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This paper presents new developments of the multipole expansion of the infinite water depth free-surface Green's function, in the scope of wave farm simulation. The expansions of the Green's function and its derivatives have been extended to be used in a 3D fast multipole algorithm. Previous restrictions over the use of the multipole expansion are proven to be unnecessary. Extensive validation is provided, by evaluating this function over a large range of parameters. The influence of the fast multipole algorithm parameters on the accuracy of the multipole expansion is then investigated.

INTRODUCTION

Wave Energy Converters (WECs) are dedicated to be deployed in large arrays of typically 10 to 100 systems. An optimal spacing between the devices can help achieving the objectives of improving overall energy production and smoothing the overall power output. Simulation is necessary to determine how the farm should be organized and to investigate wake effects. The resolution of the radiation/diffraction problems for a large array of systems using Boundary Element Methods (BEM) involves building and solving large, dense linear systems, requiring a O(N 3 ) complexity. The challenge is to carry on each simulation fast enough to investigate different parameters in a reasonable amount of time: spacing between devices, wave parameters, bathymetry. A well-known solution for accelerating the BEM is the implementation of a General Minimum RESidual (GMRES) iterative solver, together with Fast Multipole Methods (FMM) for the fast calculation of matrix-vector products. This way the complexity can be reduced to O(N ). The FMM is based on the multipole expansion of the free surface Green's function. For the constant depth case, the Green's function is described as series of terms containing the modified Bessel function of the second kind K0 [START_REF] Newman | Algorithms for free-surface green's function[END_REF]. Using Graf's addition theorem, the multipole expansion has been derived by [START_REF] Utsunomiya | Accelerated higher order boundary element method for wave diffraction/radiation problems and its applications[END_REF]. Combining this expansion and Higher Order Boundary Elements Method (HOBEM) and FMM, the hydrodynamic responses of a Very Large Floating Structure (VLFS) have been investigated. In [START_REF] Teng | Fast multipole expansion method and its application in bem for wave diffraction and radiation[END_REF], the results of the combination of the Constant Panel Method (CPM) or the HOBEM and the FMM are compared to analytical solutions for a floating box and a floating cylinder. In [START_REF] Gou | Research on hydrodynamic interaction between multiple floating bodies[END_REF], the hydrodynamic interactions between three ships closely spaced have been studied. Recently an expansion for the free-surface Green's function has been developed for the infinite water depth case [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF], and applied to the case of a VLFS. This formulation is appropriate for describing a wave farm, which would ideally be situated in large depth, to avoid energy losses in the incident waves due to bathymetry effects. In case of shallow water, it is still possible to consider a complex seabed, represented as an independent, non-moving body. The present paper is a continuation of this work: it extends the expansion formulation to make possible the use in a 3D FMM algorithm; the calculation of the normal derivatives of the Green function is described. The multipole expansion and the translation operators are extensively tested. The final objective here is to integrate these formulations and FMM in a in-house diffraction/radiation code, Aquaplus [START_REF] Delhommeau | Seakeeping codes aquadyn and aquaplus[END_REF].

FORMULATION

The boundary element problem

This section introduces the resolution of the diffraction/radiation problem by Aquaplus, based on BEM. The water is modeled as inviscid and incompressible. The fluid velocity is the gradient of a potential φ. The corresponding boundary problem is:

Δφ = 0
in the all fluid domain (1) ∂φ ∂n = 0 on the seabed (2)

∂φ ∂n = -→ Vi.
-→ n on the surface Si of the body i (3)

∂ 2 φ ∂t 2 + g ∂φ ∂z = 0 on the free surface (4)
Where g is the gravitation constant, -→ V i the velocity on the surface of the body i. Defining: Φ = Re[φe (-iωt) ]

(5)

Φ(M ) = S i σ(M ).G(M, M )dS (6)
and applying the second Green's formula leads to the integral equation:

σ(M ) 2 - 1 4π S i σ(M ) ∂G(M ; M ) ∂n dS = -→ V i. -→ n xyz (7)
With ω the wave pulsation, σ(M ) the source density at a point M (x, y, z), assuming a source distribution. In the CPM, the surfaces of the bodies are discretized by N flat panels, where the unknowns σ are constant. (Eq. 7) has to be solved at the center of each panel, leading to a N × N linear system whose direct resolution requires a O(N 3 ) complexity. Implementing an iterative solver accelerates the resolution; however it involves matrix-vector products

K.σ (l) (Kij = ∂G(M i ;M j ) ∂n
and σ

(l) j

= σ(Mj) evaluated at iteration (l), i, j < N ). The contribution of the FMM to calculation speed-up is the direct evaluation of these products (each product requires a O(N ) complexity), without explicitly building K and σ.

The Fast Multipole Method

The Fast Multipole Algorithm has been developed in [START_REF] Greengard | The Rapid Evaluation of Potential Fields in Particle Systems[END_REF] to evaluate gravitational or electrostatic interactions in large systems of particles. [START_REF] Liu | The fast multipole boundary element method for potential problems: A tutorial[END_REF]) is a very clear introduction of the combination of BEM and FMM. Various versions of this algorithm are described in [START_REF] Carrier | A fast adaptative multipole algorithm for particles simulation[END_REF], [START_REF] Cheng | A fast adaptative multipole algorithm in three dimensions[END_REF]. The FMM decomposes the physical space in "cells", using a hierarchical oct-tree. A cell is a cube containing one or more panels ( ≈ 10). Instead of direct panel-to-panel interactions, the FMM computes the interaction between groups of panels sufficiently far from each other. The discrimination between "far" and "near" depends on the relative position of the cells. The influence of a group of panel is evaluated by calculating and summing together the moments of the multipole expansion of σ. ∂G ∂n for each panel (Eq. 38). Then this influence is displaced to the target cell thanks to translation operators, and added to contributions from other groups of panels. The sum of contributions is then "spread" on the panels of the influenced cell. This corresponds to the double integral in (Eq. 7), but applied only on the surface defined by panels far enough from the influenced panel. Closer interactions are calculated by the direct method and added to the previous result.Translation operators depend on the relationship between the cells: -Moment to Moment (M2M): from the child cell center to the parent cell center -Moment to Local (M2L): from parent to child or between two sibling cell (converts a multipole expansion into a Taylor expansion) -Local to Local (L2L): from parent to child (Fig. 1) shows the hierarchical decomposition of a 2D space. Level1 cells are children of the Level0 cell, and so on. The different steps to transpose the influence of four panels of far cells to two panels of the target cell are represented (Mexp is the multipole expansion).

The free surface Green's function

In [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF], the Green's function follows the integral form described in [START_REF] Newman | Algorithms for free-surface green's function[END_REF]: 

G(x, y, z; ξ, η, ζ) = 1 r + 1 r1 + ∞ 0 2ν k -ν e k(z+ζ
= (x -ξ) 2 + (y -η) 2 + (z -ζ) 2 r1 = (x -ξ) 2 + (y -η) 2 + (z + ζ) 2 R = (x -ξ) 2 + (y -η) 2
The coordinate of S and F are S(rξ, αξ, θξ) and F (rx, αx, θx) in the spherical system, and S(R ξ , αξ, ζ) and F (Rx, αx, z) in the cylindrical system, both systems centered in G(xG, yG, 0). Considering Lipschitz's integral:

1 r1 = ∞ 0 e k(z+ζ) J0(kR)dk (9) 
We have :

G(x, y, z; ξ, η, ζ) = 1 r - 1 r1 + ∞ 0 2k k -ν e k(z+ζ) J0(kR)dk (10)
This paper is based on (Eq. 10), which is the formulation originally implemented in Aquaplus.

MULTIPOLE EXPANSION

This section develops the multipole expansion of the Green's function following the demonstration of [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF]. We show that restrictions present in this reference for the near field are not necessary.

Graf's addition theorem

This theorem [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF] is the base for the multipole expansion of the Green's function and its translation operators. Let's consider the triangle on (Fig. 2) such that Zzcosα = wcosβ and zsinα = wsinβ. Then: 

Jν (w)e iνβ = ∞ m=-∞ Jm+ν (Z)Jm(z)e imα (11) 

Near field

G1 represents the near field :

G1 = 1 r - 1 r1 (12) 
According to Lipschitz's integral, we have:

1 r = ∞ 0 e -k|z-ζ| J0(kR)dk (13) 
In [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF], only the case z < ζ is studied, making the expansion of G1 only valid when the source point is above the field point. According to [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF], for ζ < 0,

e kζ Jm(kRξ) = m ∞ n=|m| (rξ) n P |m| n (cosθξ) (n + |m|)! k n (16) e -kζ Jm(kRξ) = m ∞ n=|m| (-1) n+m (rξ) n P |m| n (cosθξ) (n + |m|)! k n (17) With: m = 1 if m ≥ 0 (-1) m if m < 0 (18) 
The P m n terms are Legendre associated functions, defined in Thorne's sense, i.e to a factor (-1) m compared to the usual definition. Referring to [START_REF] Gray | A Treatise on Bessel Functions and Their Applications to Physics[END_REF], Utsunomiya derives the following expression ∀m, z < 0:

∞ 0 e kz Jm(kRx)k n dk = m(-1) n+m (n-|m|)! P |m| n (cosθx) r n+1 x ( 19 
)
noting that:

P |m| n (-cosθx) = (-1) m+n P |m| n (cosθx) (20) 
leads to the modification of (Eq. 19), changing z into -z (i.e z > 0):

∞ 0 e kz Jm(kRx)k n dk = m(n -|m|)! P |m| n (cosθx) r n+1 x (21) If we note that: ∞ m=-∞ ∞ n=|m| = ∞ n=0 n m=-n (22) 
and that m × m = 1, substituting (Eqs. 16, 19, 21) in (Eq. 15) gives the multipole expansion of G1:

G1 = ∞ n=0 n m=-n [-(-1) n+m + 1]r n ξ P |m| n (cosθξ) (n + |m|)! e -imα ξ e imαx (n -|m|)! P |m| n (cosθx) r n+1 x (23)
The formulation in [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF] for z < ζ and (Eq. 23) are the same, except the minus sign in [-(-1) n+m + 1] due to the original definition of G1 (Eq. 12). Then no restriction on the relative vertical position of the source and field points has to be applied. This multipole expansion is an infinite sum of terms. Numerically it has to be truncated. To obtain a satisfying accuracy, the quantity r ξ rx n has to be as small as possible, i.e the source point has to be close enough to the expansion center.

Far field

The far field part of the Green's function is defined by:

G2 = ∞ 0 2k k -ν e k(z+ζ) J0(kR)dk (24) 
Using the same equations as previously leads to the multipole expansion of G2:

G2 = 2 ∞ n=0 n m=-n r n ξ P |m| n (cosθξ) (n + |m|)! e -imα ξ e imαx G 3 (25) 
with:

G 3 = ∞ 0 k k -ν e -k|z| J |m| (kRx)k n dk (26) G 3 = ∞ 0 k -ν k -ν e kz J |m| (kRx)k n dk + ν ∞ 0 1 k -ν e kz J |m| (kRx)k n dk (27) G 3 = (-1) m+n-1 (n -1 -|m|)! P |m| n-p (cosθx) r n x + νG3 (28) 
G3 is defined in [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF] by:

G3 = ∞ 0 1 k -ν e kz J |m| (kRx)k n dk (29) G3 = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ n-|m| p=1 ν p-1 (-1) m+n-p (n -p -|m|)! P |m| n-p (cosθx) r n-p+1 x +ν n-|m| ∞ 0 1 k-ν e kz J |m| (kRx)k |m| dk if n > |m| ∞ 0 1 k-ν e kz J |m| (kRx)k |m| dk if n = |m| (30)
in which the last integral defined as G4 can be evaluated by (Eq. 31), for m > 0:

G4 = 2 π -ν m π 2 e kz 4 [(-1) m H-m(νRx) -Ym(νRx)] + √ π(2Rx) m Γ(m + 1 2 ) 2 z 0 e ν(z-s) (s 2 + R 2 x ) m+ 1 2 ds -πν m ie νz H (2) m (νRx) (31) 
with H the Struve function, H (2) the second kind Hankel function, Y the second kind Bessel function, and Γ the Gamma function. Note that:

Im(G2) = -2π ∞ n=0 n m=-n (νrξ) n P |m| n (cosθξ) (n + |m|)! e -imα ξ e νz Jm(Rx)e imαx (32) 
In (Eq. 32), the term (νr ξ ) n has to be as small as possible to get a good convergence of the expansion of Im(G2).

CENTER OF EXPANSION OUT OF THE FREE SURFACE

In [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF] the center of the multipole expansion is located on the free-surface and the translation operations are calculated along this surface. Indeed, the problem studied (a Very Long Floating Structure) has small vertical dimensions compared to horizontal, and is probably seen as a 2D problem. The resolution on the free surface uses a 2D fast multipole algorithm.

In the case of wave farm, the studied bodies have equivalent vertical and horizontal dimensions. Plus, the study of the bathymetry will lead to non-negligible vertical dimensions. This makes necessary to use a 3D fast multipole algorithm in which the multipole expansion can be done anywhere in the fluid domain.

Far field

The product under the integral of G2 (Eq. 24) can be split in two different ways:

e k(z+ζ) J0(kR) = m=∞ m=-∞ e k(ζ-z G ) Jm(kRξ)e k(z+z G ) Jm(kRx) (33) = m=∞ m=-∞ e k(ζ+z G ) Jm(kRξ)e k(z-z G ) Jm(kRx) (34) 
with G(xG, yG, zG) the center of the multipole expansion (zG ≤ 0) and Rx > Rξ. Considering that the center of the expansion has to be relatively close to the source point, only (Eq. 33) will lead to a valid expansion, see (Fig. 3). Following the same demonstration steps than previously leads to:

G2 = 2 ∞ n=0 n m=-n r n ξ P |m| n (cosθξ) (n + |m|)! e -imα ξ G 3 (z x , R x )e imα x (35)
Here the coordinates of the source point S(rξ, θξ, αξ) are now expressed in the system centered in G(xG, yG, zG) and the coordinates of the source field S(r x , θ x , α x ) in the system centered in G (xG, yG, -zG).

See an example on (Fig. 3), noting that α x = αx and R 

x = Rx. z G -z G G G S S F F R R Z R x = R x R x = R x R ξ R ξ r x r x r ξ z x z ξ θ x θ x θ ξ X Y G, G α ξ α x = α x x G ( 

Near field

For G1, supposing ζz < 0:

G1 = ∞ 0 ∞ m=-∞ e k(ζ-z G ) Jm(kRξ) (1) 
e -imα ξ (e -k(z-z G ) Jm(kRx) (2) 
e k(z+z G ) Jm(kRx)

(3)

)e imαx dk (36) 
z + zG is negative, we use (Eq. 19) to calculated (3)'s contribution to the expansion. Given that G is close to S, zG ≈ ζ, -(z -zG) is positive and (Eq. 21) is used for (2). ζ -zG in (1) can be positive or negative, but (Eq. 16) is used for any case:

-if negative, (Eq. 16) directly applies -if positive, then zGζ < 0. We apply (Eq. 16) to e -k(z G -ζ) Jm(kRξ), which mean expressing the position of G in a coordinates system centered in S and changes cosθξ in cos(θξ +π) = -cosθξ. Using (Eq. 20), we get back to (Eq. 16). This eventually gives the following multipole expansion:

G1 = ∞ n=0 n m=-n r n ξ P |m| n (cosθξ) (n + |m|)! e -imα ξ e imα x (n -|m|)! P |m| n cosθx r n+1 x -(-1) n+m P |m| n cosθ x r n+1 x ( 37 
)
The coordinate of the field point are (r,αx, θx) in the system centered in G, and (r , α x , θ x ) in the system centered in G . The same expression can be demonstrated for the case ζz > 0. As a consequence, there is no restriction on the relative vertical positioning of S, F , G.

The term related to the source point appearing in G1 and G2 is called the moment of the multipole expansion:

M m n = r n ξ P |m| n (cosθξ) (n + |m|)! e -imα ξ (38) 
NORMAL DERIVATIVES

The integral equations traducing in the diffraction/radiation problem involves the normal derivatives of the Green's function, calculated at the source point. According to [START_REF] Utsunomiya | Accelerated higher order boundary element method for wave diffraction/radiation problems and its applications[END_REF], the normal derivatives of the Green's function at the source point can be obtained from the gradient of the moments:

--→ grad M m n = ∂M m n ∂r -→ er + 1 r ∂M m n ∂θ -→ eθ + 1 rsinθ ∂M m n ∂α -→ eα (39) 
with ( -→ er , -→ eθ , -→ eα) the orthonormal base of the spherical system centered in (xG, yG, 0). Referring to (Eq. 38), the partial derivative in relation to α and r are trivial when zG = 0. Derivatives related to θ call the derivative of P m n (obtained by recurrence relationships, as well as P m n ). For zG = 0, one needs to compose the derivatives in order to calculate the gradient at the source point S(rR, αξ, θR), see (Fig. 4). 

G(x

G , y G , z G ) O(x G , y G , 0) θ R θ ξ r ξ r R S
+ P |m| n (cosθξ) ∂r n ξ ∂θR ] e -imα ξ (n + m)! (42) 
With:

∂rξ ∂rR = rR -zG cosθR r 2 R + z 2 G -2 zG rRcosθR (43) ∂cosθ ξ ∂rR = zG r 2 R sinθξ sinθR 1 1 + cos 2 θ ξ sin 2 θ R (44) ∂cosθ ξ ∂θR = -sinθR sinθξ + cosθξ cosθ R sinθ R sinθR + cosθ ξ sinθ ξ (cosθR -z G r R ) (45) ∂r n ξ ∂θR = sinθR(r 2 R + z 2 G + 2zGrRcosθR) n 2 -1 (46) 
TRANSLATION OPERATORS

The expressions of the moments obtained by M2L and L2L are based on the splitting of the moments of the multipole expansion, using (Eq. 11). They have not been changed compared to [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF] by zG = 0: As shows (Fig. 5), the M2L for L (1) depends on the original center of expansion (here GM2M ) and on its symmetrical in relation to the freesurface G M 2M . The translation operator can be found by applying (Eq. 11) to the Bessel function in G 3 (Eq. 35), using the following horizontal triangle:

M m n = n t=0 t s=-t M m-s n-t m-s s mr t x M P |s| t (cosθx M ) (t + |s|)! e -isαx M (47) Lv(1)(2) u = ∞ t=v t s=-t u-s u s L s t (-1) (t-v)+(u-s) r t-v x L P u-s t-v (cosθx L ) [(t -v) -|u -s|]! e -i(u-s)αx L ( 
w = Rx, Z = Rx ML and z = RF ML β = αx -(αx MLπ) and α = αx ML -αF ML with -the coordinates of the center of the multipole expansion and its symmetrical seen from the local expansion point are subscripted by xML and x ML -the coordinates of F seen from the local expansion point are subscripted by FML Referring to (Eq. 37), x ML e -i(s-m)αx ML (50)

The calculation of L (2) remains unchanged:

L s(2) t = ∞ n=0 n m=-n m-s s mM m n [(n + t) -|s -m|]! e -i(s-m)αx ML ∞ 0 k k -ν e -k|zx ML | J |s-m| (kRx ML )k n+t dk (51) 
Finally the evaluation of G1 and G2 is given by:

G (1)(2) = ∞ v=0 v u=-v Lu(1)(2) v (rx) v P |u| v (cosθx) (v + |u|)! e iuαx (52) 
with (rx, αx, θx) the coordinate of the field point seen from the local expansion center and the local moments Lu(1)(2) v defined in (Eq. 48). Note that the local moments are different for G1 and G2.

NUMERICAL VALIDATION

The multipole expansion of the Green's function and its derivatives have been implemented in Fortran routines, as well as translation operators. The calculation of special functions is made by routines from [START_REF] Jin | Fortran routines for computation of special functions[END_REF].

General verification

The Green's function and its derivatives have been calculated between the source point S and the field point F . Direct calculations have been performed, as well as calculations with several intermediary points, enabling the use of the translation operators. For each calculation, the following parameters can vary: -wave number ν, calculated for periods from 3 s to 20 s -the horizontal distance R between S and F , from 15 m to 150 m -the vertical distance Z between S and F , from 5 m to 55 m Two types of test have to be carried on, G2 being non symmetrical: -Test 1: S close to the free surface, the horizontal and vertical coordinates of F varying -Test 2: the depth of S varying, F close to the free-surface with only its horizontal coordinate varying Inside each series of tests the relative position -→ SG have been kept the same to have rξ << rx. Different series have been studied, with different positioning: ζ < zG, ζ > zG. The order of the expansion Np is 12. The Green's function (and derivatives) can be plotted on nondimensional maps (νR, νz) such as (Figures 6,7,8), which gather more than 23,000 evaluations. The color layers are obtained by triangulation, what explains the non-smooth aspect of certain plots.

These plots can be compared to results from Aquaplus. It shows a relatively good agreement (Tab. 1). However, a better accuracy is found by comparing the multipole results to analytical solutions: G1 is given by (Eq. 12), and from [START_REF] Wehausen | Surface Waves[END_REF], we have: The asymptotic behavior of G1 + Re(G2) is clearly outlined, see (Fig. 9). Tab. 1 shows that the results from the multipole expansion agree best with the analytical solutions than with Aquaplus, suggesting that they might be more precise. When no analytical result is available, a general good agreement with Aquaplus is found, which is comforting in the scope of the implementation of FMM in the code. Parameters of the FMM such as the order of the expansion and the relative positioning of S, G and F which influence the accuracy of the expansion are investigated in next section.

Tab. 1 -Maximum error (m -1 ) on the multipole expansion of the Green's function over the (νR, νZ) domain Multipole compared to ... Aquaplus Analytical G1 3.10 -10 2.10 -10 Re(G2) 2.10 -4 X Im(G2) 9.10 -5 6.10 -9

Position of the expansion center

In order to have global accuracy indicators, we calculate the average and the maximum values of the relative error over the domain (νR, νZ), between the multipole expansion and the analytical value of G1 and Im(G2). This way we investigate the influence of:

-the expansion order Np -the ratio rG 1 = This do not pretend to be an exhaustive study, but gives an idea of the influence of FMM parameters. As expected the overall accuracy gets better with an increasing Np and decreasing rG 1 and rG 2 . An order smaller than 4 has to be avoided. A large order gives a good precision on a large range of values for rG 1 and rG 2 . Np ≈ 8 seems to be a good compromise, as stated in [START_REF] Board | Scalable variants of multipole-accelerated algorithms for molecular dynamics applications[END_REF].

Fig. 2 -

 2 Fig. 2 -Addition theorem of the Bessel functions

  1 r being symmetrical, we demonstrate here the following expansion for the case ζ < z: G1 = ∞ 0 e kζ (e -kze kz )J0(kR)dk (14) (Eq. 11) is applied in the triangle defined by S, F and G (center of the multipole expansion) seen from above such that w = R, Z = Rx, z = Rξ and α = αxαξ. Then: )e imαx Jm(kRζ)e -imα ζ dk (15)

  Fig. 3 -Coordinate systems in use for zG = 0 (simplified case with S, G and F aligned)
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 4 Fig. 4 -Coordinate systems when zG = 0
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 5 Fig. 5 -Moments of the expansion depending on the translation (operators identified by the G... they point to)

  Fig. 9 -Absolute difference between G1 + Re(G2) calculated by multipole expansion and Eq. 54

  r ξ rx on G1 -the ratio rG 2 = r ξ λ = νrξ on Im(G2) (Figures 10,11

  ) have been obtained by tests of the type "Test 2", the position of G depending on the distance (SF ) through rG 1 and rG 2 .
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From these results, characteristic parameters of the Fast Multipole Algorithm can be estimated, for a required Np and precision. For instance, considering Np = 8, it seems reasonable to work with:

On the other hand, considering the original FMM [START_REF] Greengard | The Rapid Evaluation of Potential Fields in Particle Systems[END_REF],

2 a (expansion calculated at the center of the parent cell) rx ≥ 2a (cells well separated are at least 2a distant) (56)

with a the cell side size. It leads to:

more or less the same range of rG 1 than in (Eq. 55). From the second condition in (Eq. 55), and from (Eq. 56), we have a condition on the cell size:

From the hierarchical decomposition of space in the FMM,

with Lmax the maximum dimension of the system and NL the number of levels in the FMM. We eventually get:

Referring to the VLFS studied in [START_REF] Utsunomiya | Wave response of a vlfs by accelerated green's fucntion method in infinite water depth[END_REF] with the same multipole expansion, Lmax = 2000m, λ = 100m, corresponding to 5 levels. For smaller periods (3 s) and a 90m × 90m problem (DNV barge, [START_REF] Delhommeau | Seakeeping codes aquadyn and aquaplus[END_REF]), 5 levels are necessary. These values are sensible, but for a 1-square-km wave farm NL would increase up to 9, maybe leading to computational difficulties. This problem is rather new, as we study the behavior and interactions of systems possibly sensitive to small wave lengths over a large distance.

CONCLUSIONS

The extension of the multipole expansion of the free-surface Green's function for the infinite water depth case permits to apply it to a wider range of situations. Restriction on the relative positions between interacting points have been canceled. The expansion and the FMM translation operators have been evaluated at any depth, enabling the future use of a 3D FMM algorithm. The expansion of the Green's function, of its derivatives and the translation operators have been extensively tested.

The accuracy of the developed formulations have been partially investigated for the far field when analytical results were available for comparison, i.e for the Rankin singularity of the Green's function as well as for its oscillatory part. This investigation gives an order of magnitude of the accuracy when computing the Green's function, depending on the Fast Multipole MEthod parameters. The next step is to implement the FMM based on these formulations in the diffraction/radiation code Aquaplus. An open-source fast multipole algorithm, the Distributed Parallel Multipole Tree Algorithm (DPMTA) [START_REF] Rankin | Efficient Parallel Implementations of Multipole Based N-Body Algorithms[END_REF] is currently being adapted at the LMF in this scope.