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The goal of this paper is to derive expressions for the pressure forces and moments
acting on an elongated body swimming in a quiescent fluid. The body is modelled as
an inextensible and unshearable (Kirchhoff) beam, whose cross-sections are elliptic,
undergoing prescribed deformations, consisting of yaw and pitch bending. The
surrounding fluid is assumed to be inviscid, and irrotational everywhere, except in a
thin vortical wake. The Laplace equation and the corresponding Neumann boundary
conditions are first written in terms of the body coordinates of a beam treating the
body as a fixed surface. They are then simplified according to the slenderness of the
body and its kinematics. Because the equations are linear, the velocity potential is
sought as a sum of two terms which are linked respectively to the axial movements of
the beam and to its lateral movements. The lateral component of the velocity potential
is decomposed further into two sub-components, in order to exhibit explicitly the
role of the two-dimensional potential flow produced by the lateral motion of the
cross-section, and the role played by the curvature effects of the beam on the cross-
sectional flow. The pressure, which is given by Bernoulli’s equation, is integrated along
the body surface, and the expressions for the resultant and the moment are derived
analytically. Thereafter, the validity of the force and moment obtained analytically is
checked by comparisons with Navier–Stokes simulations (using Reynolds-averaged
Navier–Stokes equations), and relatively good agreements are observed.

Key words: swimming/flying

1. Introduction

The understanding of the mechanism of propulsion or, more precisely, the
determination of the force and the moment experienced by a swimming slender fish
has been a challenging topic for several decades. This problem has many fundamental
aspects not only for fluid mechanicians but also for other scientific communities
such as biologists or bio-inspired roboticians. As a result, the literature in this
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area is extensive and we shall not attempt a detailed review here. The interested
reader can find numerous theoretical, experimental or numerical reviews that analyse
the hydrodynamics of swimming fish such as Sfakiotakis, Lane & Davies (1999),
Triantafyllou, Triantafyllou & Yue (2000), Sparenberg (2002), Colgate & Lynch
(2004) or Blake (2004).

At first sight, the modelling of undulatory fish motion looks rather complex, if
not insoluble, due to major difficulties that must be overcome in order to develop a
comprehensive theory. This probably explains why many researchers working on the
topic have chosen to focus their attention on the wake generated by the swimming
fish and, in particular, on the shed vorticity. This indeed is probably a promising
way to provide, one day, a theory that combines both resistive (viscous) and reactive
(pressure) effects. In particular, numerous studies tend to demonstrate that the high
performance of swimming fish, in terms of efficiency and manoeuvrability, lies in
their ability to control, through their body shape, the large-scale vortices shed in
their wake (Wolfgang 1999; Triantafyllou et al. 2000; Zhu et al. 2002). Owing
to the continuous improvement in computational fluid dynamics methods, these
phenomena have recently been extensively investigated (Kern & Koumoutsakos 2006;
Eldredge 2008) which enables more accurate and complex simulations. As a necessary
complement to these numerical approaches, experimental works using the particle-
image velocimetry (PIV) method (Muller, Stamhuis & Videler 2000) have emphasized
the complex interactions of bound and tail vortices in the wake of swimming fish.

Nevertheless, when fast calculations are needed, such as when using the model
for the on-line control of fish-like robots, full numerical approaches are still not well
adapted as they are time-consuming. Therefore, finding accurate analytical expressions
for the force and the moment acting on a moving and deformable body is still a
challenging task for fluid mechanicians (see for instance the recent contributions of
Kanso et al 2005; Kanso 2009; Munnier 2009). Historically, seminal contributions in
the range of high Reynolds numbers were made by Wu (1961) and Lighthill (1960).
The first, due to Wu (1961), is based on the undulating infinite height plate, while the
second, due to Lighthill (1960), is an extension of the classical slender-body theory (see
for instance Batchelor 1967, § 6.9), called the elongated-body theory (EBT). In both
cases, the fluid is inviscid and the modelling takes advantage of the characteristics of
fish geometry in order to approximate the three-dimensional (3D) flow around the
fish body by a stratification (horizontal in the first case and vertical in the second)
of planar potential flows. In particular, in the EBT, it is considered that for each
transverse slice of a fish, the lateral flow corresponds to the potential flow produced
by the movement of an infinite cylinder of the same cross-section.

Since then, many improvements in the EBT have been proposed by several authors.
For instance, Newman & Wu (1973) and Newman (1973) took into account the effects
of the body fin on the pressure resultant while Lighthill (1970) proposed an extension
of the EBT, called the large-amplitude elongated-body theory (hereinafter LAEBT)
in order to account for large amplitude motions.

This theory remains one of the basic results of biofluiddynamics, valuable for
deriving estimates of the force acting on a swimming body (Weihs 1972, 1973 or
Lighthill 1975) or fast simulation and control in robotics (Boyer et al. 2008).

However, in recent years, this theory has become a topic for discussion among fluid
mechanicians. In particular, numerical studies have shown that in each transverse
slice of a fish, the flow differs significantly from the potential flow produced by
the movement of an infinite cylinder of the same cross-section (Wolfgang 1999;
Triantafyllou et al. 2000). Therefore, the objectives of this paper are twofold: to
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Figure 1. Sketch of the transformation.

provide a better understanding of the physical reality of the flow underlying the
LAEBT and to generalize this theory to 3D swimming, including a possible rotation
(roll) of the body around its vertebral axis.

To do this, we propose, following Lighthill (1960), to determine analytically (at
leading order) the velocity potential of the fluid surrounding the body, and then, to
calculate directly the resultant (and here the moment) of the pressure forces exerted
by the flow at its surface. As in the LAEBT, the elongated body considered here is
made up of elliptic transverse sections whose size may vary along the body, which
has no appendices. Its 3D movements are provided by prescribing an internal pitch
bending in addition to the yaw motion required by planar swimming. Note that to
carry out this calculation, it is essential to change the coordinates so that the body
becomes a fixed surface. Usually, when we are concerned with a deformable body
moving in an inviscid fluid, the classical approach is to measure the deformation
fields from a mobile (floating) frame that follows the rigid motion of the body, using
Kirchhoff potentials method (Galper & Miloh 1995, 1999). However, in the present
investigation, we have chosen to make use of a different transformation, written in
an inertial frame, which relies on a nonlinear beam theory introduced by Simo &
Vu-Locq (1988), and said to be geometrically exact. This transformation is presented
in § 2, and after that it is applied to the equations governing the flow around the
body. Section 3 is devoted to the explicit calculation of the pressure resultant and
moment exerted by the fluid on the body and the results are compared with numerical
simulations in § 4. Finally, in § 5, the results are discussed.

2. Transformation of coordinates

2.1. The body model

The transformation of coordinates used in this investigation is inspired by those
proposed by Reissner (1973) and Simo & Vu-Locq (1988). Let R0 = (o, e1, e2, e3) be
the laboratory reference frame. Without losing generality, it may be assumed that,
at the initial time, the body experiences no deformations, as shown in figure 1(a),
the idea being to introduce a transformation that links the current position of the
body to its initial position. Note that in the following, vectors which refer to the
initial position will be written upper case, while lower case is used for vectors
which refer to the current position. Owing to the elongated geometry of the slender
body, it can be considered as a Kirchhoff (Cosserat) beam B, i.e. a one-dimensional
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continuum of rigid cross-sections (here elliptic) along a curve (here the backbone).
Let Fb =(O, E1, E2, E3) be a Cartesian (body) frame attached to the reference
(initial) configuration, in which the beam is assumed to be straight and aligned along
(O, E1). As we can see in figure 1(a), XE1 is the position of any cross-section’s centre
G(X, T = 0), so that any rigid section can be labelled only by its axial coordinate X

and therefore denoted by SX .
Thereafter, when the body is moving, a continuous set of moving orthonormal

frames Fm(X, T ) = (G, t1, t2, t3) are attached to each cross-section, such that t1(X, T )
is the outward unit normal of the section as represented in figure 1(b). According to
this parametrization, any material point, located at x, belonging to the body during
an admissible motion is related to its initial position by the following one-to-one
mapping:

x = r(X, T ) + x⊥, (2.1)

where x⊥ = R(X, T ) · X⊥. Here, r is the position vector of G(X, t) in the laboratory
frame (located initially at XE1), R(X, t) is a rotation operator (i.e. R

T = R
−1) mapping

(E1, E2, E3) onto (t1, t2, t3), while if X = XE1 +Y E1 +ZE3 is the position vector of a
material point in the reference configuration, then X⊥ = X −XE1 and x⊥ correspond,
respectively, to the position of the same point relative to the backbone in the reference
and the deformed configuration. According to (2.1), the velocity field of any material
point belonging to the body is entirely specified by two fields that depend only on
(X, T ),

v =
∂ r

∂T
+ ω × x⊥, (2.2)

the first field corresponding to the linear velocities of the mass centres of the rigid
cross-sections (initially located at X),

∂ r

∂T
= VX t1 + VY t2 + VZ t3, (2.3)

and the second to their angular velocities,

ω = ΩX t1 + ΩY t2 + ΩZ t3. (2.4)

Note that the angular velocity field is linked to the tensor R by the following relation:

ω × y =

(

∂R

∂T
· R

T

)

· y � ω̂ · y, ∀ y, (2.5)

where the symbol � stands for ‘equal by definition’.
Similarly, in this approach, the strain state of the body is also totally specified by

two vector fields, also depending only on (X, T ), which correspond to the tangent
field of the material axis of the body B:

∂ r

∂X
, (2.6)

and to the torsion and curvature vector field of the sections:

k = KX t1 + KY t2 + KZ t3, (2.7)

which is also linked to R by the relation

k × y =

(

∂R

∂X
· R

T

)

· y � k̂ · y, ∀ y. (2.8)
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The frame field (G, t1, t2, t3) defined by the transformation proposed by Simo
(1988) is materially attached to the rigid cross-sections. In particular, the frame
(G, t1, t2, t3) differs significantly from the more usual Frenet frame, which is defined
only by the position of the centreline of the body since, in any circumstance, the
local frames (G, t1, t2, t3) are always principal inertial frames of the cross-sections.
Furthermore, the geometrically exact approach introduces a torsion field which is
not a geometrical quantity defined by the centreline only, but an actual torsion field
defined as a measure of the internal torsion strain state. Consequently, this material
torsion field (KX) is never singular, even when the centreline tends to be a straight
line, in contrast to the geometrical torsion field defined by the Frenet frame. Note
that, physically, the other components of k, that is KY and KZ , can be interpreted as
the inverse of the radius of curvature of the body in the planes (t1, t3) and (t1, t2),
respectively. If we now return to the swimming of a natural fish, the variables KY dX

and KZ dX are merely the two infinitesimal angles of rotation (standing for the pitch
and yaw rotations along the backbone) of an infinitesimal Cardan joint, which links
any pair of contiguous cross-sections together.

In what follows, KY and KZ are considered as time-dependent control inputs, which
entirely parametrize the body shapes. Since the elongated body of a vertebrate animal
admits no relative rotation of two contiguous vertebrae about the vertebral axis, it is
natural to impose that the torsion strain field satisfies

KX = 0. (2.9)

Strictly speaking, if we denote by K the order of approximation of KY and KZ and
by l the length of the body, the beam model presented here is valid only within the
limit

Kl � O(1), (2.10)

which nevertheless allows large deformations to be considered, as those experienced
by a swimming (manoeuvring) slender fish. In addition, it will be assumed that
the body is inextensible and sufficiently slender to be considered as unshearable.
Mathematically, these assumptions read

∂ r

∂X
= t1. (2.11)

According to (2.9) and (2.11), the body can be considered now as an untwistable and
inextensible Kirchhoff beam, and the corresponding gradient transformation tensor
reads

F(X) = R · U, (2.12)

where we recognize the polar decomposition which is valuable for any non-singular
transformation with U being the tensor of pure deformation, defined as

U =

⎛

⎝

1 + KY Z − KZY 0 0

0 1 0

0 0 1

⎞

⎠. (2.13)

In this context, the metric tensor of the transformation is given by

G = F
T

· F = U
T

· U, (2.14)

and in the following, we will also be often concerned with the term
√

|G| (where
| · | stands for the matrix determinant) which corresponds physically to a measure
of local volume dilatations and contractions generated by the transformation. Also,
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during the investigation, this analysis will be in a domain restricted to the vicinity of
the body, where KY Z ∼ KZY ≪ 1, so that we can write

√

|G| = 1 + KY Z − KZY, (2.15)

since there is no ambiguity about the sign of this term. So far, we have described a
transformation that links any current configuration of the body to its initial position.
In what follows, it is shown that this transformation also provides relevant information
about the kinematics of an inextensible and unshearable slender body.

2.2. Kinematics of an inextensible and linear beam-like body

When a slender body is moving, the orders of the velocities and the angular velocities
are linked together, according to the assumptions of inextensibility and unshearability.
Indeed, if we derive (2.11) with respect to T and also use the fact that derivatives
with respect to X and to T commute, it is simple to show that

∂

∂X

(

∂ r

∂T
· t i

)

=
∂ t1

∂T
· t i +

∂ r

∂T
·
∂ t i

∂X
for i = {1, 2, 3}. (2.16)

In addition, since we also have

∂ t i

∂T
= ω × t i and

∂ t i

∂X
= k × t i, (2.17)

then we obtain the following three relations:

∂VX

∂X
= KZVY − KY VZ, (2.18)

∂VY

∂X
= ΩZ − VXKZ, (2.19)

∂VZ

∂X
= −ΩY + VXKY . (2.20)

Similar relations can also be obtained for the angular velocities. Indeed, if we use
∂(RT

· R)/∂T = 0, together with the definition (2.5) of ω̂, then it becomes possible to
show that ∂R

T /∂T = − R
T

· ω̂, and subsequently, from the definition of k̂ (see (2.8)),
it follows that

∂ k̂

∂T
= ω̂ · k̂ − k̂ · ω̂ +

∂ω̂

∂X
. (2.21)

By writing (2.21) in terms of components and using (2.9), we obtain

∂ΩX

∂X
= KZΩY − KY ΩZ, (2.22)

∂ΩY

∂X
=

∂KY

∂T
− KZΩX, (2.23)

∂ΩZ

∂X
=

∂KZ

∂T
+ KY ΩX. (2.24)

As we can see, (2.18)–(2.20) and (2.22)–(2.24) provide us with ideas about the relative
order of the derivatives with respect to X of the components of the linear and
angular velocities of an inextensible and unshearable slender body. In particular, if
we denote by V the order of the different components of the translational velocity
(i.e. V ∼ VX ∼ VY ∼ VZ) and by Ω⊥ the order of ΩY and ΩZ , then, according to (2.19),
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(2.20) and (2.10), we see that

αΩ⊥
V

� O(ε), where ε =
α

l
≪ 1, (2.25)

and α stands for the typical length scale of the cross-sections. This result will be used
in what follows.

2.3. Velocity potential equations in terms of the body coordinates

In this problem, the surrounding fluid is assumed to be inviscid, and the flow to be
irrotational everywhere except in a thin vortical wake which occurs downstream of
the caudal fin and takes the form of a vortex sheet (at least just behind the trailing
edge). Note that in theory, it should be expected that this vortex sheet produces an
additional flow which can be determined by the Biot–Savart law. In particular, such
effects are taken into account when the inviscid fluid equations are solved with the
boundary element method (with the Kutta condition) (see Wolfgang 1999). In the
present investigation however, and in common with the original theory of Lighthill
(EBT), the pressure perturbation due to the wake-induced flow is expected to be
negligible, and as a consequence, once it is shed in the flow, the vorticity is later
ignored. In this condition, it is possible to limit the analytical investigation within a
domain located upstream of a flat surface π perpendicular to the caudal fin, without
specifying particular boundary conditions for the potential in this plane. Thus, if
φ denotes the velocity potential in this domain, its governing equations read, in a
reference frame in which the fluid far from the body is at rest, as

�φ( y, t) = 0, (2.26)

∇φ · n = v · n, on ∂B, (2.27)

∇φ → 0, | y − x| → ∞. (2.28)

Then, if the body transformation of coordinates presented in the previous section is
applied to (2.26) and (2.27), we obtain

∂

∂X

(

1
√

|G|
∂Φ

∂X

)

+
∂

∂Y

(

√

|G|∂Φ

∂Y

)

+
∂

∂Z

(

√

|G|∂Φ

∂Z

)

= 0 (2.29)

and

1

|G|
∂Φ

∂X
NX +

∂Φ

∂Y
NY +

∂Φ

∂Z
NZ =

1
√

|G|
(VX + ΩY Z − ΩZY )NX

+ (VY − ΩXZ)NY + (VZ + ΩXY )NZ. (2.30)

(Note that we have not written the transformation of (2.28) since it is not used
explicitly in the following.)

In order to analyse the order of the different terms occurring in (2.29) and (2.30),
we denote by N‖ the order of NX and by N⊥ the order of NY or NZ . Owing to the
slenderness of the body, we first have necessarily

N‖ ∼ εN⊥. (2.31)

Furthermore, since the typical length scale for Y and Z is given by α (at least in the
vicinity of the body) and because

Kα ∼ Klε, (2.32)
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we have
√

|G| ∼ 1 + Klε. (2.33)

In contrast with Y and Z, the typical length of the axial coordinates X is given
by l. As a result, in such a problem, variations of the variables with respect to X

are weak compared with those within the cross-sectional plane. (Roughly, it may be
considered that ∂/∂X ∼ 1/l, whereas ∂/∂Y ∼ ∂/∂Z ∼ 1/α). If we exploit this, as well
as the geometrical relations given by (2.31) and (2.33) and the kinematic relation
given by (2.25), then (2.29) and (2.30) can be simplified as follows:

∂2Φ

∂Y 2
+

∂2Φ

∂Z2
≃ KZ

∂Φ

∂Y
− KY

∂Φ

∂Z
, (2.34)

∂Φ

∂Y
NY +

∂Φ

∂Z
NZ ≃ VXNX + (VY − ΩXZ)NY + (VZ + ΩXY )NZ, (2.35)

where the terms that scale as o(ε2) compared with leading order terms have been
neglected. (Note that, for simplicity, ‘small’ terms scale as o(ε2) compared with leading
order.)

2.3.1. Decomposition of the velocity potential

If we now use the linearity of (2.34) and (2.35), the solution of these equations may
be sought in the form

Φ = Φ‖ + Φ⊥, (2.36)

where Φ‖ and Φ⊥ are solutions respectively of

∂2Φ‖
∂Y 2

+
∂2Φ‖
∂Z2

≃ 0, (2.37)

∂Φ‖
∂Y

NY +
∂Φ‖
∂Z

NZ ≃ VXNX, (2.38)

and
∂2Φ⊥
∂Y 2

+
∂2Φ⊥
∂Z2

≃ KZ

∂Φ⊥
∂Y

− KY

∂Φ⊥
∂Z

, (2.39)

∂Φ⊥
∂Y

NY +
∂Φ⊥
∂Z

NZ ≃ (VY − ΩXZ)NY + (VZ + ΩXY )NZ. (2.40)

Note that the right-hand-side terms of (2.37) can be neglected, since due to N‖ ∼ εN⊥,
Φ‖ scales like εαV . In this context, we also observe that the potential Φ‖ may be
interpreted as a pseudo slender-body-like potential, where the velocity VX varies along
X (in contrast with what happens when we deal with a classical rigid slender body),
whereas Φ⊥ accounts for the lateral motion and axial (roll) rotation of the body when
it is swimming.

With now the lateral component Φ⊥, a serious issue occurs, since the solution of
(2.39) is not easily achieved because of the non-zero right-hand side. Fortunately, this
difficulty can be circumvented if we use a perturbation method to determine Φ⊥, at
least at the order we are interested in. In the present investigation, according to (2.32),
the solution of (2.39) and (2.40) can indeed be sought in the form

Φ⊥ ≃ Φ0
⊥ + Φ1

⊥, (2.41)

where
Φ1

⊥
Φ0

⊥
∼ O(αK) (2.42)
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and Φ0
⊥ is the solution of (2.39)–(2.40), when KY = KZ = 0,  i .e.  Φ0

⊥ is the solution of

∂2Φ0
⊥

∂Y 2
+

∂2Φ0
⊥

∂Z2
= 0, (2.43)

with the boundary conditions

∂Φ0
⊥

∂Y
NY +

∂Φ0
⊥

∂Z
NZ = (VY − ΩXZ)NY + (VZ + ΩXY )NZ. (2.44)

Therefore, if we inject (2.41) into (2.39) and (2.40) and if the small terms are once
again neglected, then the equations governing Φ1

⊥ read

∂2Φ1
⊥

∂Y 2
+

∂2Φ1
⊥

∂Z2
= KZ

∂Φ0
⊥

∂Y
− KY

∂Φ0
⊥

∂Z
(2.45)

and
∂Φ1

⊥
∂Y

NY +
∂Φ1

⊥
∂Z

NZ = 0. (2.46)

Note that the explicit analytical expressions of Φ0
⊥ and Φ1

⊥ are needed in the following
to determine the pressure force and the moment acting on the body when it is
swimming. Their derivations are detailed in the Appendix. Instead, in what follows,
we illustrate the flow produced by each part of the velocity potential in typical
situations encountered in planar swimming.

2.4. Cross-sectional flow features

During the planar swimming of a slender fish, the propulsion is ensured by a wave
of deformation which travels the body, and whose amplitude increases gradually
from head to tail. Near the head, the curvature is often negligible and the lateral
velocities of the cross-sections are generally small compared with the axial velocity.
As a consequence, the lateral flow that is observed in such a cross-section is almost
only generated by Φ‖. Figure 2 shows the flow produced by a pure axial motion of
the slender body, in a normalized case where the axial velocity has been set equal to
−1, and where the dimensions of the elliptic cross-section of the body, whose major
and minor semi-axes denoted respectively α and β below, have been set equal to 1
and 0.5, and where ∂α/∂X = ∂β/∂X = 0.1. When the body moves axially, it pushes
the surrounding fluid laterally, as illustrated by the directions of the streamlines. Note
that the pattern of the streamlines can be qualitatively compared with reasonably
good agreement with the numerical results presented by Triantafyllou et al. (2000).

In contrast, near the tail, the local curvature of the body may become significant.
If it is assumed that the cross-sectional area is almost constant with respect to X (i.e.
NX =0), then the flow that takes place in a cross-section is, at this time, only produced
by Φ⊥. Figure 3 shows such a flow, again in a normalized case, where the lateral
velocity VZ has been set equal to 1 and the normalized curvature reads KY = 0.25. As
shown previously, this cross-sectional flow results from the sum of a two-dimensional
(2D) potential flow (Φ0

⊥) around an infinite cylinder, which is displayed in figure 4,
and a perturbation flow produced by Φ1

⊥, which is due to curvature effects of the
body on the flow, and is displayed in figure 5.

In order to better understand the physical origin of this perturbation flow, it is
worth recalling that by definition, the flow produced by the potential Φ0

⊥ is in a
direction perpendicular to the backbone. Let us therefore consider an infinitesimal
volume of control, surrounding the body surface and lying between the abscissa
X and X + dX and whose lateral sections remain perpendicular to the backbone
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Figure 3. Lateral flow in a cross-section produced by Φ⊥ (VZ = 1, KY = 0.25).

during the deformation of the body, as illustrated in figure 6. In this example, VZ > 0
and, since KY > 0, the surface of the volume corresponding to the entering fluid
is smaller than the surface corresponding to the outgoing fluid. Hence, according
to the continuity equation, the outgoing fluid velocity must be smaller than the
entering fluid velocity. Because the velocity produced by Φ0

⊥ is symmetrical, we see
therefore that an additional velocity (which is encoded in Φ1

⊥) must take place within
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Figure 4. Two-dimensional potential flow (NX = 0, VZ = 1).
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Figure 5. Flow produced by Φ1
⊥ (NX = 0, VZ = 1, KY = 0.25).

the cross-section, in order to satisfy the continuity equation. Also, we see that the
cross-sectional flow underlying the LAEBT is actually more rich than the 2D potential
flow produced by the movement of an infinite cylinder of the same cross-section
involved in the EBT. Note that the 2D potential flow and the perturbation flow are
both symmetrical, but the former is symmetrical in relation to the axis (G, t3) whereas
the latter is only symmetrical in relation to the axis (G, t2), and as a result, their
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Figure 6. Illustration of the body deformation effects on the flow.

sum is no longer symmetrical. Again, the typical patterns of the streamlines can be
qualitatively compared, with relatively good agreement, with the numerical results
presented by Triantafyllou et al. (2000).

So far, we have discussed the flow generated by the velocity potential Φ . In what
follows, it is shown that this potential is also consistent with the existence of a vortical
wake occurring downstream of the caudal fin of the body.

2.5. Vortex shedding

First of all, let us recall that to formulate the LAEBT, Lighthill (1975) considered
the rate of change of momentum within a volume of fluid enclosing the fish, whose
boundary at each instant includes a flat surface π (see figure 1). In this approach,
one of the main difficulties he had to overcome was to determine the resultant of
the pressures generated by the fluid motion within this caudal plane. As noted by
Lighthill (1970), a possible interpretation of this resultant rests on the existence of
a vortical wake which occurs downstream of the caudal fin. This idea was later
investigated by Childress (1981), who recovered the pressure resultant within the
caudal plane by considering the energy balance in a volume of control downstream
of the caudal fin that involved the wake energy. Childress (1981, p. 104) also provided
an analytical approach which gets around the Kutta condition by using Kelvin’s
circulation theorem to estimate the vorticity shed at the trailing edge. Following his
statements, if we denote as δΦ(Y ), the difference of the potential on either side of the
trailing edge, and at the same height of the cross-section (i.e. Y ), then when the body
moves forward, the two components of the shed vorticity read

γY = − 1

VX(l)

∂δΦ

∂T
and γX = −∂δΦ

∂Y
, (2.47)

where VX(l) corresponds to the axial velocity of the caudal fin (see figure 7). From
a practical point of view, a sharp trailing edge is nothing but an elliptic cross-
section whose minor semi-axis (i.e. β) tends to zero, and therefore, in terms of elliptic
coordinates (see the Appendix), the difference of the potential simply reads

δΦ = Φ(uX = 0, v) − Φ(uX = 0, 2π − v). (2.48)

According to the analytical solutions of Φ (see Appendix), together with when uX → 0,
the Cartesian coordinate Y is linked to the angular elliptic coordinate by the relation
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Y = α cos(v), and the difference of the velocity potential involved in this investigation
can be written in the form

δΦ =
√

α2 − Y 2

(

−2VZ +
α2ΩXKZ

6
−

(

ΩX +
VZKZ

2

)

Y − ΩXKZ

6
Y 2

)

. (2.49)

Strictly speaking, this analytical approach provides only a model of the shed vorticity,
and the actual vortical wake is probably extremely complex. Nevertheless, in order
to further illustrate the flow underlying the LAEBT theory, let us assume that
immediately downstream of the trailing edge, the wake is defined by a material
surface of frozen vortex lines, forming a vortical sheet. Then, by extending the
curvilinear body coordinates (X, Y ) into the wake, the vorticity located at a distance
X from the trailing edge is linked to the time T taken by the caudal fin to travel this
distance by the following relation:

X(T ) − l =

∫ T

0

−VX(l) dτ. (2.50)

According to (2.49), if it is also assumed that the axial velocity VX(l) is constant and
the lateral velocity VZ(l) of the trailing edge is known as a time-dependent function,
it is possible to reconstruct the vorticity field in the wake. Figure 7 illustrates such
a field in a normalized case, corresponding to planar swimming and where we have
set arbitrarily VX(l) = −1 and VZ(l) = sin(T ). Note that, in reality, once shed into
the wake, such a sheet of vorticity is actually highly unstable and splits into vortex
rings (see for instance the numerical simulations presented by Kern & Koumoutsakos
2006).

3. Force and moment acting on the body

In terms of the body coordinates X, Y and Z, it can be shown that the force and
the moment acting on the beam are given by the following integrals:

f h =

∫

∂B
−P

√

|G|F−T
· N dS and mh =

∫ l

0

r × ∂ f h

∂X
dX + ch, (3.1)

13



where ch corresponds to the integration of the density of the hydrodynamic couple
applied to the beam per unit of length

ch =

∫

∂B
−P X⊥ ×

(
√

|G|F−T
· N

)

dS, (3.2)

and where the pressure reads

P (X, T ) − P∞ = −ρ

(

∂Φ

∂T
−

(

U
−1

· R
T

·

(

∂ r

∂T
+ ω × x⊥

))

· ∇XΦ

)

− ρ

2
(∇XΦ) · (G−1

· ∇XΦ). (3.3)

In (3.3), if small terms are neglected, the pressure can be reorganized as follows:

P − P∞

≃ ρ

[

−∂Φ0
⊥

∂T
+ (VY − ΩXZ)

∂Φ0
⊥

∂Y
+ (VZ + ΩXY )

∂Φ0
⊥

∂Z
− 1

2

(

∂Φ0
⊥

∂Y

)2

− 1

2

(

∂Φ0
⊥

∂Z

)2
]

+ ρ

[

−
∂Φ0

‖
∂T

+ VX

∂Φ0
⊥

∂X
+

(

VY − ΩXZ − ∂Φ0
⊥

∂Y

)

∂Φ‖
∂Y

+

(

VZ + ΩXY − ∂Φ0
⊥

∂Z

)

∂Φ‖
∂Z

]

+ ρ

[

−∂Φ1
⊥

∂T
+

(

VY − ΩXZ − ∂Φ0
⊥

∂Y

)

∂Φ1
⊥

∂Y
+

(

VZ + ΩXY − ∂Φ0
⊥

∂Z

)

∂Φ1
⊥

∂Z

]

,

(3.4)

which we write as P − P∞ = P0 + P1 + P2. Note that, physically, P0 corresponds to
the unsteady pressure distribution that would act on a moving infinite cylinder of
the same cross-section, and clearly, this part is the leading-order part of the pressure
acting on the body. Here P1 is the pressure correction brought by the coupling
between the potentials Φ‖ (linked to the axial motion of the body) and Φ0

⊥, whereas
P2 is another correction which corresponds to the coupling between the potentials
Φ1

⊥ (encoding the curvature effects of the body on the fluid) and Φ0
⊥. In practice, it

can be shown that
P1

P0

= O(ε) and
P2

P0

= O(Klε). (3.5)

3.1. The pressure resultant

We now return to the first integral given in (3.1). By using (2.12) and (2.13) together
with t i = R · Ei , it is possible to show that

√

|G|F−T
· N = NX t1 +

√

|G|NY t2 +
√

|G|NZ t3 (3.6)

and, since NY dS = dZ dX and NZ dS = −dY dX, the force acting on the body is given
by

f h =

∫

∂B
−P t1NXdS +

∫ l

0

{∮

CX

−P
√

|G|t2 dZ −
∮

CX

−P
√

|G|t3 dY

}

dX, (3.7)

where CX stands for the contour of the cross-section located at X. In the present
investigation, if we remember that N‖ ∼ εN⊥, and according to (3.5), (3.7) can be
simplified by neglecting the integrals involving the terms P1 NX and P2 NX , since they
are not consistent with our level of approximation. Thus, if we consider only the
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terms that bring a non-negligible contribution, we obtain

f h =

∫

∂B
−P0 t1NX dS +

∫ l

0

{∮

CX

−P0 t2 dZ −
∮

CX

−P0 t3 dY

}

dX

+

∫ l

0

{∮

CX

−P1 t2 dZ −
∮

CX

−P1 t3 dY

}

dX

+

∫ l

0

{∮

CX

−P2 t2 dZ −
∮

CX

−P2 t3 dY

}

dX

+

∫ l

0

{∮

CX

−P0(KY Z − KZY ) dZ t2 −
∮

CX

−P0(KY Z − KZY ) dY t3

}

dX,

(3.8)

which we write as f h = f h1 + f h2 + f h3 + f h4 + f h5. Actually, the first integral of
(3.8) can be rewritten in such a manner that global force can also be written in the
form

f h =

∫ l

0

5
∑

i=1

∂ f hi

∂X
dX, (3.9)

where the integrand corresponds to the local cross-sectional loading acting on any
body surface lying between the sections located at X and X + dX (see figure 8).
Physically, it may be interesting to emphasize the following.

(i) Here ∂ f h1/∂X is the only axial part of the force density. This term occurs only
if the section varies with respect to X. Indeed, in this case, the axial component NX

is not null, and since it is coupled with P0 (leading order), we obtain a small term of
first order that must be taken into account.

(ii) Note that ∂ f h2/∂X is the lateral force density corresponding to the unsteady
motion of an infinite cylinder of the same cross-section.

(iii) Also, ∂ f h3/∂X is the force density produced by the coupling between Φ‖ and
Φ0

⊥, that is between the axial motion of a slender-like body whose cross-section varies
along X and the lateral motion of the body. Note that such a coupling results from
the nonlinearity of the Bernoulli equation.

(iv) In addition, ∂ f h4/∂X is the force density produced by the coupling between the
lateral 2D potential Φ0

⊥ and the perturbation potential Φ1
⊥. This term is a consequence

of the curvature effects on the surrounding flow.
(v) Note also that ∂ f h5/∂X is the force density produced by the stretching of the

body surface which is exposed to the pressure P0. This term is also a consequence of
the curvature effects, but this time on the body.
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For the sake of clarity, the detailed derivations of these five components are not
given here, and the resulting expression will be written directly. For an elliptic cross-
section (whose major and minor semi-axes are α and β , respectively) the added-mass
coefficients read (Milne-Thomson 1968)

MY = ρπβ2, MZ = ρπα2, MX = ρπ

(α2 − β2)2

8
, (3.10)

respectively, and these coefficients are also involved in the density of linear fluid
momentum expression

pf = PY t2 + PZ t3, (3.11)

where PY = MY VY and PZ =MZVZ . According to these notations, the five force
densities described previously read

∂ f h1

∂X
= −1

2

(

dMY

dX
V 2

Y +
dMY

dX
V 2

Z +
dMX

dX
Ω2

X

)

t1, (3.12)

∂ f h2

∂X
= −

(

∂PY

∂T
t2 +

∂PZ

∂T
t3

)

− ΩX t1 × pf , (3.13)

∂ f h3

∂X
= VX

(

∂PY

∂X
t2 +

∂PZ

∂X
t3

)

, (3.14)

∂ f h4

∂X
≃ +

1

2

βMX

α + β

∂KY ΩX t2

∂T
+

1

2

αMX

α + β

∂KZΩX t3

∂T
+ Tf

∂ t1

∂X
(3.15)

and

∂ f h5

∂X
= − β2MX

α2 − β2

∂KY ΩX t2

∂T
+

α2MX

α2 − β2

∂KZΩX t3

∂T
+

(

∂VX

∂X

)

pf − 2Tf

∂ t1

∂X
. (3.16)

We now focus on the combinations that are possible between these five equations,
in order to simplify the final expression of the force. First, by summing f h2 and f h3,
we obtain

f h2 + f h3 =

∫ l

0

[

−
(

∂PY

∂T
− VX

∂PY

∂X

)

t2 −
(

∂PZ

∂T
− VX

∂PZ

∂X

)

t3 − ΩX t1 × pf

]

dX.

(3.17)

Moreover, by using (2.17), (2.19) and (2.20), it is possible to show that

∂ t2

∂T
− VX

∂ t2

∂X
= −∂VY

∂X
t1 + ΩX t1 × t2, (3.18)

and
∂ t3

∂T
− VX

∂ t3

∂X
= −∂VZ

∂X
t1 + ΩX t1 × t3, (3.19)

and therefore, it follows that

f h2 + f h3 =

∫ l

0

[

−
(

∂ pf

∂T
− VX

∂ pf

∂X

)

−
(

PY

∂VY

∂X
+ PZ

∂VZ

∂X

)

t1

]

dX. (3.20)

Now, if we sum f h1 and f h2 + f h3 and note that

−
(

PY

∂VY

∂X
+ PZ

∂VZ

∂X

)

− 1

2

(

dMY

dX
V 2

Y +
dMZ

dX
V 2

Z +
dMX

dX
Ω2

X

)

≃ −∂Tf

∂X
, (3.21)
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since the term MXΩX∂ΩX/∂X is negligible, as we can see by (2.22), then we obtain

f h1 + f h2 + f h3 ≃
∫ l

0

−
(

∂ pf

∂T
− VX

∂ pf

∂X

)

− ∂Tf

∂X
t1 dX. (3.22)

This partial result actually corresponds to the force that would be obtained if we
had considered only the 2D potential flow Φ0

⊥ (and its coupling with Φ‖), which
results from the movement of an infinite cylinder whose cross-section is SX , without
taking into account the effect of the curvature on the cross-sectional flow (given by
Φ1

⊥) nor the deformation of the body surface. In other words, (3.22) corresponds to a
3D extension of the EBT proposed by Lighthill (1960). This result therefore provides
us with the pressure force acting on the body when the deformations of the swimming
body are small, that is, when Kl ≪ O(1).

As to the part of the force coming from curvature effects, which must be taken into
account when the deformations of the body are no longer negligible (i.e. Kl ∼ O(1)),
it is given by

f h4 + f h5 =

∫ l

0

(

∂VX

∂X

)

pf − Tf

∂ t1

∂X
+ MXY

∂KY ΩX t2

∂T
+ MXZ

∂KZΩX t3

∂T
dX, (3.23)

where we have introduced, for simplicity, the coefficients

MXY = ρ
πβ(α2 − β2)(α − 3β)

16
and MXZ = ρ

πα(α2 − β2)(3α − β)

16
. (3.24)

Now, if we combine (3.22) and (3.23), we finally obtain the expression

f h =

∫ l

0

−∂ pf

∂T
+

∂VX pf

∂X
− ∂Tf t1

∂X
dX +

∫ l

0

MXY

∂KY ΩX t2

∂T
+ MXZ

∂KZΩX t3

∂T
dX,

(3.25)

where it turns out that the part of the force due to curvature effects, that is (3.23),
brings exactly what is necessary to introduce VX and t1 into the derivatives with
respect to X in the different terms of (3.22). As we can see, therefore, the first integral
of (3.25) rigorously corresponds to the 3D extension of the LAEBT of Lighthill
(1970), whereas the second integral accounts for a possible coupling between the roll
and the body curvature.

Note that, for clarity, the main steps of the derivation of the final result are
summarized in figure 9.

3.2. The moment of hydrodynamic forces acting on the body

So far, we have been interested in the pressure resultant but in order to determine
totally the dynamics of the body (in particular for 3D swimming), it is also necessary
to calculate the moment of forces acting on it, which is given by the second part of
(3.1). As before, detailed derivations will not be given here, in order to simplify the
reading. Let us simply note that if we use a very similar approach as for the resultant,
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Figure 9. Diagram summarizing the main steps of the calculations leading to result (3.25).

then it can be shown that the moment acting on the body reads

mh = − ∂

∂T

∫ l

0

(σ f + r × pf ) dX + [VX(σ f + r × pf ) − r × Tf t1]
l
0

+
∂

∂T

∫ l

0

((MXY KY VY + MXZKZVZ) t1 + r × (MXY KY ΩX t2 + MXZKZΩX t3)) dX

+ [VY MXY ΩX t2 + VZMXZΩX t3]
l
0 +

∂

∂T

∫ l

0

(M̃ZVZ t2 − M̃Y VY t3) dX

+

∫ l

0

(

(MX − MXY )
∂VY

∂X
ΩX t2 + (MX − MXZ)

∂VZ

∂X
ΩX t3

)

dX,

(3.26)

where σ f =MXΩX t1 represents the density of the roll kinetic momentum per unit of
body length, r is the field of position on the backbone in relation to a reference point o

(see figure 1), and where we have introduced the new coefficients

M̃Y =
π

4
αβ

(

α
∂β

∂X
+ 3β

∂α

∂X

)

and M̃Z =
π

4
αβ

(

β
∂α

∂X
+ 3α

∂β

∂X

)

, (3.27)

which scale like O(ε) compared with the classical added-mass coefficients. Note that
concerning the moment, the physical origin of the different terms could be also
identified as has been done previously for the cross-sectional forces, but it turns
out that its expression does not benefit from the same fortunate arrangements, and
therefore, we will not discuss this point further.
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Figure 10. View of the body and the mesh around it.

4. Comparisons with numerical results

4.1. Description of the numerical solver

In order to check the validity of the fluid force model obtained previously, simulations
using an incompressible unsteady Reynolds-averaged Navier–Stokes (RANS) solver
are carried out. The in-house solver ISIS-CFD, developed at the Laboratory of Fluid
Mechanics at Ecole Centrale Nantes, has been used for this task. The interested reader
can find details of the numerical methodology in Leroyer & Visonneau (2005). In
brief, this approach performs numerical simulation of the RANS equations which are
integrated by means of a second-order-accurate finite volume method. The velocity
field is obtained from the momentum conservation equations and the pressure field
is extracted from the mass conservation constraint or continuity equation, which is
transformed into a pressure equation. Also, in the case of turbulent flows, additional
transport equations for modelled variables are solved in a form similar to the
momentum equations. Finally, in order to deal with moving bodies, an arbitrary
Lagrangian–Eulerian (ALE) approach is used. It is associated with grid deformation
techniques to keep the mesh fitted to the body, as its shape varies. The positioning of
the body in space is then obtained using a rigid motion of this deformed mesh.

The mesh here is composed of 120 000 cells spread in a block-structured grid (see
figures 10 and 11).

4.2. General settings: shape of the body and physical parameters

Figure 10 shows the body geometry used in these simulations. It is composed of
elliptical cross-sections obtained with the following process. The shape is first defined
as a cylinder of diameter D =0.1 l for any X ∈ [0.05 l, 0.99 l], ended with two half-
ellipsoids between X = [0, 0.05 l] and X = [0.99 l, l]. Then, for any cross-section, the
major axis (along E2) is multiplied by κ2(X), and its minor axis (along E3) by κ3(X),
where κ2 and κ3 are two functions defined by

κ2(X) = 1, for 0 � X < 0.2 l, (4.1)

κ2(X) = 1 − sin(πX̃ − π/2) + 1

5
, for 0.2 l � X < 0.75 l, with X̃ =

X − 0.2 l

0.75 l − 0.2 l
,

(4.2)
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Figure 11. Global view of the fluid domain.

κ2(X) =
3

5
, for 0.75 l � X < 1, (4.3)

κ3(X) = −1

6

[

sin
(

πX − π

2

)

+ 1
]

− X2

8
+

1

2
, for 0 � X < l. (4.4)

Here, the total length l of the fish is set to 1 m. As far as the fluid is concerned, the
density and the dynamic viscosity are respectively set to 1000 kg m−3 and 0.001 Pa s,
similar to the properties of water.

4.3. Numerical experimentations and comparisons with theoretical results

As mentioned previously, the goal of these numerical simulations is to compare
the body forces and moments given by (3.25) and (3.26) with those given by the
Navier–Stokes simulation (using RANS equations). These comparisons are carried
out by prescribing given motions of the body and by observing the resulting forces
and moments. More precisely, in the cases considered, the body is simply towed by
the head, and deforms according to imposed curvature laws, the complexity of which
increases in time, in order to bring into play all the degrees of freedom of the body
dynamics, and consequently, all the components of the models. During these numerical
investigations, two different motions are considered, which follow the same protocol.

(i) In the first step, the body is towed straight forward by the head at a constant
axial velocity V0 = −0.6 m s−1 along the X -axis (leading to a Reynolds number equal
to 6 × 105), and a planar deformation is imposed through the following curvature law:

KY = A exp

(

sX

l
− s

)

[(

(s

l

)2

−
(

2π

λ

)2
)

sin

(

2πX

λ
− ω0T

)

+
4πs

lλ
cos

(

2πX

λ
− ω0T

)]

, (4.5)

which is progressively applied (the establishing time is equal to one period of
undulation, i.e. 2π/ω0) and thereafter maintained throughout the numerical run.
Note that (4.5) was adapted from the work of Tytell (2004), who proposed a law of
deflection for the backbone deduced from the experimental analysis of real eels, but
here it has been expressed in terms of curvature.

(ii) After 2 s, an unsteady rotation around the X-axis

Ω0 = θ0ω0 cos(ω0T ) (4.6)

20



Tω0 /2π = 0

(a) (b)

Tω0 /2π = 0

Tω0 /2π = 1/5 Tω0 /2π = 1/5

Tω0 /2π = 2/5 Tω0 /2π = 2/5

Tω0 /2π = 3/5 Tω0 /2π = 3/5

Tω0 /2π = 4/5 Tω0 /2π = 4/5

Figure 12. Deformations involved in (a) motion 1 and (b) motion 2.

is progressively imposed (again during one period of undulation), and this unsteady
rotating motion is maintained until the end of the run. Note that θ0 is the angle
corresponding to the rotation amplitude, and it has been arbitrarily set equal to π/6.

In the deformation law given by (4.5), four parameters are involved, namely the
amplitude of tail deflection A, a shape parameter s, the wave length λ and the angular
frequency ω0. In all runs, we have set ω0 =4π s−1, λ=0.75 m and s = 4, and the
two motions tested differ by the value of the amplitude A. For motion 1, A= 0.03 m
whereas for motion 2, A= 0.12 m.

The typical deformations corresponding to these two prescribed motions are
presented in figures 12(a) and 12(b). As we can see, deformations involved in the
first motion are quite limited, so that they remain more or less inside the frame of
the EBT, whereas deformations involved in the second case are more important. This
second motion will enable us to check more specifically the validity of the LAEBT.

The ISIS-CFD computation starts at time T =0 with a converged solution of the
flow for the body rigidly towed at the forward speed equal to −V0 e1, and the pressure
forces and moments acting on the body are calculated in the head frame of the
body, so that in the following, the components FX , FY and FZ are given in the basis
(t1(0, T ), t2(0, T ), t3(0, T )), and moments MX , MY and MZ are defined in the same
basis and related to the head of the body (i.e. the point X =0) .

Figures 13(a–c) and 13(d–f ) show the fluid pressure forces acting on the body
obtained numerically and those obtained with the analytical model, respectively for
the two motions, whereas figures 14(a–c) and 14(d–f ) compare the moments. Three
dash-dotted vertical lines are also plotted in these graphs, delimiting respectively the
end of the transient phase where the amplitude increases, the start of the rotation
and the end of its transient phase.

We first discuss the results related to the fluid force directed along the head
axis t1(0, T ), i.e. FX obtained in response to the two motions. In figure 13(a) (it
is also the case for figure 13d, but the range prevents its observation), we observe
a small discrepancy at time T = 0 between the CFD simulation and the model.
This is probably due to the rounded-nose geometry of the body (see figure 10),
since the pressure drag acting on the head along the X-axis is not captured by the
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Figure 13. Body forces for (a–c) motion 1 and (d–f ) motion 2. Lines: ——, pressure NS;
– · – · –, model.

model. Indeed, when correcting the model using the initial value of FX given by
the CFD computation, we observed a very good agreement for the EBT-like motion
(motion 1), at least before the rotation was activated. This result indicates that when
the deformations of the body remain small, the EBT is efficient in predicting the
reactive part of the force acting on the body. However, when the unsteady rotation
starts, the difference between the two responses becomes significant (as can be seen
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Figure 14. Body moments for (a–c) motion 1 and (d–f ) motion 2. Lines: ——, pressure NS;
– · – · –, model.

in figure 13a after T = 2.5 s). As to the responses observed when the second motion
is used (motion 2, which involves larger deformation), discrepancies in FX between
the numerical results and the model can be observed even before the rotation has
started, as can be seen in figure 13(d ). These results clearly show that the resultant of
the pressure forces in the direction of the head is probably the most sensitive to the
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viscous-induced perturbations of flow (i.e. boundary-layer separations) which occur
when the deformation of the body becomes significant.

For other components FY and FZ , as well as for the three components of the
moment, in contrast to the axial force, the agreement between the model and the
numerical simulations is globally very good (even for motion 2 involving large
deformations), as can be seen in figures 13(b, c), 13(e, f ) and 14. The dynamics
are indeed well reproduced by the model, though some discrepancies are sometimes
noted, as for example, when the components of the force or the moment reach their
maximal values. However, in general, it seems that the added-mass coefficients are
only slightly modified by the viscosity effects in such unsteady flows, induced by the
two deformations proposed here. Also, note that the forces and moments induced
by the viscosity in the Navier–Stokes simulations have not been added in these
figures, because they are far weaker than the other ones, except for FX in which the
longitudinal viscous forces play a non-negligible role.

In any case, the numerical results suggest that the extended LAEBT appears to be
a convenient tool for investigating 3D transient manoeuvres.

5. Concluding discussion

We have provided a 3D extension of the LAEBT, obtaining the expressions of the
resultant and moment of pressure exerted on a slender body moving in a perfect
fluid, in response to prescribed deformations parametrized by curvature laws. In a
comparison with numerical simulations, it has been shown that even though the
present model fails to predict accurately the axial force when the imposed curvature
becomes significant, it may be used to investigate transient manoeuvres, since all the
other components of the hydrodynamic force and moment acting on the body seem
to be correctly reproduced by the model.

Note that, for the sake of generality, (3.25) and (3.26) have been obtained in a
general case, that is, for arbitrary motions of a slender body (going beyond the
case of swimming). However, a reader acquainted with the original LAEBT could
naturally wonder if these equations could have been deduced from the balance of
the fluid momentum density ( pf , σ f ) applied to the domain located upstream of the
plane π (see figure 1) after postulating, as did Lighthill, a stratification of the linear
and angular momentum of the fluid along the backbone. This question has been
addressed recently by Boyer, Porez & Leroyer (2009) using a geometrical approach,
which gave the following results:

f h = − ∂

∂T

∫ l

0

pf dX + [VX pf − Tf t1]
l
0 (5.1)

and

mh = − ∂

∂T

∫ l

0

(σ f + r × pf ) dX + [VX(σ f + r × pf ) − r × Tf t1]
l
0. (5.2)

As we can see, all the terms involved in these two equations are included in the more
general equations (3.25) and (3.26), but these latter equations also contain additional
terms. In order to analyse the contribution of these additional terms during usual
swimming of a slender body, let us first specify that in this case, the lateral velocity
components of the body, as well as the components of the curvature vector (i.e.
KY and KZ), can be generally modelled with functions of the form f (X ± cT ) that
correspond to propagating waves, and where c corresponds to the wave speed. These
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wave speeds scale generally like the axial velocity (for instance, it is slightly greater
during planar swimming) and this enables us to estimate the order of magnitude of
the different terms involving a time derivative, since

∂

∂T
∼ c

∂

∂X
∼ VX

∂

∂X
. (5.3)

In addition, as regards the axial angular velocities, by integrating (2.22) with respect
to X, we obtain

ΩX = Ω0 +

∫ X

0

KZΩY − KY ΩZ dX, (5.4)

where Ω0 (which may be a time-dependent function) stands for the axial angular
velocity of the head of the body (i.e. at X =0). Since the angular velocities ΩY and
ΩZ have been shown to be small compared with ΩX (see (2.25)), then, at leading
order, the axial angular velocity of any cross-section is uniform and is given by the
axial velocity of the head. During a natural swimming gait, rotation of the head is
generally avoided by fish and in any case the condition αΩ0 ≪ V is satisfied. If we use
this condition, together with (5.3), it turns out that the additional terms existing in
(3.25) and (3.26), in comparison with (5.1) and (5.2), are actually negligible in almost
all the situations encountered during natural swimming by animals. And, finally, even
for 3D manoeuvres, if the rotation of the head has a smooth and slow evolution
leading to negligible roll dynamics, the model given by (3.25) and (3.26) has a form
similar to the original LAEBT obtained for the 2D planar swimming, except that the
linear fluid momentum pf contains an additional component which accounts for the
pitch motion of the body.

As regards the parametrization of the body deformation, since the pioneering work
of Gray (1933), most of the work on swimming kinematics defines the deformation
through an analytical expression of the deflection: the transverse motion of the midline
with respect to the axis of movement of the fish. Although this parametrization is easy
to relate to the photographs of a fish swimming straight forward, when dealing with
more complex gaits (e.g. turns or 3D manoeuvres), it becomes artificially complex, all
the more so since the inextensibility constraint is not naturally taken into account (see
for example Singh & Pedley 2008). However, if the shape is parametrized by strain
measures (here curvatures), the inextensibility constraint is ‘by construction’ satisfied
since then any shape is deduced from the integration of a strain field compatible
with the inextensibility. In fish, this description is quite natural, since the ‘curvature
is directly related to muscle contractions and strength’ (Kern & Koumoutsakos
2006), and during classical manoeuvres it is often very simple. For instance, when a
caranguiform fish is performing a turn manoeuvre, it contorts its body into an arc of
circle (as a ‘C-curve’), whose radius varies in time (see for instance the experimental
results of Anderson 1996), and, in this case, at least at leading order, the curvature,
which is uniform along the body, can be written as the simple time law: KY = Ku h(T ),
where h(T ) is a time-dependent function for progressively imposing and subsequently
removing the desired curvature.

Finally, it can be said that LAEBT is essentially useful for investigating the leading
physical mechanisms involved during transient manoeuvres, where reactive forces
and moments are expected to be dominant, and not for investigating self-propelled
swimming. In the latter case, if fast simulations must be done, at present it seems that
there is no other choice than to add empirical forces and moments to the models,
which take into account viscous effect as is proposed for example by Taylor (1952) or,
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more recently, by Galper & Miloh (2000) or Lopes, Päıdoussis & Semler (2002). Also,
another improvement to the LAEBT could be to extend the results of Newman &
Wu (1973), to account for the effect of the vorticity shed by the fins upstream of the
caudal fin.

This work was supported by the European Commission, Information Society and
Media, Future and Emerging Technologies (FET) contract 231845.

Appendix. Analytical determination of the potentials Φ0
⊥ and Φ1

⊥
In this appendix, solutions Φ0

⊥ and Φ1
⊥ corresponding to (2.43)–(2.44) and (2.45)–

(2.46), respectively, are derived. If we look at (2.43) and (2.44), it appears that for each
abscissa X, Φ0

⊥ corresponds to the 2D potential in the (Y , Z) plane resulting from the
movement (translation and rotation) of an infinite cylinder whose cross-section is SX .
In this paper, we consider the cross-sections of the body to be elliptic, and the usual
way to derive the 2D potential in such a case is to use a conformal transformation that
links the elliptic section to a circular section. However, in the present investigation,
and for later convenience, we prefer to use elliptic coordinates (u, v), where u � 0 and
0 � v � 2π, since such coordinates are also used to obtain the expression of Φ1

⊥, where
conformal transformation can no longer be used (Φ1

⊥ is not a harmonic function).
In this investigation, we are concerned with elliptic cross-sections whose major and
minor semi-axes are α and β , respectively. Furthermore, we have chosen to position
both foci of the elliptic cross-section of the body on the Y -axis, the distance between
the foci being 2a, where a is linked to the major and minor axes by the relation

a =
√

α2 − β2. (A 1)

Elliptic coordinates (u, v), where u � 0 and 0 � v � 2π, are linked to the classical
Cartesian coordinates by the following relations:

Y = a cosh(u) cos(v) and Z = a sinh(u) sin(v), (A 2)

and the boundary of an elliptic cross-section simply reads u = uX , where the value of
uX is linked to α and β by the following relations:

α = a cosh(uX) and β = a sinh(uX) or, reciprocally uX = 1
2
ln((α + β)/(α − β)),

(A 3)
so that here uX depends on X since the size of the cross-section of the body may
change along the body.

Elliptic coordinates are orthogonal and the tangential unit vectors, namely eu and
ev , are given by

eu =
a

J (u, v)1/2
(sinh(u) cos(v)t2 + cosh(u) sin(v)t3), (A 4)

ev =
a

J (u, v)1/2
(− cosh(u) sin(v)t2 + sinh(u) cos(v)t3), (A 5)

where

J = a2 sinh(u)2 + a2 sin(v)2 (A 6)

is the Jacobian determinant of the elliptic coordinates. We also specify that, for any
function f (u, v), the 2D gradient and the Laplacian read

∇f =
1

J 1/2

(

∂f

∂u
eu +

∂f

∂v
ev

)

and �f =
1

J

(

∂2f

∂u2
+

∂2f

∂v2

)

. (A 7)
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A.1. Solution Φ0
⊥

In terms of elliptic coordinates and since in this problem NY t2 + NZ t3 = eu + O(ε2),
(2.43) and (2.44) governing Φ0

⊥ read

∂2Φ0
⊥

∂u2
+

∂2Φ0
⊥

∂v2
= 0, (A 8)

∂Φ0
⊥

∂u

∣

∣

∣

uX

= βVY cos v + αVZ sin(v) +
ΩXa2

2
sin(2v), (A 9)

and, necessarily, we also have

∇Φ0
⊥ → 0, |u| → ∞. (A 10)

Since the potential Φ0
⊥ must be 2π-periodic with respect to v, it is convenient to seek

it by using a Fourier series

Φ0
⊥ =

∞
∑

−∞
Fn(u) exp(i nv), (A 11)

where ‘i’ is the imaginary number. Then, if we introduce (A 11) into (A 8) and exploit
the orthogonality properties of the complex exponential, it is quite simple to show
that, in terms of elliptic coordinates, the very general solution of the 2D Laplacian is

Φ0
⊥ = A0 + B0 u +

∞
∑

n=1

(An cos(n v) + Bn sin(n v)) exp(−nu) + (Cn cos(n v)

+ Dn sin(n v)) exp(nu), (A 12)

where coefficients An, Bn, Cn and Dn are constants that must be determined by the
boundary conditions. Here, (A 10) imposes taking only decreasing harmonics into
account so that Cn = Dn = 0, and according to (A 9), we obtain

Φ0
⊥ = −a2ΩX

4
sin(2v) exp(2uX −2u)−βVY cos(v) exp(uX −u)−αVZ sin(v) exp(uX −u),

(A 13)
where we have neglected a constant. Note that (A 13) is obviously not an original
result and this solution can be found in many classical books on fluid mechanics (see
for instance Milne-Thomson 1968, pp. 258–259). However, what is interesting here is
how this solution has been derived, since the same approach will be used to determine
Φ1

⊥, where the expression of Φ0
⊥ is also involved.

A.2. Solution Φ1
⊥

In terms of elliptic coordinates, partial derivatives of the right-hand side of (2.45)
read

∂

∂Y
=

a

J

(

sinh(u) cos(v)
∂

∂u
− cosh(u) sin(v)

∂

∂v

)

(A 14)

and

∂

∂Z
=

a

J

(

cosh(u) sin(v)
∂

∂u
+ sinh(u) cos(v)

∂

∂v

)

, (A 15)
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where J is given by (A 6). According to (A 13), it may be shown, after some algebra,
that (2.45) can be written as follows:

∂2Φ1
⊥

∂u2
+

∂2Φ1
⊥

∂v2
= (C−3 exp(−3iv) + C3 exp(3iv)) exp(−u) + (C−2 exp(−2iv)

+ C2 exp(2iv)) + (C−1 exp(−iv) + C1 exp(iv)) exp(−3u)

+ C0 exp(−2u), (A 16)

where

C−3 =
a3 exp(2uX)

8
ΩX(KY + iKZ), C3 = c.c.(C−3), (A 17)

C−2 =
a exp(uX)

4
((KZVY β +KY VZα)+ i (KZVZα − KY VY β)), C2 = c.c.(C−2), (A 18)

C−1 = −A−3, C1 = c.c.(C−1), (A 19)

and

C0 = −a exp(uX)

2
(KZVY β + KY VZα). (A 20)

(Here c.c. stands for complex conjugate.) Also, the boundary conditions are

∂Φ1
⊥

∂u

∣

∣

∣

uX

= 0 and ∇Φ1
⊥ → 0 |u| → ∞. (A 21)

Once again, since Φ1
⊥ is also 2π-periodic, the solution can be sought in the form

Φ1
⊥ =

∞
∑

−∞
Gn(u) exp(inv). (A 22)

After injecting this sum into (A 16), and after using complex exponential orthogonal
properties, we obtain a set of ordinary differential equations of the form

d2Gn

du2
− n2Gn = Cn exp(−mu), n ∈ �, (A 23)

and m is equal to −1, −2 or −3. General solutions of these ordinary differential
equations read

G0(u) = A0 + B0 u +
C0

m2
exp(−mu), if n= 0, (A 24)

or

Gn = An exp(nu) + Bn exp(−nu) − Cn

n2 − m2
exp(−mu), if n �= 0, (A 25)

where An and Bn are constants which must be determined by the boundary conditions.
According to (A 21), we obtain the solution

Φ1
⊥ = −a exp(−uX)

4
(KZβVY + KY αVZ)

(

u +
1

2
exp(2uX − 2 u)

)

+
a3ΩX

32
exp(−uX) (3 exp(uX − u) − exp(3uX − 3u)) (KY cos(v) + KZ sin(v))

− a exp(uX)

8
((KZβVY + KY αVZ) cos(2v) + (KZαVZ − KY βVY ) sin(2v))

+
a3ΩX

32
exp(uX)

(

1

3
exp(3uX − 3u) − exp(uX − u)

)

(KY cos(3v) + KZ sin(3v)).

(A 26)
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A.3. Determination of Φ‖
In order to determine the part Φ‖ of the velocity potential, we first need to determine
analytically the expression of the component NX of the outward normal of the body
surface lying between the two sections SX and SX+dX . To determine NX , we first
need to determine the expression of the spatial increments dl and ds (see figure 8).
Here, we are concerned with the frontal surface (along t1) lying between two elliptic
cross-sections (whose major and minor axes are, respectively, α(X) and α(X + dX)
and β(X) and β(X +dX)). Then, the implicit equation of the contour of SX+dX reads

Y 2

α(X + dX)2
+

Z2

β(X + dX)2
= 1. (A 27)

Furthermore, in terms of elliptic coordinates, we also have

Y = a(X) cosh(uX + δu) cos(v) and Z = a(X) sinh(uX + δu) sin(v), (A 28)

where δu is the increment of the dimensionless elliptic coordinates uX that must be
added to reach the contour of SX+dX from the contour of SX . If we introduce these
expressions of Y and Z into (A 27), we can show, by using a classical series expansion
(with respect to dX), that this increment is given by

δu =

∂α

∂X
β cos(v)2 + α

∂β

∂X
sin(v)2

J (uX, v)
dX + O(dX2), (A 29)

where J (uX, v) is the Jacobian determinant corresponding to elliptic coordinates,
evaluated at the elliptic coordinates uX:

J (uX, v) = β(X)2 cos(v)2 + α(X)2 sin(v)2. (A 30)

If we return to the spatial increments dl and ds, we have

dl = J (uX, v)1/2δu and ds = J (uX, v)1/2dv. (A 31)

It is straightforward to show that

NX = − dl√
dX2 + dl2

, (A 32)

which leads to the result

NX = −
β cos(v)2

∂α

∂X
+ α sin(v)2

∂β

∂X
J (uX, v)1/2

+ O(ε2). (A 33)

In these conditions, Φ‖ can be obtained by following the same approach (for deriving
Φ0

⊥) to obtain

Φ‖ = −VX

2

((

∂α

∂X
β +

∂β

∂X
α

)

u − 1

2

(

∂α

∂X
β − ∂β

∂X
α

)

cos(2v) exp(2uX − 2u)

)

.

(A 34)
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