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Introduction

A broad class of ship hulls, including the classical Wigley parabolic hull and the Series 60 ship model, have bows that resemble a wedge. This simple class of ship bows is characterized by only two parameters: the draft D and the waterline entrance angle 2α, as illustrated in Fig. 1. The bow wave generated by such a wedge-shaped ship bow also depends on two parameters: the waterline entrance angle 2α and the draft-based Froude number

F = V s / √ gD (1)
Here, V s stands for the speed of the ship -assumed to steadily advance along a straight path in calm water of infinite depth and lateral extent -and g is the acceleration of gravity. The bow waves generated by the two-parameter family of wedged-shaped ship bows depicted in Fig. 1 [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]Noblesse et al. ( ,2008a,b) ,b) where the literature on ship bow waves is reviewed and several simple relations are given. In particular, expressions that define the height of the bow wave, the distance between the ship stem and the crest of the wave, the rise of water at the stem, and the bow wave profile are given in these previous studies. The comparisons between the analytical relations and experimental measurements reported in these three studies and in [START_REF] Delhommeau | Boundary between unsteady and overturning ship bow wave regimes[END_REF] show that, in spite of their remarkable simplicity, these relations are sufficiently accurate for practical design applications, notably at early stages (concept and preliminary design).

However, the practical usefulness of these relations is limited by the fact that the two-parameter family of ship bows shown in Fig. 1 is inadequate for many applications. Indeed, many ship bows, notably bows of fast ships, have significant rake and flare, which must then be taken into account. The wave due to a ship bow with rake and flare is considered in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF]. There, thin-ship theory is used to extend the relations for the height of the bow wave and the distance between the ship stem and the wave crest previously obtained for wedge-shaped ship bows, and a detailed parametric study of the variations of the bow-wave height and location with respect to the hull speed, draft, rake, and flare is reported.

The thin-ship analysis given in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] is applied further in the present study to systematically investigate the influence of the hull speed, draft, rake, and flare on two major features of a ship bow wave that were not previously considered in our earlier study: the rise of water at the hull stem, and the length of the bow wave. Furthermore, the bow-wave profile is also considered. Thus, the present study extends the results given in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF], which only considered the height and the location of the bow-wave crest.

As in this previous study, we then consider a family of ruled ship bows determined by four parameters: the draft D of the bow, the entrance angle 2α at the top waterline (at the free surface), the rake angle δ (angle between the ship stem and the vertical) and the hull flare, controlled by α -α ′ where 2α ′ is the entrance angle at the bottom waterline (at the ship draft), as shown in Fig. 2 . The parameter φ defined as

-1 ≤ φ ≡ T -T ′ T + T ′ ≤ 1 with { T ≡ tan α T ′ ≡ tan α ′ } (2)
is closely related to the hull flare, and is called flare parameter hereinafter (even though the rake angle δ also affects the hull flare). The special case φ = 0 corresponds to α ′ = α , and the special cases φ = 1 or -1 correspond to triangular sections with α ′ = 0 or α = 0 , respectively. The flow -notably the bow wave of particular interest here -due to this four-parameter family of ship bows depends on four parameters: F ≡ V s / √ gD , α , α ′ and δ . The two-parameter family of wedge-shaped ship bows depicted in Fig. 1 corresponds to the special case α ′ = α and δ = 0 .

The four-parameter family of simple ruled ship bows depicted in Fig. 2 is considered for two main reasons: (i) the four parameters F , α , α ′ and δ are major parameters that have a dominant influence on a ship bow wave, and (ii) the limited number of parameters that define this family of ship bows makes it feasible to perform a detailed parametric study, and to obtain results immediately applicable to ship design. A more general family of ship bows that accounts for the hull curvature would involve a significantly greater number of parameters, for which a systematic parametric study would be problematic. Furthermore, the precise hull geometry is typically not known at early design, and it is then useful (indeed, necessary) to represent a ship bow by means of a limited number of parameters. Thus, the four-parameter family of ship bows depicted in Fig. 2 is sufficiently general to account for the dominant geometric characteristics of a large class of ship bows, and is also sufficiently simple to allow an extensive parametric investigation.

Many alternative methods for evaluating steady freesurface flow about ships have been considered in the literature. These methods include semi-analytical theories based on alternative approximations (thin-ship, slender-ship, 2d+t theories), potential-flow (boundary integral equation) methods that rely on the use of a Green function (elementary Rankine source, or Havelock source that satisfies the radiation condition and the Michell linear free-surface boundary condition), and CFD methods that solve the Euler or RANS equations. These alternative calculation methods are reported in a huge body of literature, not reviewed here. A partial list of illustrative references may be found in e.g. Noblesse et al. (2008b).

In principle, any of the alternative methods reported in the literature can be used to evaluate steady flow about the fourparameter family of ship bows considered here. In practice however, most of these methods are ill suited for the systematic parametric studies required for our practical goal of obtaining simple analytical relations immediately useful for ship design. In fact, selection of a calculation method suited for extensive parametric studies or for early (concept and preliminary) design presents similar issues, which involve consideration of a tradeoff between competing requirements with respect to accuracy and practicality. Indeed, practical tools that are simple to use and highly efficient, but need not be highly accurate, are required to quickly evaluate the very large number of alternative designs that typically need to be considered for concept and preliminary design. However, detail design and (especially) design evaluation involve many fewer choices and require more accurate computational tools, for which efficiency and ease of use are less important considerations.

Thin-ship theory is used here, as in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF], because this theory is well suited for the class of fine bows under consideration, and because it significantly simplifies our parametric studies. Indeed, the flow about the four-parameter family of ship bows considered here can be expressed as the product of the factor (T + T ′ )/2 , which essentially represents an average waterline entrance angle, by a function that depends on three (instead of four) parameters: the (draft-based) Froude number F , the rake angle δ , and the flare parameter φ . Furthermore, this function of F , δ , φ can be expressed in terms of two functions that only depend on the two parameters F and δ ; [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF].

As shown in Fig. 1 and Fig. 2, the Z axis is vertical and points upward, and the mean free surface is taken as the plane Z = 0. Furthermore, the X axis is along the path of the ship and points toward the ship bow, and the intersection of the stem line with the mean free-surface plane Z = 0 is taken as the origin X = 0. Nondimensional coordinates

x ≡ X g/ V 2 s (3)
are used hereinafter. As shown in Fig. 3 ,

z b ≡ Z b g V 2 s x b ≡ X b g V 2 s z 0 ≡ Z 0 g V 2 s x 0 ≡ X 0 g V 2 s (4)
stand for the bow-wave height (the elevation of the bow-wave crest above the mean free surface), the location (measured from the ship stem) of the bow-wave crest, the water elevation (above the mean free surface) at the ship stem x = 0 and the location of the intersection of the bow-wave profile with the mean freesurface plane z = 0 , respectively. The four functions z b , x b , z 0 , x 0 are major characteristics of a ship bow wave that approximately determine the bow-wave profile.

Wedge-shaped ship bows without rake or flare

The bow wave for the two-parameter family of wedged-shaped ship bows depicted in Fig. 1 is considered in [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]Noblesse et al. ( ,2008a,b) ,b) where the three simple relations

z b ≈ 2.2 T 1+ F x b ≈ -1.1 1+ F z 0 ≈ 2 π E s T 1+ F 2 (5) 2α 2α 2α 2α δ>0 δ>0 δ>0 δ>0 < 2α 2α 2α 2α ¶ ' = ; 2α 2α 2α 2α δ δ δ δ< < < <0 0 0 0 < ' 2α 2α 2α 2α ¶ = ;
Fig. 2 Four-parameter family of ruled ship bows defined by the draft D, the rake angle δ ( 0 < δ on left side, δ < 0 on right side), the top-waterline entrance angle 2 α and the bottom-waterline entrance angle 2α ′ .

Z b X D Z 0 X b V s X 0 Z
Fig. 3 Definition sketch for the bow-wave height Z b , the rise of water Z 0 at the ship stem X = 0 , and the distances -X b and -X 0 between the ship stem and the bow-wave crest or the bow-wave intersection with the mean free-surface plane Z = 0 .

are given ( x 0 is not considered in these previous studies). Here, T ≡ tanα in accordance with (2), F is the draft-based Froude number (1), the approximation cos α ≈ 1 is used because only small values of α are now considered, and E s is defined as

E s (F ) ≈ 1 + 2/3 1+ F 2 + 19/45 (1+ F 2 ) 2 + 26/105 (1+ F 2 ) 3 + 601/4725 (1+ F 2 ) 4 + 1502/31185 (1+ F 2 ) 5 + 4.16 (1+ F 2 ) e -13F -0.26 (6) 
The relations (5) agree well with experimental measurements for both wedge-shaped ship bows with entrance angle 2 α and a rectangular flat plate at a yaw (incidence) angle α ; [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]Noblesse et al. ( ,2008a,b),b).

Bow-wave crest

Expressions (5) for the bow-wave height z b and location x b are extended in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] to the more general fourparameter family of ruled ship bows with rake and flare depicted in Fig. 2. The comparisons between experimental measurements and theoretical predictions given by thin-ship theory reported in that study show that the use of this simple theory to extend the relations given in [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]Noblesse et al. ( ,2008b) ) to the more general case δ ̸ = 0 and φ ̸ = 0 is appropriate for small values of α and α ′ , i.e. for a large class of ships with fine bows.

The thin-ship analysis given in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] yields

z b ≈ 1.1 1+ F (T + T ′ ) ζ b x b ≈ -1.1 1+ F ξ b (7)
where The functions ζ b and ξ b are also tabulated here for completeness and ease of reference. Specifically, Tables 1 and2 

ζ b ≡ ζ b (F, δ , φ)
z ′ b ≡ Z b /D T + T ′ ≈ 1.1 F 2 ζ b 1+ F x ′ b ≡ -X b D ≈ 1.1 F 2 ξ b 1+ F (8)
The functions z ′ b and x ′ b characterize the size of the bow wave with respect to the ship draft D. For a given ship bow, i.e. for given values of T + T ′ ≡ tanα + tanα ′ , the rake angle δ , the flare parameter φ and the draft D, the variations of the functions z ′ b and x ′ b with respect to the Froude number F illustrate the growth of the bow wave with respect to the ship speed V s . In particular, expressions (8) show that both z ′ b and x ′ b are O(F 2 ) as F → 0 and O(F ) as F → ∞ . Thus, ship bow waves vanish as V 2 s in the low-speed limit V s → 0 , and grow as V s in the high-speed limit V s → ∞ .

The functions z ′ b and x ′ b are depicted in Fig. 4 and Fig. 5, respectively, for 0 ≤ F ≤ 4 . The top and bottom rows in these figures show the functions z ′ b or x ′ b for (top rows) three rake angles δ = 0 and δ = ±45 • , and for (bottom rows) three values φ = 0 and φ = ±1 of the flare parameter φ . The curves in the figures in the top and bottom rows in Fig. 4 and Fig. 5 correspond to φ = 0, ±0.5 , ±1 and to δ = 0, ±30 • , ±60 • , respectively.

Fig. 4 and Fig. 5 show that the bow-wave height z ′ b and the distance x ′ b between the wave crest and the ship stem both increase monotonically, approximately linearly, with respect to F for 1.5 < F . Thus -for a given hull -the size of the of the bow-wave crest, increases approximately in proportion to the ship speed if F is large enough, specifically for 1.5 < F and 0.34 < F L (assuming L s /D = 20 ). This behavior, illustrated in Fig. 4 and Fig. 5, agrees with (8). For F < 1.5 , Fig. 4 shows that the bow-wave height z ′ b increases monotonically with F but at a slower rate, also in agreement with (8). Fig. 5 shows that the location x ′ b of the bow-wave crest also increases monotonically with respect to F for positive rake angles δ . However, for δ < 0 and small values of F , x ′ b can be negative, i.e. the wave crest can be ahead of the ship stem.

Fig. 4 shows that the rake angle δ has smaller effects on the bow-wave height z ′ b than the flare angle φ . In particular, for φ = -1 (bottom right corner of Fig. 4), the rake angle δ has a negligible influence on z ′ b . Fig. 4 shows that z ′ b increases monotonically as the flare parameter φ increases from -1 to 1. Thus, larger values of the flare parameter φ , which corresponds to hull volume distributed higher (closer to the free surface), yield bigger bow waves as expected. Fig. 5 shows that x ′ b decreases monotonically as the flare parameter φ increases. Thus, larger values of the flare φ yield bigger bow waves with crests closer to the ship stem, and therefore steeper waves.

Fig. 4 shows that the bow-wave height z ′ b decreases slightly as the rake angle δ increases. In particular, z ′ b is smaller for 0 < δ than for δ < 0 . Fig. 5 shows that the bow-wave location x ′ b increases as the rake angle δ increases. In particular, x ′ b is larger for 0 < δ than for δ < 0 . Thus, slightly higher bow waves with crests closer to the ship stem, i.e. steeper waves, are obtained for negative rake than for positive rake.

In summary, for a given draft-based Froude number F , Fig. 4 and Fig. 5 show that bigger and steeper bow waves are obtained as the flare angle φ increases and the rake angle δ decreases. This result suggests that a ship bow with α < α ′ , i.e. φ < 0 , and 0 < δ may be advantageous.

Rise of water at ship stem

We now consider the water elevation z 0 at the ship stem x = 0 . Expression (5) for the rise of water z 0 at the stem of a wedgeshaped ship bow was obtained in Noblesse et al. (2008a) using thin-ship theory. The experimental measurements and theoretical predictions reported in Noblesse et al. (2008a) for wedgeshaped ship bows with waterline entrance angle 2 α and a flat plate at a yaw (incidence) angle α show that thin-ship theory is adequate for predicting the rise of water at the stem of a fine ship bow of the type considered here. Thus, this simple theory is also used here for the more general family of ship bows shown in Fig. 2 .

The thin-ship analysis given in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] shows that the relation (5) for z 0 can be extended as

z 0 ≈ E s /π 1+ F 2 (T + T ′ ) ζ 0 (9)
where

ζ 0 ≡ ζ 0 (F, δ , φ
) is a function of the draft-based Froude number F , the rake angle δ and the flare parameter φ .

The values of the function ζ 0 are listed in Table 3 for six values of the draft-based Froude number F that correspond to F/(1 + F ) = 0.3 , 0.4 , . . . , 0.8 , nine values of the hull flare parameter φ = 1 , 0.75 , . . . , -1 and nine rake angles δ = 60 • , 45 • , . . . , -60 • . In the special case δ = 0 and φ = 0, Table 3 (and Fig. 6) shows that we have ζ 0 = 1 as expected, and the relation ( 9) is identical to the relation ( 5).

The function ζ 0 is depicted in Fig. 6 . The top row of this figure shows the variation of ζ 0 with respect to the draft-based Froude number F in the range 0.3 ≤ F/(1 + F ) ≤ 0.8 , i.e. 0.43 ≤ F ≤ 4 , for three rake angles δ = 45 • (left), δ = 0 • (center) and δ = -45 • (right) and five values φ = 0, ±0.5 , ±1 of the flare parameter φ . The center row shows the variation of ζ 0 with respect to the rake angle δ with -60

• ≤ δ ≤ 60 • for three Froude numbers F that correspond to F/(1 + F ) = 0.3 , 0.5 , 0.7 (F ≈ 0.43 , 1 , 2.33
) and five values of the hull flare φ = 0, ±0.5 , ±1 . The bottom row shows the variation of ζ 0 with respect to the flare parameter φ with -1 ≤ φ ≤ 1 for three Froude numbers F that correspond to F/(1 + F ) = 0.3 , 0.5 , 0.7 and five rake angles

δ = 0 • , ±30 • , ±60 • .
The three figures in the bottom row of Fig. 6 show that ζ 0 is a linear function of the flare parameter φ . Furthermore, the three figures in the right column of Fig. 6 show that for large Froude numbers, specifically for 0.65 < F/(1 + F ) , the function ζ 0 is nearly independent of φ . The center row of Fig. 6 shows that -except for small Froude numbers -the function ζ 0 decreases monotonically as the rake angle δ increases from -60 • to 60 • .

Expressions ( 9) and ( 4) yield

z ′ 0 ≡ Z 0 /D T + T ′ ≈ F 2 E s 1+ F 2 ζ 0 π (10)
The function z ′ 0 characterizes the rise of water at the ship stem in reference to the ship draft D. For a given ship bow, i.e. for given values of T + T ′ ≡ tanα + tanα ′ , the rake angle δ , the flare parameter φ and the draft D, the variation of z ′ 0 with respect to the Froude number F shows how the water at the stem rises with respect to the ship speed V s . In particular, ( 10) and ( 6) show that z ′ 0 is O(F 2 ) as F → 0 and O(1) as F → ∞ . Thus, the rise of water at the stem vanishes as V 2 s in the lowspeed limit V s → 0 , and tends to a constant value in the highspeed limit V s → ∞ . This high-speed behavior differs from the high-speed behavior of the bow-wave height z ′ b and location x ′ b , which grow in proportion to V s as V s → ∞.

The function z ′ 0 is depicted in Fig. 7 for 0 ≤ F ≤ 4 . The top and bottom rows in this figure show z ′ 0 for (top row) three rake angles δ = 0 and δ = ±45 • , and for (bottom row) three values φ = 0 and φ = ±1 of the flare parameter φ . The curves in the figures in the top and bottom rows in Fig. 7 correspond to φ = 0, ±0.5 , ±1 and to δ = 0, ±30 • , ±60 • , respectively. Fig. 7 and Fig. 4 show that the rise of water at the stem z ′ 0 is much smaller than the bow-wave height z ′ b , especially at high Froude numbers (differences between z ′ 0 and z ′ b are not as large at low Froude numbers), as commonly observed. Fig. 7 also shows that the rise of water at the stem z ′ 0 is not significantly affected by the hull flare φ , and tends toward a constant value at high Froude numbers. Specifically, z ′ 0 becomes nearly constant (independent of speed) for Froude numbers F greater than approximately 2 .

Bow-wave length

The first intersection x = x 0 ≡ X 0 g/V 2 s of the bow-wave profile with the mean free-surface plane z = 0 is now considered. This intersection is determined numerically, via root finding, from the bow-wave profile given by thin-ship theory.

The distance -x 0 between the ship stem and the intersection point (x = x 0 , z = 0) provides an approximate measure of the length of the bow wave, and is then called bow-wave length hereinafter for simplicity.

The bow-wave length -x 0 is depicted, together with the distance -x b between the ship stem and the bow-wave crest considered previously, in Fig. 8 for 0.3 ≤ F/(1+ F ) ≤ 1 . The functions -x 0 and -x b are depicted as full lines and as dashed lines, respectively, in Fig. 8 . The top and bottom rows in this figure show the distances -x 0 and -x b for (top row) three rake Fig. 8 shows that the bow-wave length -x 0 tends to a constant value as F → ∞ . Specifically, we have

-x 0 ≡ -X 0 g/V 2 s ≈ 2.3 for 1 ≪ F (11)
This property, illustrated in the figure on the right of Fig. 9 , holds for every rake angle δ and flare parameter φ . In fact, the high-speed limit (11) does not depend on δ , α and α ′ . The approximation -x 0 ≈ 2.3 holds for 0.8 ≤ F/(1+ F ) ≤ 1 , i.e. for 4 ≤ F and 0.9 ≤ F L (for a typical ship with length/draft ratio approximately equal to 20).

In the limit F → 0, the wave component is insignificant in comparison to the local-flow component, which yields a positive free-surface elevation that slowly vanishes in the farfield x → -∞ . This property is illustrated in the figure on the left of Fig. 9 . Thus, the function -x 0 is not a meaningful measure of the bow-wave length in the limit F → 0 . In fact, -x 0 is unbounded in this limit, as can be seen from Fig. 8 and Fig. 9 . The figure in the center of Fig. 9 shows that the first intersection x = -x 0 between the wave and the mean free surface z = 0 can be discontinuous if the trough of the first wave is located above the plane z = 0 , as occurs when F decreases. This property explains the behavior of the bow-wave length -x 0 exhibited in the figures on the right column of Fig. 8 in the low Froude number limit F/(1+ F ) → 0.3 . Fig. 8 and the high-speed approximation (11) suggest that the bow-wave length -x 0 can be expressed as

-x 0 ≈ 2.3 + ξ 0 (12)
The values of the function ξ 0 (F, δ , φ) are listed in Table 4 for six values of the draft-based Froude number F that correspond to F/(1 + F ) = 0.3 , 0.4 , . . . , 0.8 , nine values of the hull flare parameter φ = 1 , 0.75 , . . . , -1 and nine rake angles δ = 60 • , 45 • , . . . , -60 • . Fig. 8 shows that the distance -x b between the ship stem and the bow-wave crest vanishes as F → ∞ , in accordance with (7). This relation also shows that -x b is bounded as F → 0 . Thus, the functions -x 0 and -x b behave differently in both the low-speed limit F → 0 and the high-speed limit F → ∞ . Indeed, -X 0 /D and -X b /D grow as F 2 and F , respectively, in the high-speed limit F → ∞ . In the low-speed

limit F → 0 , -X 0 /D is O(1) and -X b /D vanishes as F 2 .
Table 4 and the figures in the bottom row of Fig. 8 show that the bow-wave length -x 0 increases as the rake angle δ increases from -60 • to 60 • , except for φ = -1 and small values of F (figure at the bottom right corner) . Table 4 and the figures in the top row of Fig. 8 show that the bow-wave length -x 0 decreases as the flare angle φ increases from -1 to 1 . Noblesse et al. (2008b) suggests that the bow wave aft of the wave crest may be approximated as a plane progressive free wave with wavelength 2π V 2 s /g . According to this approxima- 

x b 0 ≡ x b -x 0 ≡ (X b -X 0 ) g/V 2 s ≈ π/2 ≈ 1.6 (13) 
The distance x b 0 is depicted in Fig. 10 , ±60 • , respectively. Fig. 10 , where the horizon-tal line x b 0 = π/2 is drawn, shows that the approximation (13) mostly lies below the curves predicted by thin-ship theory. This discrepancy shows that the first wave is significantly affected by the local-flow component, as illustrated in Fig. 9. Thus, the free-wave approximation (13) is not accurate for the first wave.

Main analytical relations

In summary, the bow-wave height Z b , the water height Z 0 at the ship stem X = 0 , and the locations (measured from the ship stem) X b and X 0 of the bow-wave crest and of the intersection of the bow-wave profile with the mean free surface Z = 0 , for the four-parameter family of ship bows shown in Fig. 2 can be estimated using the simple analytical approximations 

Z b g V 2 s ≈ (tan α + tanα ′ ) 1.1 1+ F ζ b (F, δ , φ) (14a)
′ = α = 15 • . -X b g V 2 s ≈ 1.1 1+ F ξ b (F, δ , φ) (14b) Z 0 g V 2 s ≈ tan α + tanα ′ π E s (F ) 1+ F 2 ζ 0 (F, δ , φ) (14c) -X 0 g V 2 s ≈ ξ 0 (F, δ , φ) + 2.3 (14d) with F ≡ V s √ gD φ ≡ tanα -tanα ′ tanα + tanα ′
Furthermore, the function E s (F ) in (14c) is defined by ( 6) and the values of the functions ζ b , ξ b , ζ 0 , ξ 0 are listed in Tables 1234for six Froude numbers F that correspond to F/(1+F ) = 0.3 , 0.4 , . . . , 0.8 , nine rake angles δ = 60 (2008b) for the special case δ = 0 and α ′ = α (wedge-shaped bows without rake or flare) suggest that the relations ( 14) can be extended as

Z g V 2 s ≈ tan α + tanα ′ cos α + cosα ′ 2.2 1+ F ζ b (F, δ , φ) (15a) -X b g V 2 s ≈ cos 8 α + cos 8 α ′ 2 1.1 1+ F ξ b (F, δ , φ) (15b) Z 0 g V 2 s ≈ 2 π tan α + tanα ′ cos α + cosα ′ E s (F ) 1+ F 2 ζ 0 (F, δ , φ) (15c) -X 0 g V 2 s ≈ cos 8 α + cos 8 α ′ 2 [ ξ 0 (F, δ , φ) + 2.3 ] (15d) 
The relations ( 15) and ( 14) are asymptotically equivalent in the limits α → 0 and α ′ → 0 , and the relations (15a)-( 15c) are identical to the corresponding relations for Z b , X b and Z 0 given in Noblesse et al. (2008b) in the special case δ = 0 and φ = 0 . The relations ( 15) and ( 6), with the transformation X/D ≡ F 2 x in accordance with (3), show that for a ship of draft D advancing at speed V s , the height Z b of the bow wave, the distance -X b between the bow-wave crest and the ship stem, the height of water Z 0 at the stem, and the distance -X 0 (bowwave length) between the stem and the first intersection of the bow wave with the mean free-surface plane behave as

Z b D = O(F 2 ) -X b D = O(F 2 ) Z 0 D = O(F 2 ) -X 0 D = O(1) (16a
) in the low-Froude-number limit F → 0 , and as

Z b D = O(F ) -X b D = O(F ) Z 0 D = O(1) -X 0 D = O(F 2 ) (16b) in the high-Froude-number limit F → ∞ .
The asymptotic relations ( 16) are illustrated in Fig. 11 for the ship bow depicted in Fig. 2 with δ = 30 • and α ′ = α = 15 • . Specifically, Fig. 11 shows the variations of the bow-wave length -X 0 /D , the distance 10 (-X b )/D between the ship stem and the bow-wave crest, the bow-wave height 10 Z b /D and the rise of water at the stem 100 Z 0 /D with respect to F in the range 0 < F ≤ 4 . The symbols in Fig. 11 mark the values of X 0 , X b , Z b and Z 0 given for six Froude numbers F ≈ 0.43 , 0.67 , 1 , 1.5 , 2.33 and 4 . The curves that join these symbols are cubic interpolations. Fig. 11 shows that -X b and Z b increase approximately linearly with respect to F , whereas -X 0 increases in proportion to F 2 and Z 0 becomes constant as F → ∞ , in accordance with (16b).

Bow-wave profile

Bow-wave profiles given by thin-ship theory are depicted in Fig. 12 and Fig. 13 for the four-parameter family of ship bows shown in Fig. 2. These figures depict

z * ≡ 2(1+ F )z T + T ′ ≡ 2(1+ F )Z g/V 2 s T + T ′ (17)
as a function of (1+ F ) x ≡ (1+ F )X g/V 2 s , in accordance with (7) and (3).

Specifically, Fig. 12 and Fig. 13 depict wave profiles for three draft-based Froude numbers F = 0.5 (left columns), F = 2 (center columns) and F = 4 (right columns). Wave profiles are shown for three rake angles δ = 45 • (top row), δ = 0 (center row) and δ = -45 • (bottom row) in Fig. 12 , and for three values φ = 1 (top row), φ = 0 (center row) and φ = -1 (bottom row) of the flare parameter φ in Fig. 13. The five curves in these figures correspond to φ = 0, φ = ±0.5 and φ = ±1 in Fig. 12, and to δ = 0, δ = ±30 • and δ = ±60 • in Fig. 13. Fig. 12 and Fig. 13 illustrate the influence of the flare parameter φ and the rake angle δ on the bow-wave profile. In particular, Fig. 12 and Fig. 13 show that bow waves become bigger and steeper as the flare parameter increases from -1 to 1. Fig. 12 shows that bigger and steeper waves are also obtained as the rake angle δ decreases from 45 • to -45 • . The center and right columns of Fig. 13 show that, for F = 2 and F = 4 (high Froude numbers), this result holds as δ decreases from 60 • to -60 • . However, the left column of Fig. 13 shows that for F = 0.5 (small Froude number), δ = -60 • (large negative rake) yields smaller bow waves than δ = -30 • . In all cases, bigger and steeper waves are obtained for δ < 0 (negative rake) than for 0 < δ (positive rake).

The results depicted in Fig. 12 and Fig. 13 suggest that a ship bow with negative flare φ , i.e. with α < α ′ , and a positive rake angle δ may be advantageous. This conclusion is illustrated in Fig. 14, where the bow waves for δ = -50 • , α = 15 • , α ′ = 5 • and for δ = 50 • , α = 5 • , α ′ = 15 • are depicted for F = 0.5 , 2 and 4. Fig. 14 corresponds to T + T ′ ≡ tanα + tanα ′ ≈ 0.355 and φ ≈ ±0.51 . This figure shows that the bow wave for a negative rake angle δ = -50 • and positive flare φ ≈ 0.5 is significantly higher, notably for F = 0.5 , and steeper than the wave for a positive rake angle δ = 50 • and negative flare φ ≈ -0.5 .

The bow-wave profile is largely determined by the height z b of the wave crest, the water height z 0 at the ship stem x = 0 , and the distances -x b and -x 0 between the ship stem and the bow-wave crest or the intersection of the bow-wave profile with the mean free-surface plane z = 0 . In particular, the bow-wave profile can be approximated by two parabolic arcs joined at the wave crest, i.e.

ζ -z 0 z b -z 0 = x x b ( 2 - x x b ) for x b ≤ x ≤ x s (18a) ζ z b = 1 - ( x -x b x 0 -x b ) 2 for x 0 ≤ x ≤ x b (18b)
Here, ζ is used instead of z to emphasize that expressions (18) define the wave profile z = ζ(x) . Furthermore, x s in (18a) corresponds to the intersection of the bow-wave profile with the ship stem line x = z tanδ . The intersection x = x s and the corresponding water elevation z = z s are given by

x s = z s tanδ z s ≈ z 0 / ( 1 + 2 z b -z 0 x b tanδ ) (18c)
The two parabolic arcs (18) , with the analytical expressions (15) and Tables 1-4 for the related functions ζ b , ξ b , ζ 0 , ξ 0 , yield a simple analytical approximation to the bow wave profile for x 0 ≤ x ≤ x s for fine bows with rake and This simple approximation is defined explicitly -without hydrodynamic calculations -in terms of the bow shape. 17), as a function of (1+ F ) x, for three draft-based Froude numbers F = 0.5 (left column), 2 (center) and 4 (right), and three rake angles δ = 45 • (top row), δ = 0 (center) and δ = -45 • (bottom). The five curves correspond to φ = 0, φ = ±0.5 and φ = ±1. the joint parabolas (18) with the alternative relations ( 14) or ( 15), respectively identified as Approx 1 and Approx 2 , and the wave profile obtained using thin-ship theory for the ship bow shown in Fig. 2 with δ = 30 • and α ′ = α = 15 • . These wave profiles are shown for four draft-based Froude numbers F = 0.67 , 1 , 1.5 and 2.33 . The analytical profile Approx 1 associated with ( 14) and the thin-ship profile cross at the two points x = 0 , z = z 0 and x = x 0 , z = 0 as expected. Both the profile Approx 1 and (especially) the profile Approx 2 differ appreciably from the thin-ship profile, notably at low and high Froude numbers. In particular, the thin-ship bow-wave height is appreciably larger/smaller than the wave heights for the analytical approximations at low/high Froude numbers, in accor-dance with Fig. 23 in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF]. The profile Approx 2 differs appreciably from the profile Approx 1. In particular, the bow-wave length is significantly shorter for the profile Approx 2 than for the profile Approx 1, as expected from the term cos 8 α + cos 8 α ′ in the relations (15b) and (15d).

The analytical bow-wave profile given by ( 18) and ( 15) is depicted in Fig. 16, together with the wave profiles obtained using thin-ship theory and two Euler-flow CFD computations, for the ship bow shown in Fig. 2 with δ = 30 • and α ′ = α = 15 • , at four draft-based Froude numbers F = 0.67 , 1 , 1.5 and 2.33 . The Euler wave profiles in Fig. 16 were obtained using the CFD flow solvers ISIS-CFD and FEFLO developed at the École Centrale de Nantes-CNRS and at George Mason University, respec- 18) with ( 14) or (15), respectively identified as Approx 1 and Approx 2, and wave profiles obtained using thin-ship theory for the ship bow shown in Fig. 2 with δ = 30 • and α ′ = α = 15 • , at four draft-based Froude numbers F = 0.67 , 1 , 1.5 and 2.33 . tively; [START_REF] Queutey | An Interface Capturing Method for Free-Surface Hydrodynamic Flows[END_REF] , [START_REF] Löhner | An Unstructured Grid-based, Parallel Free Surface Solver[END_REF], [START_REF] Yang | Calculation of Ship Sinkage and Trim Using a Finite Element Method and Unstructured Grids[END_REF]. A ship hull with fore and aft symmetry, and length/draft ratio equal to 40, was used for the Eulerflow calculations. Fig. 16 shows that the analytical bow-wave profiles are comparable to the Euler (CFD) wave profiles. Furthermore, the Euler profiles in Fig. 16 are appreciably closer to the analytical bow-wave profile than to the wave profile given by thin-ship theory, used here and in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] to extend the relations obtained previously (using elementary theoretical considerations, notably dimensional analysis, and experimental measurements) in [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]Noblesse et al. ( ,2008a,b) ,b) for wedge-shaped bows without rake or flare.

Bulb design

As already noted, the parametric study of the bow-wave profiles reported here shows that a ship bow with negative rake angle δ < 0 and positive flare α ′ < α can be expected to generate a higher and steeper bow wave than a ship bow with positive rake angle 0 < δ and negative flare α < α ′ . This result suggests that a bulb that is located aft of the ship stem, and is integrated with the ship hull, may be an interesting, potentially advantageous, alternative to a traditional bulb that protrudes ahead of the hull.

The potential advantage of a bulbous bow located aft of the ship stem and integrated with the ship hull is also suggested by the hydrodynamic optimization reported in [START_REF] Kim | A practical hydrodynamic optimization tool for the design of a monohull ship[END_REF], as shown in Fig. 17 copied from [START_REF] Kim | A practical hydrodynamic optimization tool for the design of a monohull ship[END_REF]. This figure depicts the body plan, profile plan and waterline plan of the modified Wigley parabolic hull obtained by [START_REF] Kim | A practical hydrodynamic optimization tool for the design of a monohull ship[END_REF] via optimization of the forebody to minimize the sum of the total drag coefficients (at model scale) for three Froude numbers F L = 0.25 , 0.316 and 0.408 . The volume displaced by the Wigley hull is kept constant in this hull-form optimization. No modification of the aftbody of the Wigley hull is allowed. Deformations of the forebody are defined via 53 design variables that correspond to allowed motions of 31 control points associ- 18) with (15) and wave profiles obtained from thin-ship theory and two CFD flow solvers (ISIS-CFD and FEFLO), used in Euler-flow mode, for the ship bow shown in Fig. 2 with δ = 30 • and α ′ = α = 15 • , at four draft-based Froude numbers F = 0.67 , 1 , 1.5 and 2.33 . ated with a NURBS representation (based on 90 control points) of the hull surface. A gradient-based optimization method and a potential-flow solver are used; [START_REF] Kim | A practical hydrodynamic optimization tool for the design of a monohull ship[END_REF] .

Conclusion

In summary, the bow wave generated by a ship that advances at steady speed in calm water has been considered for the family of fine ruled ship bows with rake and flare depicted in Fig. 2. This family of ship bows is defined in terms of four parameters: the draft D, the entrance angles α and α ′ at the top and bottom waterlines, and the rake angle δ . The corresponding bow wave similarly depends on four parameters: the draft-based Froude number F and the three angles α , α ′ and δ . Thin-ship theory was used to perform a parametric study that systematically explored the variations of the water height Z 0 at the ship stem X = 0, the location X 0 (measured from the ship stem) of the intersection of the bow-wave profile with the mean free-surface plane Z = 0, and the bow-wave profile, with respect to the four parameters F (i.e. the ship speed V s and the hull draft D), α , α ′ and δ . The parametric study reported here extends the similar previous study of the height Z b and the location X b of the bowwave crest reported in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF]. The results of these two parametric studies are depicted in a series of figures, and summarized by simple analytical relations.

The main results of the analysis are the relations ( 15) and ( 18), with the tabulated values of the four functions ζ b , ξ b , ζ 0 and ξ 0 . Specifically, these four functions are listed in Tables 1234for six Froude numbers F that correspond to F/(1+F ) = 0.3 , 0.4 , . . . , 0.8 , nine rake angles δ = 60 • , 45 • , . . . , -60 • , and nine values of the hull flare parameter φ = 1 , 0.75 , . . . , -1 . These ranges of Froude numbers, rake angles, and flare encompass most cases of practical interest. In particular, the Froudenumber range 0. 0.1 ≤ F L ≤ 0.9 . The simple analytical relations ( 15) and ( 18), with the related tabulated values of the four functions ζ b , ξ b , ζ 0 and ξ 0 , readily provide estimates of ship bow waves for a broad class of fine nonbulbous ship bows. These estimates can be used immediately -without hydrodynamic calculations -for design, notably at early design stages when the precise hull geometry is not yet known. Furthermore, the relations and the related figures given in the study provide useful insight, as illustrated by the asymptotic relations ( 16), and can be readily used for a multi-objective hull-form optimization.

A particular notable result of the parametric study is that it suggests that a bow with positive rake and negative flare can be beneficial. This result may have useful implications for bulb design. Specifically, the parametric study suggests that a bulb that is located aft of the ship stem and is integrated with the ship hull, as in Fig. 17, may be an advantageous alternative to a traditional bulb protruding ahead of a ship stem. The possible merit of such a bulb design is also suggested by the results of the hull-form optimization study of [START_REF] Kim | A practical hydrodynamic optimization tool for the design of a monohull ship[END_REF]. Additional numerical and experimental work would be useful to reach firmer conclusions with respect to the merit of this alternative to bulbs protruding ahead of ship stems.

The comparisons between experimental measurements and theoretical predictions reported in [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]Noblesse et al. ( ,2008aNoblesse et al. ( ,b,2009) ) and [START_REF] Delhommeau | Boundary between unsteady and overturning ship bow wave regimes[END_REF] for both wedge-shaped ship bows (without rake and flare) and a rectangular flat plate, and the comparisons between analytical and numerical bow-wave profiles obtained using Euler-flow CFD computations depicted in Fig. 16, show that the use of thin-ship theory -adopted in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] and here to extend the relations obtained previously (using elementary theoretical considerations and experimental measurements) in [START_REF] Noblesse | Simple analytical expressions for the height, location, and steepness of a ship bow wave[END_REF]Noblesse et al. ( ,2008a,b) ,b) for wedge-shaped bows without rake or flare to the more general case δ ̸ = 0 and φ ̸ = 0 -is appropriate for fine ship bows (i.e. for a large class of ships, notably fast ships). In fact, the analytical bow-wave profiles given by ( 18) and ( 15) are comparable -for many practical purposes -to the Euler wave profiles shown in Fig. 16 for a specific case of the four-parameter family of ship bows depicted in Fig. 2. Thus, the approach followed in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] and here is validated (experimentally or numerically) to some extent. Additional comparisons to experimental measurements for a broad set of ship bows with rake and flare would evidently be useful. Systematic numerical calculations based on accurate (potential-flow or CFD) methods would also be useful. Indeed, as CFD methods become more practical, they will hopefully become suitable to perform systematic parametric studies, as done in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] and here using thin-ship theory. Such parametric studies yield useful insight and in fact are important (if not necessary) for design, and also provide a good test of the practical usefulness of CFD methods.

The importance of practical calculation methods for parametric studies, and hull-form optimization, is readily illustrated by a calculation of the computing times that would be required to perform the parametric study reported here for the family of ship bows shown in Fig. 2. This study, which involves 4,374 cases (six values of F and nine values of δ , α and α ′ ), approximately requires 4 sec, 44 sec, 7 mins, 1 hour, 12 hours, 3 days, 1 month, 6 months, and 2.5 years using a calculation method that requires 0.001 sec, 0.01 sec, 0.1 sec, 1 sec, 10 secs, 1 min, 10 mins, 1 hr or 5 hrs per case. Optimization and systematic investigation of a design space often involve more cases than the 4,374 cases considered here.

The foregoing calculation times also justify the approach (use of thin-ship theory to extend analytical relations for wedgeshaped bows) adopted in [START_REF] Noblesse | Thinship theory and influence of rake and flare[END_REF] and here. The approach is further justified by the result, illustrated in Fig. 16 , that the simple analytical relations given here yield bow wave profiles comparable to Euler wave profiles at a computational cost that is essentially null.

Table 

1-Function ζ b (F, δ , φ) for F/(1 + F ) = 0.3 φ ↓ δ → 60 • 45 • 30 • 15 • 0 • -15 • -30 • -45
F/(1 + F ) = 0.5 φ ↓ δ → 60 • 45 • 30 • 15 • 0 • -15 • -30 • -45
F/(1 + F ) = 0.7 φ ↓ δ → 60 • 45 • 30 • 15 • 0 • -15 • -30 • -45 • -60 • 1 1.11 1.
F/(1 + F ) = 0.8 φ ↓ δ → 60 • 45 • 30 • 15 • 0 • -15 • -30 • -45
F/(1 + F ) = 0.5 φ ↓ δ → 60 • 45 • 30 • 15 • 0 • -15 • -30 • -45

  Fig. 1 Two-parameter family of wedge-shaped ship bows defined by the draft D and the waterline entrance angle 2 α .

  and ξ b ≡ ξ b (F, δ , φ) are functions of the draft-based Froude number F , the rake angle δ, and the flare parameter φ defined by (2) . The two functions ζ b (F, δ , φ) and ξ b (F, δ , φ) are depicted and tabulated in Noblesse et al. (2009) .

Fig. 4

 4 Fig. 4 Variation of the bow-wave height z ′ b defined by (8) with respect to the draft-based Froude number F for (top row) three rake angles δ = 45 • (left column), δ = 0 (center) and δ = -45 • (right), and (bottom row) three values of the flare parameter φ = 1 (left), φ = 0 (center) and φ = -1 (right).

Fig. 5

 5 Fig. 5 Variation of the location x ′ b of the bow-wave crest defined by (8) with respect to the draft-based Froude number F for (top row) three rake angles δ = 45 • (left column), δ = 0 (center) and δ = -45 • (right), and (bottom row) three values of the flare parameter φ = 1 (left), φ = 0 (center) and φ = -1 (right).

FFig. 6

 6 Fig. 6 Function ζ 0 (F, δ , φ) in expression (9) for the rise of water at the stem. The top row shows the variation of ζ 0 with respect to the draft-based Froude number F in the range 0.3 ≤ F/(1+F ) ≤ 0.8 for three rake angles δ = 45 • (left), δ = 0 • (center) and δ = -45 • (right) and five values φ = 0, ±0.5 , ±1 of the flare parameter φ . The center row shows the variation of ζ 0 with respect to the rake angle δ in the range -60 • ≤ δ ≤ 60 • for three Froude numbers F corresponding to F/(1+F ) = 0.3 , 0.5 , 0.7 and five hull flares φ = 0, ±0.5 , ±1 . The bottom row shows the variation of ζ 0 with respect to the flare parameter φ in the range -1 ≤ φ ≤ 1 for three Froude numbers F corresponding to F/(1+F ) = 0.3 , 0.5 , 0.7 and five rake angles δ = 0 • , ±30 • , ±60 • .

Fig. 7

 7 Fig. 7 Variation of the rise of water at the stem z ′ 0 defined by (10) with respect to the draft-based Froude number F for (top row) three rake angles δ = 45 • (left column), δ = 0 (center) and δ = -45 • (right), and (bottom row) three values of the flare parameter φ = 1 (left), φ = 0 (center) and φ = -1 (right).

FFig. 8

 8 Fig. 8 Variation of the bow-wave length -x 0 (full lines) and the distance -x b between the ship stem and the bow-wave crest (dashed lines) with respect to the draft-based Froude number F for (top row) three rake angles δ = 45 • (left column), δ = 0 (center), δ = -45 • (right), and (bottom row) three values of the flare parameter φ = 1 (left), φ = 0 (center), φ = -1 (right).

Fig. 9

 9 Fig.9Wave profiles for a hull with a rake angle δ = 0 and a flare parameter φ = -1 at several draft-based Froude numbers F .

  for 0.3 ≤ F/(1+F ) ≤ 1 . The top and bottom rows in this figure show the distance x b 0 for (top row) three rake angles δ = 0 and δ = ±45 • , and for (bottom row) three values φ = 0 and φ = ±1 of the flare parameter φ . The curves in the figures in the top and bottom rows of Fig.10 correspond to φ = 0, ±0.5 , ±1 and to δ = 0, ±30

FFig. 10

 10 Fig. 10 Variation of the distance x b 0 defined by (13) between the bow-wave crest and the intersection of the bow wave with the plane z = 0 with respect to the draft-based Froude number F for (top row) three rake angles δ = 45 • (left column), δ = 0 (center) and δ = -45 • (right), and (bottom row) three values of the flare parameter φ = 1 (left), φ = 0 (center) and φ = -1 (right).

  Fig. 11 Bow-wave length -X 0 /D , distance -10 X b /D between the ship stem and the bow-wave crest, bow-wave height 10 Z b /D and rise of water at the stem 100 Z 0 /D for the ship bow shown in Fig.2 with δ = 30 • and α ′ = α = 15 • .

(Fig

  Fig.12Bow-wave elevation z * defined by (17), as a function of (1+ F ) x, for three draft-based Froude numbers F = 0.5 (left column), 2 (center) and 4 (right), and three rake angles δ = 45 • (top row), δ = 0 (center) and δ = -45 • (bottom). The five curves correspond to φ = 0, φ = ±0.5 and φ = ±1.

FigFig. 14

 14 Fig.13Bow-wave elevation z * defined by (17), as a function of (1+ F )x, for three draft-based Froude numbers F = 0.5 (left column), 2 (center) and 4 (right), and three values φ = 1 (top row), 0 (center) and -1 (bottom) of the flare parameter φ . The five curves correspond to δ = 0, δ = ±30 • and δ = ±60 • .

  Fig. 15 Analytical (parabolic) wave profiles given by (18) with (14) or (15), respectively identified as Approx 1 and Approx 2, and wave profiles obtained using thin-ship theory for the ship bow shown in Fig.2with δ = 30 • and α ′ = α = 15 • , at four draft-based Froude numbers F = 0.67 , 1 , 1.5 and 2.33 .

  Fig. 16 Analytical (parabolic) wave profile given by (18) with (15) and wave profiles obtained from thin-ship theory and two CFD flow solvers (ISIS-CFD and FEFLO), used in Euler-flow mode, for the ship bow shown in Fig.2with δ = 30 • and α ′ = α = 15 • , at four draft-based Froude numbers F = 0.67 , 1 , 1.5 and 2.33 .

Fig. 17

 17 Fig. 17 Body plan, profile plan and waterline plan of the modified Wigley hull obtained in Kim et al. (2008) using a displacementconstrained hydrodynamic optimization of the forebody to minimize the total drag coefficient for three Froude numbers.

Table 3 -

 3 Function ζ 0 (F, δ , φ) for F/(1 + F ) = 0.3 φ ↓ δ → 60 •

	• -60 •
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