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Extension of the free-surface Green’s function multipole expansion for the infinite water depth case

B. Borgarino, A. Babarit, P. Ferrant
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Ecole Centrale de Nantes,

Nantes, France

ABSTRACT

This paper presents new developments of the multipole expansion of
the infinite water depth free-surface Green’s function, in the scope of
wave farm simulation. The expansions of the Green’s function and
its derivatives have been extended to be used in a 3D fast multipole
algorithm. Previous restrictions over the use of the multipole expansion
are proven to be unnecessary. Extensive validation is provided, by
evaluating this function over a large range of parameters. The influence
of the fast multipole algorithm parameters on the accuracy of the
multipole expansion is then investigated.

KEY WORDS: free-surface Green’s function; Boundary Element
Method; Fast Multipole Method; multipole expansion; wave farm;
Wave Energy Converters.

INTRODUCTION

Wave Energy Converters (WECs) are dedicated to be deployed in large
arrays of typically 10 to 100 systems. An optimal spacing between
the devices can help achieving the objectives of improving overall
energy production and smoothing the overall power output. Simulation
is necessary to determine how the farm should be organized and to
investigate wake effects.
The resolution of the radiation/diffraction problems for a large array
of systems using Boundary Element Methods (BEM) involves building
and solving large, dense linear systems, requiring a O(N3) complexity.
The challenge is to carry on each simulation fast enough to investigate
different parameters in a reasonable amount of time: spacing between
devices, wave parameters, bathymetry. A well-known solution for
accelerating the BEM is the implementation of a General Minimum
RESidual (GMRES) iterative solver, together with Fast Multipole
Methods (FMM) for the fast calculation of matrix-vector products. This
way the complexity can be reduced to O(N).
The FMM is based on the multipole expansion of the free surface
Green’s function. For the constant depth case, the Green’s function is
described as series of terms containing the modified Bessel function of
the second kind K0 (Newman, 1985). Using Graf’s addition theorem,
the multipole expansion has been derived by (Utsunomiya and Wata-
nabe, 2002). Combining this expansion and Higher Order Boundary

Elements Method (HOBEM) and FMM, the hydrodynamic responses
of a Very Large Floating Structure (VLFS) have been investigated. In
(Teng and Gou, 2006), the results of the combination of the Constant
Panel Method (CPM) or the HOBEM and the FMM are compared to
analytical solutions for a floating box and a floating cylinder. In (Gou
and Teng, 2008), the hydrodynamic interactions between three ships
closely spaced have been studied.
Recently an expansion for the free-surface Green’s function has
been developed for the infinite water depth case (Utsunomiya and
Okafuji, 2007), and applied to the case of a VLFS. This formulation
is appropriate for describing a wave farm, which would ideally be
situated in large depth, to avoid energy losses in the incident waves due
to bathymetry effects. In case of shallow water, it is still possible to
consider a complex seabed, represented as an independent, non-moving
body.
The present paper is a continuation of this work: it extends the expan-
sion formulation to make possible the use in a 3D FMM algorithm; the
calculation of the normal derivatives of the Green function is described.
The multipole expansion and the translation operators are extensively
tested. The final objective here is to integrate these formulations and
FMM in a in-house diffraction/radiation code, Aquaplus (Delhommeau,
1993).

FORMULATION

The boundary element problem

This section introduces the resolution of the diffraction/radiation pro-
blem by Aquaplus, based on BEM. The water is modeled as inviscid
and incompressible. The fluid velocity is the gradient of a potential φ.
The corresponding boundary problem is:

Δφ = 0 in the all fluid domain (1)
∂φ

∂n
= 0 on the seabed (2)

∂φ

∂n
=

−→
Vi .

−→n on the surface Si of the body i (3)

∂2φ

∂t2
+ g

∂φ

∂z
= 0 on the free surface (4)
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Where g is the gravitation constant,
−→
V i the velocity on the surface of

the body i. Defining:

Φ = Re[φe(−iωt)] (5)

Φ(M) =

∫ ∫
Si

σ(M ′).G(M,M
′)dS (6)

and applying the second Green’s formula leads to the integral equation:

σ(M)

2
− 1

4π

∫ ∫
Si

σ(M ′)
∂G(M ;M ′)

∂n
dS =

−→
V i.

−→n xyz (7)

With ω the wave pulsation, σ(M) the source density at a point
M(x, y, z), assuming a source distribution. In the CPM, the surfaces
of the bodies are discretized by N flat panels, where the unknowns
σ are constant. (Eq. 7) has to be solved at the center of each panel,
leading to a N × N linear system whose direct resolution requires
a O(N3) complexity. Implementing an iterative solver accelerates
the resolution; however it involves matrix-vector products K.σ(l)

(Kij =
∂G(Mi;Mj)

∂n
and σ

(l)
j = σ(Mj) evaluated at iteration (l),

i, j < N ). The contribution of the FMM to calculation speed-up is
the direct evaluation of these products (each product requires a O(N)
complexity), without explicitly building K and σ.

The Fast Multipole Method

The Fast Multipole Algorithm has been developed in (Greengard, 1988)
to evaluate gravitational or electrostatic interactions in large systems of
particles. (Liu and Nishimura, 2006) is a very clear introduction of the
combination of BEM and FMM. Various versions of this algorithm are
described in (Carrier et al., 1988), (Cheng et al., 1999).
The FMM decomposes the physical space in "cells", using a hierarchi-
cal oct-tree. A cell is a cube containing one or more panels ( ≈ 10).
Instead of direct panel-to-panel interactions, the FMM computes the in-
teraction between groups of panels sufficiently far from each other. The
discrimination between "far" and "near" depends on the relative position
of the cells. The influence of a group of panel is evaluated by calcula-
ting and summing together the moments of the multipole expansion of(
σ. ∂G

∂n

)
for each panel (Eq. 38). Then this influence is displaced to the

target cell thanks to translation operators, and added to contributions
from other groups of panels. The sum of contributions is then "spread"
on the panels of the influenced cell. This corresponds to the double in-
tegral in (Eq. 7), but applied only on the surface defined by panels far
enough from the influenced panel. Closer interactions are calculated by
the direct method and added to the previous result.Translation operators
depend on the relationship between the cells:
– Moment to Moment (M2M): from the child cell center to the parent

cell center
– Moment to Local (M2L): from parent to child or between two sibling

cell (converts a multipole expansion into a Taylor expansion)
– Local to Local (L2L): from parent to child
(Fig. 1) shows the hierarchical decomposition of a 2D space. Level1
cells are children of the Level0 cell, and so on. The different steps to
transpose the influence of four panels of far cells to two panels of the
target cell are represented (Mexp is the multipole expansion).

The free surface Green’s function

In (Utsunomiya and Okafuji, 2007), the Green’s function follows the
integral form described in (Newman, 1985):

G(x, y, z; ξ, η, ζ) =
1

r
+

1

r1
+

∫ ∞

0

2ν

k − ν
e
k(z+ζ)

J0(kR)dk (8)
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Fig. 1 – Principle of the FMM, illustrated in 2D

With :
(ξ, η, ζ) coordinates of the source point S (influencing point)
(x, y, z) coordinates of the field point F (influenced point)
ν the wave number
Jn the nth order Bessel function of the first kind
r =

√
(x− ξ)2 + (y − η)2 + (z − ζ)2

r1 =
√

(x− ξ)2 + (y − η)2 + (z + ζ)2

R =
√

(x− ξ)2 + (y − η)2

The coordinate of S and F are S(rξ, αξ, θξ) and F (rx, αx, θx) in the
spherical system, and S(Rξ, αξ, ζ) and F (Rx, αx, z) in the cylindrical
system, both systems centered in G(xG, yG, 0). Considering Lipschitz’s
integral:

1

r1
=

∫ ∞

0

e
k(z+ζ)

J0(kR)dk (9)

We have :

G(x, y, z; ξ, η, ζ) =
1

r
− 1

r1
+

∫ ∞

0

2k

k − ν
e
k(z+ζ)

J0(kR)dk (10)

This paper is based on (Eq. 10), which is the formulation originally
implemented in Aquaplus.

MULTIPOLE EXPANSION

This section develops the multipole expansion of the Green’s function
following the demonstration of (Utsunomiya and Okafuji, 2007). We
show that restrictions present in this reference for the near field are not
necessary.

Graf’s addition theorem

This theorem (Watson, 1944) is the base for the multipole expansion of
the Green’s function and its translation operators. Let’s consider the tri-
angle on (Fig. 2) such that Z − zcosα = wcosβ and zsinα = wsinβ.
Then:

Jν(w)eiνβ =

∞∑
m=−∞

Jm+ν(Z)Jm(z)eimα (11)
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α

β

Z

z

w

Fig. 2 – Addition theorem of the Bessel functions

Near field

G1 represents the near field :

G1 =
1

r
− 1

r1
(12)

According to Lipschitz’s integral, we have:

1

r
=

∫ ∞

0

e
−k|z−ζ|

J0(kR)dk (13)

In (Utsunomiya and Okafuji, 2007), only the case z < ζ is studied,
making the expansion of G1 only valid when the source point is above
the field point. 1

r
being symmetrical, we demonstrate here the following

expansion for the case ζ < z:

G1 =

∫ ∞

0

e
kζ(e−kz − e

kz)J0(kR)dk (14)

(Eq. 11) is applied in the triangle defined by S, F and G (center of
the multipole expansion) seen from above such that w = R, Z = Rx,
z = Rξ and α = αx − αξ. Then:

G1 =

∫ ∞

0

e
kζ(e−kz−e

kz)

∞∑
m=−∞

Jm(kRx)e
imαxJm(kRζ)e

−imαζdk

(15)

According to (Utsunomiya and Okafuji, 2007), for ζ < 0,

e
kζ
Jm(kRξ) = εm

∞∑
n=|m|

(rξ)
nP

|m|
n (cosθξ)

(n+ |m|)! k
n (16)

e
−kζ

Jm(kRξ) = εm

∞∑
n=|m|

(−1)n+m(rξ)
nP

|m|
n (cosθξ)

(n+ |m|)! k
n (17)

With:

εm =

{
1 if m ≥ 0

(−1)m if m < 0
(18)

The Pm
n terms are Legendre associated functions, defined in Thorne’s

sense, i.e to a factor (−1)m compared to the usual definition. Refer-
ring to (Gray and Mathews, 1922), Utsunomiya derives the following
expression ∀m, z < 0:∫ ∞

0

e
kz
Jm(kRx)k

n
dk = εm(−1)n+m(n−|m|)!P

|m|
n (cosθx)

rn+1
x

(19)

noting that:

P
|m|
n (−cosθx) = (−1)m+n

P
|m|
n (cosθx) (20)

leads to the modification of (Eq. 19), changing z into −z (i.e z > 0):∫ ∞

0

e
kz
Jm(kRx)k

n
dk = εm(n− |m|)!P

|m|
n (cosθx)

rn+1
x

(21)

If we note that:
∞∑

m=−∞

∞∑
n=|m|

=
∞∑

n=0

n∑
m=−n

(22)

and that εm × εm = 1, substituting (Eqs. 16, 19, 21) in (Eq. 15) gives
the multipole expansion of G1:

G1 =
∞∑

n=0

n∑
m=−n

[−(−1)n+m + 1]rnξ
P

|m|
n (cosθξ)

(n+ |m|)! e
−imαξ

e
imαx(n− |m|)!P

|m|
n (cosθx)

rn+1
x

(23)

The formulation in (Utsunomiya and Okafuji, 2007) for z < ζ and (Eq.
23) are the same, except the minus sign in [−(−1)n+m + 1] due to the
original definition of G1 (Eq. 12). Then no restriction on the relative
vertical position of the source and field points has to be applied.
This multipole expansion is an infinite sum of terms. Numerically it has
to be truncated. To obtain a satisfying accuracy, the quantity

(
rξ
rx

)n

has
to be as small as possible, i.e the source point has to be close enough to
the expansion center.

Far field

The far field part of the Green’s function is defined by:

G2 =

∫ ∞

0

2k

k − ν
e
k(z+ζ)

J0(kR)dk (24)

Using the same equations as previously leads to the multipole expansion
of G2:

G2 = 2

∞∑
n=0

n∑
m=−n

r
n
ξ

P
|m|
n (cosθξ)

(n+ |m|)! e
−imαξe

imαxG
′
3 (25)

with:

G
′
3 =

∫ ∞

0

k

k − ν
e
−k|z|

J|m|(kRx)k
n
dk (26)

G
′
3 =

∫ ∞

0

k − ν

k − ν
e
kz
J|m|(kRx)k

n
dk

+ ν

∫ ∞

0

1

k − ν
e
kz
J|m|(kRx)k

n
dk

(27)

G
′
3 = (−1)m+n−1(n− 1− |m|)!P

|m|
n−p(cosθx)

rnx
+ νG3 (28)

G3 is defined in (Utsunomiya and Okafuji, 2007) by:

G3 =

∫ ∞

0

1

k − ν
e
kz
J|m|(kRx)k

n
dk (29)

G3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑n−|m|
p=1 νp−1(−1)m+n−p(n− p− |m|)!P

|m|
n−p

(cosθx)

r
n−p+1
x

+νn−|m| ∫∞
0

1
k−ν

ekzJ|m|(kRx)k
|m|dk if n > |m|∫∞

0
1

k−ν
ekzJ|m|(kRx)k

|m|dk if n = |m|
(30)
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in which the last integral defined as G4 can be evaluated by (Eq. 31), for
m > 0:

G4 =
2

π

(−νmπ2ekz

4
[(−1)mH−m(νRx)− Ym(νRx)]

+

√
π(2Rx)

mΓ(m+ 1
2
)

2

∫ z

0

eν(z−s)

(s2 +R2
x)

m+ 1
2

ds
)

− πν
m
ie

νz
H

(2)
m (νRx)

(31)

with H the Struve function, H(2) the second kind Hankel function, Y
the second kind Bessel function, and Γ the Gamma function. Note that:

Im(G2) = −2π
∞∑

n=0

n∑
m=−n

(νrξ)
nP

|m|
n (cosθξ)

(n+ |m|)! e
−imαξe

νz
Jm(Rx)e

imαx

(32)

In (Eq. 32), the term (νrξ)
n has to be as small as possible to get a good

convergence of the expansion of Im(G2).

CENTER OF EXPANSION OUT OF THE FREE SURFACE

In (Utsunomiya and Okafuji, 2007) the center of the multipole ex-
pansion is located on the free-surface and the translation operations
are calculated along this surface. Indeed, the problem studied (a Very
Long Floating Structure) has small vertical dimensions compared to
horizontal, and is probably seen as a 2D problem. The resolution on the
free surface uses a 2D fast multipole algorithm.
In the case of wave farm, the studied bodies have equivalent vertical
and horizontal dimensions. Plus, the study of the bathymetry will lead
to non-negligible vertical dimensions. This makes necessary to use a
3D fast multipole algorithm in which the multipole expansion can be
done anywhere in the fluid domain.

Far field

The product under the integral of G2 (Eq. 24) can be split in two dif-
ferent ways:

e
k(z+ζ)

J0(kR) =
m=∞∑
m=−∞

e
k(ζ−zG)

Jm(kRξ)e
k(z+zG)

Jm(kRx)

(33)

=

m=∞∑
m=−∞

e
k(ζ+zG)

Jm(kRξ)e
k(z−zG)

Jm(kRx)

(34)

with G(xG, yG, zG) the center of the multipole expansion (zG ≤ 0)
and Rx > Rξ . Considering that the center of the expansion has to be
relatively close to the source point, only (Eq. 33) will lead to a valid
expansion, see (Fig. 3). Following the same demonstration steps than
previously leads to:

G2 = 2

∞∑
n=0

n∑
m=−n

r
n
ξ

P
|m|
n (cosθξ)

(n+ |m|)! e
−imαξG

′
3(z

′
x, R

′
x)e

imα′
x (35)

Here the coordinates of the source point S(rξ, θξ, αξ) are now expres-
sed in the system centered in G(xG, yG, zG) and the coordinates of the
source field S(r′x, θ

′
x, α

′
x) in the system centered in G′(xG, yG,−zG).

See an example on (Fig. 3), noting that α′
x = αx and R′

x = Rx.

zG

−zG

G

G′

S

S

F

F

R

R

Z

Rx = R′

x

Rx = R′

x

Rξ

Rξ

rx

r′x

rξ

z′x

zξ

θx

θ′x

θξ

X

Y

G,G′

αξ

αx = α′

x

xG

(a) View from side

(b) View from above

Fig. 3 – Coordinate systems in use for zG �= 0 (simplified case with S,
G and F aligned)

Near field

For G1, supposing ζ − z < 0:

G1 =

∫ ∞

0

∞∑
m=−∞

e
k(ζ−zG)

Jm(kRξ)︸ ︷︷ ︸
(1)

e
−imαξ

(e−k(z−zG)
Jm(kRx)︸ ︷︷ ︸

(2)

− e
k(z+zG)

Jm(kRx)︸ ︷︷ ︸
(3)

)eimαxdk

(36)

z + zG is negative, we use (Eq. 19) to calculated (3)’s contribution to
the expansion. Given that G is close to S, zG ≈ ζ, −(z−zG) is positive
and (Eq. 21) is used for (2). ζ − zG in (1) can be positive or negative,
but (Eq. 16) is used for any case:
– if negative, (Eq. 16) directly applies
– if positive, then zG − ζ < 0. We apply (Eq. 16) to

e−k(zG−ζ)Jm(kRξ), which mean expressing the position of G in a
coordinates system centered in S and changes cosθξ in cos(θξ+π) =
−cosθξ . Using (Eq. 20), we get back to (Eq. 16).

This eventually gives the following multipole expansion:

G1 =

∞∑
n=0

n∑
m=−n

r
n
ξ

P
|m|
n (cosθξ)

(n+ |m|)! e
−imαξ

e
imα′

x(n− |m|)!
(
P

|m|
n cosθx

rn+1
x

− (−1)n+mP
|m|
n cosθx′

rn+1
x′

)
(37)

The coordinate of the field point are (r,αx, θx) in the system centered
in G, and (r′,α

′
x, θ

′
x) in the system centered in G′. The same expression

can be demonstrated for the case ζ − z > 0. As a consequence, there is
no restriction on the relative vertical positioning of S, F , G.
The term related to the source point appearing in G1 and G2 is called
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the moment of the multipole expansion:

M
m
n = r

n
ξ

P
|m|
n (cosθξ)

(n+ |m|)! e
−imαξ (38)

NORMAL DERIVATIVES

The integral equations traducing in the diffraction/radiation problem in-
volves the normal derivatives of the Green’s function, calculated at the
source point. According to (Utsunomiya and Watanabe, 2002), the nor-
mal derivatives of the Green’s function at the source point can be obtai-
ned from the gradient of the moments:

−−→
grad M

m
n =

∂Mm
n

∂r
−→er +

1

r

∂Mm
n

∂θ
−→eθ +

1

rsinθ

∂Mm
n

∂α
−→eα (39)

with (−→er ,−→eθ ,−→eα) the orthonormal base of the spherical system centered
in (xG, yG, 0). Referring to (Eq. 38), the partial derivative in relation
to α and r are trivial when zG = 0. Derivatives related to θ call the
derivative of Pm

n (obtained by recurrence relationships, as well as Pm
n ).

For zG �= 0, one needs to compose the derivatives in order to calculate
the gradient at the source point S(rR, αξ, θR), see (Fig. 4).

G(xG, yG, zG)

O(xG, yG, 0) θR

θξ

rξ

rR

S

Fig. 4 – Coordinate systems when zG �= 0

It leads to :

∂

∂αR

M
m
n =

∂

∂αξ

M
m
n = −im(rnξ )

P
|m|
n (cosθξ)

(n+ |m|)! e
−imαξ (40)

∂

∂rR
M

m
n = [rnξ

∂cosθξ

∂rR

∂P
|m|
n (cosθξ)

∂cosθξ

+ P
|m|
n (cosθξ)

∂rξ

∂rR
n r

n−1
ξ ]

e−imαξ

(n+m)!

(41)

∂

∂θR
M

m
n = [rnξ

∂cosθξ

∂θR

∂P
|m|
n (cosθξ)

∂cosθξ

+ P
|m|
n (cosθξ)

∂rnξ

∂θR
]
e−imαξ

(n+m)!

(42)

With:

∂rξ

∂rR
=

rR − zG cosθR√
r2R + z2G − 2 zG rRcosθR

(43)

∂cosθξ

∂rR
=

zG

r2R

sinθξ

sinθR

1

1 +
cos2

θξ

sin2
θR

(44)

∂cosθξ

∂θR
= −sinθR

sinθξ + cosθξ
cosθR
sinθR

sinθR +
cosθξ
sinθξ

(cosθR − zG
rR

)
(45)

∂rnξ

∂θR
= sinθR(r

2
R + z

2
G + 2zGrRcosθR)

n
2
−1 (46)

TRANSLATION OPERATORS

The expressions of the moments obtained by M2L and L2L are based
on the splitting of the moments of the multipole expansion, using (Eq.
11). They have not been changed compared to (Utsunomiya and Okafuji,
2007) by zG �= 0:

M̃
m
n =

n∑
t=0

t∑
s=−t

M
m−s
n−t εm−sεsεmr

t
xM

P
|s|
t (cosθxM

)

(t+ |s|)! e
−isαxM (47)

L̃
v(1)(2)
u =

∞∑
t=v

t∑
s=−t

εu−sεu

εs
L

s
t (−1)(t−v)+(u−s)

r
t−v
xL

Pu−s
t−v (cosθxL

)

[(t− v)− |u− s|]!e
−i(u−s)αxL

(48)

With M and L(1)(2) the original multipole and local expansion
coefficients, M̃ and L̃(1)(2) the translated ones, (rxM

, αxM
, θxM

) the
position of the original expansion center seen from the new one (for the
M2L), and (rxL

, αxL
, θxL

) the position of the local expansion center
seen from the new one (for the L2L).

S

F
G

GM2M

G′
M2M

GM2L GL2L

M

M̃

L(2)
L

(1)
1

L
(1)
2

L̃(1)(2)

Fig. 5 – Moments of the expansion depending on the translation (opera-
tors identified by the G... they point to)

As shows (Fig. 5), the M2L for L(1) depends on the original center of
expansion (here GM2M ) and on its symmetrical in relation to the free-
surface G′

M2M . The translation operator can be found by applying (Eq.
11) to the Bessel function in G′

3 (Eq. 35), using the following horizontal
triangle:
– w = Rx, Z = RxML

and z = RFML

– β = αx − (αxML
− π) and α = αxML

− αFML

with
– the coordinates of the center of the multipole expansion and its sym-

metrical seen from the local expansion point are subscripted by xML

and x′
ML

– the coordinates of F seen from the local expansion point are subscrip-
ted by FML

Referring to (Eq. 37),

L
s(1)
t =

∞∑
n=0

n∑
m=−n

L
(1)
1

m

n
+ L

(2)
1

m

n
(49)
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L
s(1)
t =

∞∑
n=0

n∑
m=−n

εm−sεsεmM
m
n [(n+ t)− |s−m|]!

(
P

|s−m|
n+t (cosθxML

)

rxML
n+t+1

(−1)n−m −
P

|s−m|
n+t (cosθx′

ML
)

rn+t+1
x′
ML

)

e
−i(s−m)αxML

(50)

The calculation of L(2) remains unchanged:

L
s(2)
t =

∞∑
n=0

n∑
m=−n

εm−sεsεmM
m
n [(n+ t)− |s−m|]!

e
−i(s−m)αxML

∫ ∞

0

k

k − ν
e
−k|zxML

|
J|s−m|(kRxML

)kn+t
dk

(51)

Finally the evaluation of G1 and G2 is given by:

G(1)(2) =
∞∑
v=0

v∑
u=−v

L̃
u(1)(2)
v (rx)

v P
|u|
v (cosθx)

(v + |u|)! e
iuαx (52)

with (rx, αx, θx) the coordinate of the field point seen from the local
expansion center and the local moments L̃

u(1)(2)
v defined in (Eq. 48).

Note that the local moments are different for G1 and G2.

NUMERICAL VALIDATION

The multipole expansion of the Green’s function and its derivatives
have been implemented in Fortran routines, as well as translation opera-
tors. The calculation of special functions is made by routines from (Jin,
1996).

General verification

The Green’s function and its derivatives have been calculated between
the source point S and the field point F . Direct calculations have been
performed, as well as calculations with several intermediary points, en-
abling the use of the translation operators. For each calculation, the fol-
lowing parameters can vary:
– wave number ν, calculated for periods from 3 s to 20 s
– the horizontal distance R between S and F , from 15 m to 150 m
– the vertical distance Z between S and F , from 5 m to 55 m
Two types of test have to be carried on, G2 being non symmetrical:
– Test 1: S close to the free surface, the horizontal and vertical coordi-

nates of F varying
– Test 2: the depth of S varying, F close to the free-surface with only

its horizontal coordinate varying
Inside each series of tests the relative position

−→
SG have been kept the

same to have rξ << rx. Different series have been studied, with dif-
ferent positioning: ζ < zG, ζ > zG. The order of the expansion Np

is 12. The Green’s function (and derivatives) can be plotted on non-
dimensional maps (νR, νz) such as (Figures 6,7,8), which gather more
than 23,000 evaluations. The color layers are obtained by triangulation,
what explains the non-smooth aspect of certain plots.

These plots can be compared to results from Aquaplus. It shows a rela-
tively good agreement (Tab. 1). However, a better accuracy is found by
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comparing the multipole results to analytical solutions: G1 is given by
(Eq. 12), and from (Wehausen and Laitone, 1960), we have:

Im(G2) = 2πeν(ζ+z)
J0(νR) (53)

lim
r→+∞

G1 +Re(G2) = −2πeν(ζ+z)
Y0(νR) (54)

Fig. 9 – Absolute difference between G1 +Re(G2) calculated by mul-
tipole expansion and Eq. 54

The asymptotic behavior of G1 + Re(G2) is clearly outlined, see (Fig.
9). Tab. 1 shows that the results from the multipole expansion agree best
with the analytical solutions than with Aquaplus, suggesting that they
might be more precise. When no analytical result is available, a gene-
ral good agreement with Aquaplus is found, which is comforting in the
scope of the implementation of FMM in the code. Parameters of the
FMM such as the order of the expansion and the relative positioning of
S, G and F which influence the accuracy of the expansion are investi-
gated in next section.

Tab. 1 – Maximum error (m−1) on the multipole expansion of the
Green’s function over the (νR, νZ) domain

Multipole compared to ... Aquaplus Analytical
G1 3.10−10 2.10−10

Re(G2) 2.10−4 X
Im(G2) 9.10−5 6.10−9

Position of the expansion center

In order to have global accuracy indicators, we calculate the average and
the maximum values of the relative error over the domain (νR, νZ),
between the multipole expansion and the analytical value of G1 and
Im(G2). This way we investigate the influence of:
– the expansion order Np

– the ratio rG1
=

rξ
rx

on G1

– the ratio rG2
=

rξ
λ

= νrξ on Im(G2)
(Figures 10,11) have been obtained by tests of the type "Test 2", the
position of G depending on the distance (SF ) through rG1

and rG2
.

This do not pretend to be an exhaustive study, but gives an idea of the
influence of FMM parameters.
As expected the overall accuracy gets better with an increasing Np and
decreasing rG1

and rG2
. An order smaller than 4 has to be avoided. A

large order gives a good precision on a large range of values for rG1

and rG2
. Np ≈ 8 seems to be a good compromise, as stated in (Board

et al., 1995).

X X X X

X

X

X X X X

X

X
X

X

0

0

0

00000

1

1

2

2 3 4

5

5

5 6.....

Np = 12, avg. error
Np = 12, max. error
Np = 8, avg. error
Np = 8, max. error
Np = 4, avg. error
Np = 4, max. error

rG1

%

Fig. 10 – Average and maximum relative error on G1, depending on Np

and rG1

X X X X X
X

X X X X

X

X

X

0

0

0

00

1

1

11

2

22 3

5

5

555 ...

Np = 12, avg. error
Np = 12, max. error
Np = 8, avg. error
Np = 8, max. error
Np = 4, avg. error
Np = 4, max. error

rG2

%

Fig. 11 – Average and maximum relative error on Im(G2), depending
on Np and rG2

From these results, characteristic parameters of the Fast Multipole Al-
gorithm can be estimated, for a required Np and precision. For instance,
considering Np = 8, it seems reasonable to work with:

{
rG1

≤ 0.3
rG2

≤ 1
(55)
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On the other hand, considering the original FMM (Greengard, 1988),

{
rξ ≤

√
3
2
a (expansion calculated at the center of the parent cell)

rx ≥ 2a (cells well separated are at least 2a distant)
(56)

with a the cell side size. It leads to:

rG1
≤ 0.43 (57)

more or less the same range of rG1
than in (Eq. 55). From the second

condition in (Eq. 55), and from (Eq. 56), we have a condition on the cell
size:

a =
2× 1.0

ν
√
3

= 1.15λ (58)

From the hierarchical decomposition of space in the FMM,

a =
Lmax

2NL
(59)

with Lmax the maximum dimension of the system and NL the number
of levels in the FMM. We eventually get:

NL = log

(
Lmax

1.15λ

)
(60)

Referring to the VLFS studied in (Utsunomiya and Okafuji, 2007)
with the same multipole expansion, Lmax = 2000m, λ = 100m,
corresponding to 5 levels. For smaller periods (3 s) and a 90m × 90m
problem (DNV barge, (Delhommeau, 1993)), 5 levels are necessary.
These values are sensible, but for a 1-square-km wave farm NL

would increase up to 9, maybe leading to computational difficulties.
This problem is rather new, as we study the behavior and interactions
of systems possibly sensitive to small wave lengths over a large distance.

CONCLUSIONS

The extension of the multipole expansion of the free-surface Green’s
function for the infinite water depth case permits to apply it to a
wider range of situations. Restriction on the relative positions between
interacting points have been canceled. The expansion and the FMM
translation operators have been evaluated at any depth, enabling the
future use of a 3D FMM algorithm. The expansion of the Green’s
function, of its derivatives and the translation operators have been
extensively tested.
The accuracy of the developed formulations have been partially
investigated for the far field when analytical results were available
for comparison, i.e for the Rankin singularity of the Green’s function
as well as for its oscillatory part. This investigation gives an order
of magnitude of the accuracy when computing the Green’s function,
depending on the Fast Multipole MEthod parameters.
The next step is to implement the FMM based on these formulations in
the diffraction/radiation code Aquaplus. An open-source fast multipole
algorithm, the Distributed Parallel Multipole Tree Algorithm (DPMTA)
(Rankin, 1999) is currently being adapted at the LMF in this scope.
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