
states l5 and l6, and we again have a bang-bang control defined by the protocol

u1 =
{
1, if l5 ≥ 0,
0, if l5 < 0,

(2.41)

and

u2 =
{
1, if l6 ≥ 0,
0, if l6 < 0.

(2.42)

Since the iterative process includes forward and backward integration of (2.34)
and (2.39), which are used to determine the optimal latching control law,
knowledge of the excitation force during the complete duration of the simulation,
up to the final instant T , is required. The decision to latch or declutch the body at
a current time t then depends on the future of the system beyond t, which means
that this process is anti-causal. Its practical implementation in the real world
requires some wave prediction, or necessitates the adoption of sub-optimal causal
algorithms for calculating the control law online. These issues are not addressed
here, since the aim of this study is simply to assess the ability of the discrete
LOD control to increase energy production.

(f ) Latched–operating–declutched control in regular waves

A comparison of the results of time-domain simulations of the motion without
control, with latching control, with declutching control and finally, with LOD
control is plotted in figure 10. The period of the incident wave is 10 s and its
height is 1 m, with the damping coefficient b2 set to 10000 N m−1 s−1. The latching
coefficient is G0 = 80 and the time constants for the PTO and the latching are
tPTO = tlatching = 0.1 s. The control is activated at t = 40 s.

In this example, both latching and LOD control increase the energy production
in comparison with the case without control (2.5 kW), whereas the declutching
control does not bring any improvement. When the steady state is reached, the
mean power produced with LOD control (61.7 kW) is considerably higher than
with latching control (23.5 kW). The power is measured here as the slope of
the bottom curve: energy versus time. The increase in the amplitude of the
relative motion x2 (the ‘working’ d.f.) with LOD control is also spectacular in
comparison with the other control strategies. This is one of the major findings
of this study: the combination of latching and declutching control together can
give far better results than each one used separately. The price to pay is that the
duration of the transient period between the activation of the control (40 s) and
the establishment of the steady state (approx. 220 s) is longer with LOD control
than with latching control.

It was shown in Babarit & Clément [9] that the weak modelling of latching
control we use here (i.e. a large but not infinite damping force) has more
influence on the computed amplitude of the system response, than on the mean
absorbed power. Figure 11 shows that the closer we are to absolute latching (the
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Figure 10. (a–d) Simulations of the response of the 2 d.f. wave energy device in regular waves;
under latching control, declutching control or latched–operating–declutched control. Wave period
T = 10 s; wave height H = 1 m. (e) evolution of the total extracted energy versus time.

highest value of G0), the larger is the computed power absorbed. However, as the
dynamical system becomes stiffer and stiffer, it requires a very short time step in
order to keep the numerical time integration scheme stable. Hence, a reasonable
value of 80 was assigned to G0 in the following.

To take into account the delay between the time the controller decides to apply
a control and the time the actuators physically apply the control, we introduce
the time constants tlatching and tPTO on the latching coefficient G and on the
PTO damping coefficient b2, respectively. Figure 12 shows the motion and the
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Figure 11. (a–d) Simulations of the response of the 2 d.f. wave energy device under latched–
operating–declutched control, with different values of the latching damping G0. Incident wave
period T = 10 s; wave height H = 1 m.

energy production we get under LOD control, using different values for the time
constants. Again, better results are obtained as we tend towards absolute discrete
control: the shorter the time constant, the better the energy production.

Time-domain simulations were performed for a set of periods of the regular
incident waves in the range (5–15 s) in order to establish the power performance
curves of the 2 d.f. system under the three discrete control modes: latching;
declutching; and LOD (here G0 was set to 80, B0 to 10 000, and tlatching and
tPTO to 0.05). Figure 13 shows the power produced in each mode, measured in the
time-domain simulation, when the steady-state regime is established. For the sake
of comparison, the theoretical maximum achievable with such an axisymmetric
device is also plotted for each wave period, as a reference.

As could be expected, the response without control features two peaks
associated with each resonance mode of this bi-oscillator device. One can see
that all three controls considered are able to increase the energy absorption
for certain wave periods. With the chosen set of coefficients, declutching
control seems beneficial mostly around the two natural frequencies of the
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Figure 13. Power curves of the 2 d.f. wave energy device in regular waves under the three discrete
control strategies (thick line, without control; right-facing triangles, latching; thin line, theoretical
maximum; diamonds, declutching; squares, latched–operating–declutched).

system, amplifying the peak responses. Latching gives good results in the low-
frequency range, as expected, but also between the peaks. The most interesting
results on figure 13 are those associated with LOD control; it gives better
energy absorption than the sum of the energy absorbed with latching control
and the energy absorbed with declutching control, giving energy absorption
at the theoretical maximum over a large range of wave periods. As shown
by the detailed example of figure 10, combining the declutching and latching
strategies seems to boost the performance of latching, while declutching alone
brings no improvement, as for T > 9 s in figure 13. These conclusions can be
extended for other values of the system parameters (G0, B0), not shown here
for brevity.
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Figure 14. (a–d) Response of the 2 d.f. wave energy device with latched–operating–declutched in
random waves. Peak period of the wavetrain Tp = 10 s; significant wave height Hs = 2 m. Power
take-off damping coefficient B0 = 50 kN m−1 s−1 (dashed lines, without control; solid lines, with
latched–operating–declutched control).

(g) Latched–operating–declutched control in irregular waves

Finally, a set of time-domain simulations were performed in random wave
conditions, in sequences of 600 s, each one defined by its peak period Tp and its
wave height Hs, according to a spectral density following the Pierson–Moskowitz
law. The three discrete control strategies were tested for each run. The control
sequence was determined by the optimal command methodology exposed above,
which means that the control is optimal but not causal, and needs the whole
sequence (600 s) of the wave excitation to be computed at each time step.

Figure 14 shows the results of a run with peak period Tp = 10 s and
significant wave height Hs = 2 m. The PTO damping coefficient was set to
B0 = 50 kN m−1 s−1.

In this example, the absorbed power is multiplied by a factor 5.2, from 15.5 kW
without control to 78 kW with LOD control. One can see that, in addition to the
increase of energy absorption due to LOD control, there is also a large increase in
the response of the system, with an amplification of the maximum amplitude of
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Figure 15. (a–d) Power function of the 2 d.f. wave energy converter versus peak period Tp in random
waves, under latching, declutching or latched–operating–declutched control with four values of the
power take-off damping B0. Significant wave height Hs = 2 m (solid lines, no control; diamonds,
declutching; right-facing triangles, latching; squares, latched–operating–declutched).

the motion by a factor 2 for x1 and by a factor of 10 for x2. The amplitude of the
inner moving mass reaches almost 20 m, and would indeed be meaningless within
the present context of linear theory, the total draught of the buoy considered here
being only 10 m. Constraints on the amplitude of the motion should be taken into
account in any serious application study.
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Figure 15 shows the power absorbed by the system with and without control in
random waves. Each dot on this figure corresponds to the mean power absorbed by
the system during a 600 s time-domain simulation of the motion. The significant
wave height was 2 m in all runs. Time constants for the controller were set equal
to 0.05 s, and G0 was set equal to G0 = 80.

Results are noisy owing to the fact that, for each sequence of irregular incident
waves, the phases of the components are set randomly, and each sample is of finite
duration. According to standard statistical theory implicitly assumed here, this
scattering could be avoided by repeating each run a large number of times and
averaging, or by extending the simulation time to infinity. However, the results
given in this figure are globally similar and confirm the behaviour observed in the
case of regular waves:

— whatever the peak period of the spectrum, the three discrete control
strategies are able to increase the energy production in comparison with
the reference case without control;

— declutching control works better with large values of the PTO damping
coefficient B0, whereas latching control works better with small values; and

— LOD control is the control strategy that leads to the largest increase
in energy absorption, with gains up to 500 per cent. Moreover, LOD
control seems to be relatively insensitive to the value of the PTO damping
coefficient, even if large values of it seem to marginally improve the amount
of absorbed energy.

3. Conclusion

In this study, three strategies of discrete control, applied at the PTO level
to oscillating wave energy devices, were presented. The most famous of them,
latching control introduced by Budal & Falnes [22] in the early 1980s, was shown
to be beneficial not only for long wave periods beyond the natural period of
the floating body, but also for shorter waves in sub-harmonic modes, and in
irregular waves.

Declutching control, which was proposed more recently, mainly for hydraulic
PTOs, is also efficient, especially with large values of the PTO damping
coefficient, which is the opposite trend compared with latching.

The three-state control strategy (LOD), consisting of combining these two
individual modes, appeared to give far better results then each one individually. It
seems that declutching control enhances the power of latching in this combination,
especially for long waves, and its performance is less sensitive to the PTO damping
coefficient.

The results have been shown to be always better when the discrete control
is absolute, switching instantaneously from one model to the other. However,
modelling of the transients by suitable time constants have shown that the
performances are only slightly affected, with reasonable values of them.

These conclusions were established not only for a single oscillator system, but
also for a bi-oscillator harnessing its relative motion; this was not so evident
when we began the study. We have shown, in recent unpublished extensions of
this work, that LOD control is also superior when applied to the SEAREV device
which is a 7 d.f. wave energy device, with four of them being resonant.
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Nevertheless, one should keep in mind that, owing to the methods applied
here, we have demonstrated only the potential of these discrete control strategies,
but not the way to implement them in the real world. The method of
Hamilton–Pontryagin, as used here, requires knowledge of the future of the
excitation, and is therefore not causal. The development of causal control
algorithms, necessarily sub-optimal, is still an open challenge in which we are
engaged.

The authors wish to express their warm thanks to Prof. F. Farley for his enthusiastic support and
invitation, and Prof. J. Ringwood for his helpful comments at the editorial stage.
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