S Guisset 
  
S Brull 
  
E D'humières 
  
B Dubroca 
  
Asymptotic-preserving well-balanced scheme for the electronic M 1 model in the diffusive limit: particular cases

Keywords: electronic M 1 moment model, approximate Riemann solvers, Godunov type schemes, asymptotic preserving schemes, diffusive limit, plasma physics

This work is devoted to the derivation of an asymptotic-preserving scheme for the electronic M 1 model in the diffusive regime. The case without electric field and the homogeneous case are studied. The derivation of the scheme is based on an approximate Riemann solver where the intermediate states are chosen consistent with the integral form of the approximate Riemann solver. This choice can be modified to enable the derivation of a numerical scheme which also satisfies the admissible conditions and is well-suited for capturing steady states. Moreover, it enjoys asymptotic-preserving properties and handles the diffusive limit recovering the correct diffusion equation. Numerical tests cases are presented, in each case, the asymptotic-preserving scheme is compared to the classical HLL [43] scheme usually used for the electronic M 1 model. It is shown that the new scheme gives comparable results with respect to the HLL scheme in the classical regime. On the contrary, in the diffusive regime, the asymptotic-preserving scheme coincides with the expected diffusion equation, while the HLL scheme suffers from a severe lack of accuracy because of its unphysical numerical viscosity.

Introduction

In inertial confinment fusion, nanosecond laser pulses are used to ignite a deuterium-tritium target. An accurate description of this process is necessary for the understanding of laser-matter interactions and for target design. Numerous physical phenomena such as, parametric [62,35] and hydrodynamic [70,77,[START_REF] Drake | Parametric instabilities of electromagnetic waves in plasmas[END_REF] instabilities, laser-plasma absorption [START_REF] Rozmus | A model of ultrashort laser pulse absorption in solid targets[END_REF], wave damping [START_REF] Landau | On the vibration of the electronic plasma[END_REF], energy redistribution [START_REF] Ph | [END_REF] inside the plasma and hot spots formation [START_REF] Brantov | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF][START_REF] Marocchino | Nonlocal heat wave propagation due to skin layer plasma heating by short laser pulses[END_REF] from which the thermonuclear reactions propagates depend on the electron heat transport. The most popular electron heat transport theory was developed by Spitzer and Härm [START_REF] Spitzer | [END_REF] who first solved the electron kinetic equation by using the expansion of the electron mean free path to the temperature scale length (denoted ε in this paper). Considering the distribution function of particles close to equilibrium, its deviation from the Maxwellian distribution function can be computed and the electron transport coefficients in a fully ionized plasma without magnetic field are derived. However, even if the electron heat transport is essential, it is not correctly described in large inertial confinement fusion tools. Indeed, when the electron mean free path exceeds about 2.10 -3 times the temperature gradient length, the local electron transport model of Spitzer and Härm fails. The transport coefficients were derived in the case where the isotropic part of the electron distribution function remains close to the Maxwellian function. The results of Spitzer and Härm have been reproduced in several approaches [START_REF] Braginskii | Reviews of Plasma Physics[END_REF][START_REF] Balescu | Transport Processes in Plasma[END_REF][START_REF] Shkarofsky | The Particle Kinetics of Plasmas M[END_REF] which develop another technique of solution to the integral equation for the electron distribution function introduced many years before by Chapman and Enskog [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF] for neutral gases. Therefore, kinetic approaches seem necessary in the context of inertial confinment fusion. In such multiscale issues, kinetic solvers are often very computationally expensive and usualy limited to time and length much shorter than those studied with hydrodynamic simulations. It is then a challenge to describe kinetic effects using reduced kinetic code on fluid time scales.

The angular moments models represent an alternative method situated between kinetic and fluid models. Their computational times are shorter than kinetics ones and provide results with a higher accuracy than fluid models. Originally, the moment closure hierarchy introduced by Grad [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF] leads to hyperbolic set of equations for flows close to equilibrium but may suffer from closure breakdown and lead to unrealisable macroscopic moments. Grad hierarchy is derived from a truncated polynomial series expansion for the velocity distribution function near the Maxwellian equilibrium and does not ensure the postivity of the distribution function. Other moment closure approaches have been investigated based on entropy minimisation principles [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Minerbo | Maximum entropy Eddigton Factors[END_REF][START_REF] Muller | Rational Extended Thermodynamics[END_REF][START_REF] Struchtrup | Macroscopic Transport Equations for Rarefied Gas Flows[END_REF][START_REF] Alldredge | High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem[END_REF]. The distribution function derived, verifies a minimum entropy property and the consistency with the set of moments. Fundamental mathematical properties [START_REF] Groth | Towards physically-realizable and hyperbolic moment closures for kinetic theory[END_REF][START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF] such as positivity of the distribution function, hyperbolicity and entropy dissipation can be exhibited. Levermore [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] proposed a hierarchy of minimum-entropy closure where the lowest order closure are the Maxwellian and Gaussian closure. In the present case, the aim is different. Here the energy of particles constitutes a free parameter. Then we integrate only the kinetic equation with respect to the angle variable and we return only the energy of particles as kinetic variable. By using a closure defined from a minimization entropy principle, we obtain the M 1 model [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landeau equation of electrons[END_REF][START_REF] Dubroca | étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif[END_REF]. The M 1 model is largely used in various applications such as the radiative transfer [START_REF] Turpault | Multigroup half space moment appproximations to the radiative heat transfer equations[END_REF][START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF][START_REF] Dubroca | Entropic moment closure hierarchy for the radiative transfert equation[END_REF][START_REF] Turpault | A consistent multigroup model for radiative transfer and its underlying mean opacity[END_REF][START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF][START_REF] Ripoll | An averaged formulation of the M1 radiation model with presumed probability density function for turbulent flows[END_REF][START_REF] Ripoll | A factored operator method for solving coupled radiation-hydrodynamics models[END_REF] or electronic transport [START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landeau equation of electrons[END_REF][START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF]. The M 1 model is known to satisfy fondamental properties such as the positivity of the first angular moment, the flux limitation and conservation of total energy. Also, it correctly recovers the asymptotic diffusion equation in the limit of long time behavior with important collisions [START_REF] Dubroca | étude théorique et numérique d'une hiéarchie de modèles aux moments pour le transfert radiatif[END_REF].

One challenging issue is to derive numerical schemes satisfying fondamental properties. For example, the classical HLL scheme [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] ensures the positivity of the first angular moment and the flux limitation property. However, this scheme fails in recovering the correct limit diffusion equation in the asymptotic regime [START_REF] Audit | A radiation hydrodynamics scheme valid from the transport to the diffusion limit[END_REF]. Then, numerous numerical schemes have been derived over the last 20 years to recover the correct asymptotic limit. These schemes are able to handle multiscales situations and are called asymptotic-preserving (AP) scheme. They are consistent with the macroscopic model when ε tends to zero and are uniformly stable with respect to ε. AP schemes also avoid the coupling of different scales equations where the coupling conditions at the interface can be difficult to obtain. Early works on AP schemes have been performed in [START_REF] Jin | The discrete-ordinate method in diffusive regimes[END_REF][START_REF] Jin | Fully discrete numerical transfer in diffusive regimes[END_REF][START_REF] Larsen | Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes[END_REF][START_REF] Larsen | Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II[END_REF]. These works have been largely extended in the frame of kinetic equations in fluid and diffusive regimes [START_REF] Caflish | Uniformly accurate schemes for hyperbolic systems with relaxation[END_REF][START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF][START_REF] Jin | Discretization of the multiscale semiconductor Boltzmann equation by diffusive relaxation scheme[END_REF][START_REF] Klar | An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit[END_REF]. The time stiffness induced by the collisional operator led to propose a decomposition of the distribution function between an equilibrium and a deviation [START_REF] Klar | An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit[END_REF][START_REF] Jin | Uniformly accurate diffusive relaxation schemes for multiscale transport equations[END_REF][START_REF] Buet | Diffusion limit of the Lorentz model: asymptotic preserving schemes[END_REF][START_REF] Klar | Numerical passage from radiative heat transfer to nonlinear diffusion models[END_REF][START_REF] Lemou | A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit[END_REF][START_REF] Bennoune | Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics[END_REF][START_REF] Lafitte | Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes[END_REF][START_REF] Carrillo | Numerical schemes of diffusion asymptotics and moment closures for kinetic equations[END_REF]. In [START_REF] Buet | Asymptotic Preserving Scheme and Numerical Methods for Radiative Hydrodynamic Models[END_REF], a two steps method based on a relaxation scheme and a well-balanced scheme step is proposed, (see [START_REF] Jin | The relaxation scheme for systems of conservation laws in arbitrary space dimension[END_REF][START_REF] Bouchut | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources[END_REF] for more details on the relaxation scheme framework). The derivation of well-balanced schemes also help to design AP schemes [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF][START_REF] Gosse | Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes[END_REF] (see also [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF][START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF][START_REF] Chalons | Well-balanced time implicit formulation of relaxation schemes for the euler equations[END_REF][START_REF] Chalons | Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction[END_REF][START_REF] Bouchut | A subsonic-well-balanced reconstruction scheme for shallow water flows[END_REF][START_REF] Bouchut | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources[END_REF][START_REF] Bermudez | Upwind methods for hyperbolic conservation laws with source terms[END_REF][START_REF] Cargo | Un schéma équilibre adapté au modèle d'atmosphère avec termes de gravité[END_REF] for details on well-balanced schemes in different framework). The AP frame was also largely extended to the quasi-neutral limit [START_REF] Degond | Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality[END_REF][START_REF] Degond | Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit[END_REF][START_REF] Degond | Numerical approximation of the Euler-Maxwell model in the quasineutral limit[END_REF][START_REF] Crispel | Quasi-neutral fluid models for current-carrying plasmas[END_REF][START_REF] Crispel | An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit[END_REF][START_REF] Guisset | Asymptoticpreserving scheme for the Fokker-Planck-Landau-Maxwell system in the quasi-neutral regime[END_REF]. In [START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF], an HLLC scheme is proposed to solve the M 1 model of radiative transfer in two space dimensions. The HLLC approximate Riemann solver considered and relevant numerical approximations of the extreme wavespeeds give the asymptotic-preserving property. Close ideas were also developed in [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF], where a relaxation scheme is exhibited. In order to derive situable schemes pertinent for transport and diffusion regimes, different authors proposed modified Godunov-type schemes in order to include sources terms [START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF]. The numerical viscosity is modified in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF][START_REF] Gosse | Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes[END_REF][START_REF] Buet | Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics[END_REF][START_REF] Buet | Asymptotic preserving and positive schemes for radiation hydrodynamics[END_REF] to correctly recover the expected diffusion regimes but extensions seem challenging issues. In [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF], the approximate HLL Riemann solver is modified to include collisional source term. The resulting numerical scheme satisfies all the fundamental properties and a clever correction enables to recover the good diffusion equation in the asymptotic limit.

In this paper, we consider the M 1 model for the electronic transport [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Mallet | An entropic scheme for an angular moment model for the classical Fokker-Planck-Landeau equation of electrons[END_REF][START_REF] Mallet | General moment system for plasma physics based on minimum entropy principle[END_REF]] in a Lorentzian plasma where ions are supposed fixed. The moment system studied writes

             ∂ t f 0 (t, x, ζ) + ζ∂ x f 1 (t, x, ζ) + E(x)∂ ζ f 1 (t, x, ζ) = 0, ∂ t f 1 (t, x, ζ) + ζ∂ x f 2 (t, x, ζ) + E(x)∂ ζ f 2 (t, x, ζ) - E(x) ζ (f 0 (t, x, ζ) -f 2 (t, x, ζ)) = - 2α ei (x)f 1 (t, x, ζ) ζ 3 , (1) 
where f 0 , f 1 and f 2 are the first three angular moments of the electron distribution function f . Omitting the x and t dependancy, they are given by

f 0 (ζ) = ζ 2 1 -1 f (µ, ζ)dµ, f 1 (ζ) = ζ 2 1 -1 f (µ, ζ)µdµ, f 2 (ζ) = ζ 2 -1 -1 f (µ, ζ)µ 2 dµ. (2) 
The coefficient α ei is a positive physical function which may depend of x, E represents the electrostatic field as function of x and ζ the velocity modulus. The fundamental point of the moments models is the definition of the closure which writes the highest moment as a function of the lower ones. This closure relation corresponds to an approximation of the underlying distribution function, which the moments system is constructed from. In the M 1 problem we need to define f 2 as a function of f 0 and f 1 . The closure relation originates from an entropy minimization principle [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF][START_REF] Minerbo | Maximum entropy Eddigton Factors[END_REF]. The moment f 2 can be calculated [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF][START_REF] Dubroca | Entropic moment closure hierarchy for the radiative transfert equation[END_REF] as a function of f 0 and f 1

f 2 (t, x, ζ) = χ f 1 (t, x, ζ) f 0 (t, x, ζ) f 0 (t, x, ζ), with χ(α) ≈ 1 + α 2 + α 4 3 . (3) 
The set of admissible states [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF] is defined by

A = (f 0 , f 1 ) ∈ R 2 , f 0 ≥ 0, |f 1 | ≤ f 0 . (4) 
A challenging issue is to derive a numerical scheme for the electron M 1 model (1) satisfying all the fondamental properties and which handles correctly the diffusive limit recovering the good diffusion equation. Such a scheme could then have a direct access to all the nonlocal regimes and their related physical effects described above while the others numerical schemes breakdown in such regimes. Different complications arise when considering such an issue. Firstly, the electronic M 1 model (1) is nonlinear. Because, of the entropic closure, the angular moment f 2 is a nonlinear function of f 0 and f 1 . Secondly, the approach undertaken must be sufficiently general to correctly take into account the source term -E(x)(f 0 (t, x, ζ) -f 2 (t, x, ζ))/ζ. One must notice, that this term is closely related to the term E∂ ζ f 2 (t, x, ζ), it plays an important role for low energies and can not be treated as a collisionnal source term. Thirdly, for the purpose of realistic physical applications, one may require to correctly capture steady states. In the case of near-equilibrium configurations such a well-balancing property is then desired. Also, the physical parameter α ei is a function of x and cannot be treated as a constant. Finally, the space and energy dependencies of the angular moments, lead to a very complexe diffusion equation in the asymptotic limit with mixed derivatives.

In this paper, the case without electric field and the homogeneous case are studied. The extension to the general case is beyond the scope of this paper and postponed to another paper. However, the generalisation to the general problem requires a deep understanding of the two configurations studied here. The approach retained is noticeably different with [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF][START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF][START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF]. The derivation of the scheme is based on an approximate Riemann solver where the intermediate states are chosen consistent with the integral form of the approximate Riemann solver. This choice can be modified to enable the derivation of a scheme which also satisfies the admissibility conditions (4) and is well-suited for capturing steady states. Moreover, it enjoys asymptoticpreserving properties and correctly handles the diffusive limit recovering the good diffusion equation.

We first introduce the model without electrostatic field and its diffusive limit in Section 2. The limits of the classical HLL scheme [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] are briefly recalled before introducing the derivation of the new numerical scheme. The asymptotic-preserving property is exhibited. Then, Section 3 is devoted to the homogeneous case with an electric field. We point out the great difficulties encountered when using a relaxation approach in order to include the source term

-E(x)(f 0 (t, x, ζ) -f 2 (t, x, ζ))/ζ.
Then, the derivation of an asymptotic-preserving scheme following the method introduced in the previous section is detailed and the well-balanced and asymptotic-presering properties are analysed. In Section 4, different numerical tests are presented to highlight the efficiency of the present method. We conclude the paper in Section 5.

Case without electrostatic field

The first simplified case we consider is given by system (1) without electrostatic field E. In this case the M 1 model (1) writes

   ∂ t f 0 + ζ∂ x f 1 = 0, ∂ t f 1 + ζ∂ x f 2 = - 2α ei ζ 3 f 1 . (5) 
A very similar system was considered in [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF] in the frame of radiative transfer and a relaxation scheme was proposed. The same procedure could be applied in this case, however we introduce a different approach based on approximate Riemann solvers.

Model and diffusive limit

Introducing a diffusive scaling, time is scaled by t * , space by x * , velocity by v * th and electric field by v 2 th /x * . These parameters are chosen such that τ ei /t * = ε 2 , λ ei /x * = ε where the electron-ion collisionnal period is given by τ ei = v 3 th /(α ei σ) and the mean free path by λ ei = v th τ ei . The coefficient σ is a positive function of x and ε a positive parameter, which is devoted to tend to zero. In that case, system (5) rewrites

   ε∂ t f ε 0 + ζ∂ x f ε 1 = 0, ε∂ t f ε 1 + ζ∂ x f ε 2 = - 2σ ζ 3 f ε 1 ε . ( 6 
)
Inserting the following Hilbert expansion of f ε 0 and f ε 1

f ε 0 = f 0 0 + εf 1 0 + O(ε 2 ), f ε 1 = f 0 1 + εf 1 1 + O(ε 2 ), (7) 
into the second equation of ( 6) leads to

f 0 1 = 0. ( 8 
)
Using the definition (3), it follows that

f 0 2 = f 0 0 /3. (9) 
So, the second equation of ( 6) gives

f 1 1 = - ζ 4 6σ ∂ x f 0 0 . ( 10 
)
Using the previous equation and the first equation of ( 6) finally leads to the diffusion equation for f 0 0

∂ t f 0 0 (t, x) -ζ∂ x ζ 4 6σ(x) ∂ x f 0 0 (t, x) = 0. ( 11 
)

The numerical method

In this part, we first recall the limit of the HLL scheme, usually used for the electronic M 1 model, for the diffusive limit.

Limit of the HLL scheme

Introduce a uniform mesh with constant space step ∆x = x i+1/2 -x i-1/2 , i ∈ Z and a time step ∆t. We consider a piecewise constant approximate solution

U h (x, t n ) ∈ R 2 at time t n U h (x, t n ) = U n i if x ∈ [x i-1/2 , x i+1/2 ] ( 12 
)
with

U n i = t (f n 0i , f n 1i
). The classical HLL scheme [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] for the system [START_REF] Braginskii | Reviews of Plasma Physics[END_REF], in the case where the minimum and maximum velocity waves involved in the approximate Riemann solver are chosen equal to -ζ and ζ, writes

       ε f n+1,ε 0i -f n,ε 0i ∆t + ζ f n,ε 1i+1 -f n,ε 1i-1 2∆x -ζ∆x f n,ε 0i+1 -2f n,ε 0i + f n,ε 0i-1 ∆x 2 = 0, ε f n+1,ε 1i -f n,ε 1i ∆t + ζ f n,ε 2i+1 -f n,ε 2i-1 2∆x -ζ∆x f n,ε 1i+1 -2f n,ε 1i + f n,ε 1i-1 ∆x 2 = - 2σ i ζ 3 f n,ε 1i ε . (13) 
We introduce the discrete Hilbert expansions

f ε 0i = f n,0 0i + εf n,1 0i + O(ε 2 ), f n,ε 1i = f n,0 1i + εf n,1 1i + O(ε 2 ). ( 14 
)
At the order ε -1 , the second equation of [START_REF] Buet | Asymptotic Preserving Scheme and Numerical Methods for Radiative Hydrodynamic Models[END_REF] gives

f n,0 1i = 0 ( 15 
)
and using the definition (3), it follows that

f n,0 2i = f n,0 0i /3. ( 16 
)
At the order ε 0 , the second equation of [START_REF] Buet | Asymptotic Preserving Scheme and Numerical Methods for Radiative Hydrodynamic Models[END_REF] gives

f n,1 1i = - ζ 3 3σ i f n,0 0i+1 -f n,0 0i-1 2∆x . (17) 
However, because of the diffusive part of the HLL scheme, the first equation of ( 13) also leads to

f n,0 0i+1 -2f n,0 0i + f n,0 0i-1 ∆x 2 = 0 ( 18 
)
which is not the diffusion equation expected for f 0 0 . The diffusive part of the HLL scheme gives an unphysical numerical viscosity and leads to the wrong asymptotic behavior.

Derivation of the scheme

The ideas introduced in [START_REF] Bouchut | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources[END_REF][START_REF] Greenberg | A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[END_REF][START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF][START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF] in order to include the contribution of source terms, urge to consider approximate Riemann solvers which owns a stationnary discontinuity (0-contact discontinuity). Therefore, we introduce the following approximate Riemann solvers at each cells interface, denoted by U R (x/t, U L , U R ), defined by

U R (x/t, U L , U R ) =            U L if x/t < -a x , U L * if -a x < x/t < 0, U R * if 0 < x/t < a x , U R if a x < x/t, (19) 
where

U L * = t (f L * 0 , f * 1 ), U R * = t (f R * 0 , f * 1 )
and the minimum and maximum velocity waves -a x and a x . Note, we choose the two velocity waves to be opposite. The structure solution of the approximate Riemann problem is displayed on Figure 1. At the interface x i+ 1 2 , the quantites U L and U R stand for U i = t (f 0i , f 1i ) and U i+1 = t (f 0i+1 , f 1i+1 ). Contrarily to the classical HLL scheme [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluids dynamics[END_REF] two intermediate states U L * and U R * are introduced. The second components of the two intermediate states are chosen equal, ie

f L * 1 = f R * 1 = f * 1 .
Figure 1: Structure solution of the approximate Riemann problem.

The approximate solution at time t n + ∆t is chosen as

U h (x, t n + ∆t) = U R x -x i+1/2 t n + ∆t , U i , U i+1 if x ∈ [x i , x i+1 ]. ( 20 
)
As the following

CF L condition is respected ∆t ≤ ∆x 2a x , (21) 
the piecewise constant approximate solution is then obtained

U n+1 i = 1 ∆x x i+1/2 x i-1/2 U h (x, t n+1 )dx. ( 22 
)
The intermediate states f L * 0 , f R * 0 and f * 1 must be defined. Integrating the first equation of ( 5) on [-a x ∆t, a x ∆t] × [0, ∆t] and multiplying by 1 2ax∆t , gives the following consistency condition

f L * 0 + f R * 0 2 = f L 0 + f R 0 2 - 1 2a x [ζf R 1 -ζf L 1 ]. ( 23 
)
The unknowns f L * 0 and f R * 0 will be chosen in order to satisfy this consistency condition [START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF]. The same procedure using the second equation of ( 5) gives

f * 1 = f L 1 + f R 1 2 - 1 2a x (ζf R 2 -ζf L 2 ) - 2 ζ 3 1 2a x ∆t ax∆t -ax∆t ∆t 0 σ(x)f 1 (x, t)dtdx. ( 24 
)
The following approximation is made

1 2a x ∆t ax∆t -ax∆t ∆t 0 σ(x)f 1 (x, t)dtdx = σ∆tf * 1 , (25) 
with σ = σ(0). Using ( 25) in [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF], it follows that

f * 1 = ζ 3 ζ 3 + 2σ∆t f L 1 + f R 1 2 - 1 2a x (ζf R 2 -ζf L 2 ) . ( 26 
)
Finally the following definition of f * 1 is chosen

f * 1 = 2a x ζ 3 2a x ζ 3 + 2σ∆x f L 1 + f R 1 2 - 1 2a x (ζf R 2 -ζf L 2 ) . ( 27 
)
It will be shown in the next part, that this choice enables to obtain the good asymptoticpreserving property. Also, this definition recovers the formalism introduced in [START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF][START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF].

In order to respect the consistency relation [START_REF] Charrier | Multigroup model for radiating flows during atmospheric hypersonic re-entry[END_REF], the unknown f L * 0 and f R * 0 are defined by

f L * 0 = f0 -Γ, f R * 0 = f0 + Γ, (28) with f0 
= f L 0 + f R 0 2 - 1 2a x [ζf R 1 -ζf L 1 ] (29) 
and the coefficient Γ is calculated using the classical Rankine-Hugoniot conditions

       f L * 0 = f L 0 - ζ a x (f * 1 -f L 1 ), f R * 0 = f R 0 - ζ a x (f R 1 -f * 1 ). ( 30 
)
It follows that Γ = 1 2 [f R 0 -f L 0 - ζ a x (f L 1 -2f * 1 + f R 1 )]. (31) 
In order to satisfy the admissibility conditions (4), we propose to modify the states f L * 0 and f R * 0 such that

f L * 0 = f0 -Γθ, f R * 0 = f0 + Γθ, (32) 
where θ ∈ [0, 1] is fixed to ensure the admissibility conditions.

Remark 1. In the case θ = 0, the admissibility requirements (4) are fulfilled.

Indeed, in this case system [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF] gives f R * 0 = f L * 0 = f0 and f * 1 is given by [START_REF] Degond | Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality[END_REF]. Since

2a x ζ 3 /(2a x ζ 3 + σ∆x) ≤ 1 it follows that f * 1 ≤ f R * 0 = f L * 0 .
Then the parameter θ is computed as the largest possible such that

     f R * 0 -|f * 1 | ≥ 0, f L * 0 -|f * 1 | ≥ 0, f R * 0 ≥ 0 and f L * 0 ≥ 0. ( 33 
)
Equations ( 31), ( 32) and ( 33) lead to the following condition

θ = f0 -|f * 1 | |Γ| ≥ 0. ( 34 
)
Finally, θ is chosen as θ = min( θ, 1).

Therefore the unknowns f n+1 0i and f n+1 1i are computed using ( 22)

     f n+1 0i = a x ∆t ∆x f R * 0i-1/2 + (1 - 2a x ∆t ∆x )f n 0i + a x ∆t ∆x f L * 0i+1/2 , f n+1 1i = a x ∆t ∆x f * 1i-1/2 + (1 - 2a x ∆t ∆x )f n 1i + a x ∆t ∆x f * 1i+1/2 . ( 35 
)
The wavespeed a x is fixed using the ideas introduced in [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF]. It is known the electronic M 1 model without electric field is hyperbolic symmetrizable [START_REF] Levermore | Moment closure hierarchies for kinetic theories[END_REF] and the eigenvalues of the Jacobian matrix always belong in the interval [-ζ, ζ]. Therefore, we set a x = ζ.

Asymptotic-preserving properties

In this part we prove the asymptotic-preserving property of the scheme ( 27)-( 32)- (35). It is shown that when ε tends to zero, the scheme ( 27)-( 32)-( 35) is consistent with the limit diffusion equation [START_REF] Braginskii | Reviews of Plasma Physics[END_REF].

Theorem 1. When ε tends to zero, the unknown f n+1,0 0i given by the numerical scheme ( 35)-( 32)-( 27) satisfies the following discrete equation

f n+1,0 0i -f n,0 0i ∆t - ζ ∆x ζ 3 6σ i+1/2 ∆x (ζf n,0 0i+1 -ζf n,0 0i ) - ζ 3 6σ i-1/2 ∆x (ζf n,0 0i -ζf n,0 0i-1 ) = 0. ( 36 
)
Proof. Following the same approach as in [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF][START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF], using the diffusive scaling and equation (35) leads to

       ε f n+1 0i -f n 0i ∆t = a x ∆x f L * 0i+1/2 - 2a x ∆x f n 0i + a x ∆x f R * 0i-1/2 , ε f n+1 1i -f n 1i ∆t = a x ∆x f * 1i+1/2 - 2a x ∆x f n 1i + a x ∆x f * 1i-1/2 , (37) 
where the intermediate states f L * 0 and f R * 0 are given by ( 32) and ( 27) rewrites

f * 1 = 2a x ζ 3 2a x ζ 3 + 2σ∆x/ε f L 1 + f R 1 2 - 1 2a x (ζf R 2 -ζf L 2 ) . (38) 
As soon as ε tends to zero, we obtain f * 1 = 0. We now suppose that f n 1i = 0 in the limit ε tends to zero. In this case, the definition (34) leads to

θ = f L 0 + f R 0 |f L 0 -f R 0 | ≥ 1. ( 39 
)
Then the parameter θ is equal to 1.

Remark 2. In the diffusive regime when ε tends to zero, no limitation on the intermediates states ( 32) is required.

Using the definition [START_REF] Dubroca | Angular moment model for the Fokker-Planck equation[END_REF], it follows that the intermediate states f L * 0 and f R * 0 are given by

       f L * 0 = f L 0 - ζ a x (f * 1 -f L 1 ), f R * 0 = f R 0 - ζ a x (f R 1 -f * 1 ). (40) 
The discrete Hilbert expansions ( 14) are now used. Inserting the previous expressions in the first equation of [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], considered at the order ε 0 , gives no information since the terms cancel each other out. However, at the order ε 1 , the expressions (40), [START_REF] Gosse | Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes[END_REF] and the first equation of (37) lead to

       f L * ,1 0 = f L,1 0 - ζ a x (f * ,1 1 -f L,1 1 ), f R * ,1 0 = f R,1 0 - ζ a x (f R,1 1 -f * ,1 1 ), (41) 
with

f * ,1 1 = - ζ 3 6σ∆x ζf R,n,0 0 -ζf L,n,0 0 (42) 
and

f n+1,0 0i -f n,0 0i ∆t = a x ∆x f * ,1 0i+1/2 - 2a x ∆x f n,1 0i + a x ∆x f * ,1 0i-1/2 . ( 43 
)
Inserting expressions (41) into (43) leads to equation (36) which is consistent with the limit diffusion equation [START_REF] Braginskii | Reviews of Plasma Physics[END_REF].

To complete the proof, it is necessary to show that f n 1 tends to zero, when ε tends to zero. Equation [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF] gives

∆xU n+1 i = x i x i-1/2 U R dx + x i+1/2 x i U R dx, (44) 
where U R is computed with the approximate Riemann problem [START_REF] Berthon | Numerical approximations of the 10-moment Gaussian closure[END_REF]. Then

x i x i-1/2 f 1 (x, ∆t)dx = a x ∆tf * 1i-1/2 + ( ∆x 2 -a x ∆t)f n 1i (45) 
and

x i+1/2 x i f 1 (x, ∆t)dx = ( ∆x 2 -a x ∆t)f n 1i + a x ∆tf * 1i+1/2 . (46) 
A long but classical calculation [START_REF] Berthon | Asymptotic preserving HLL schemes[END_REF] leads to

f n+1 1i -f n 1i ∆t + 1 ∆x 2a x 2a x + σi+1/2 ∆x F i+1/2 - 2a x 2a x + σi-1/2 ∆x F i-1/2 (47) 
+ 1 ∆x ∆xσ i+1/2 2a x + σi+1/2 ∆x (-a x f n 1i -ζf n 2i ) + ∆xσ i-1/2 2a x + σi-1/2 ∆x (-a x f n 1i + ζf n 2i ) = 0, with F i+1/2 = 1 2 ζf n 2i+1 + ζf n 2i -a x (f n 1i+1 + f n 1i ) . (48) 
Using the diffusive scaling we obtain that f n 1i tends to zero as soon as ε tends to zero.

Homogeneous case with electric field

The second simplified model studied, is given by (1) without space dependency but considering an electric field. In this section, the difficulties encountered when using a relaxation-type method to include the source term -E ζ (f 0 -f 2 ) are highlighted. Following the same procedure as in the case without electric field, a numerical scheme is proposed and the source term -E ζ (f 0 -f 2 ) is taken into account. The scheme presented, satifies a well-balanced property and is asymptoticpreserving. The coefficient σ is a function of x and is then constant in the present case. However, the method proposed here, is able to handle the case where σ depends on ζ. Without spatial dependency, the model (1) simplifies into

   ∂ t f 0 + E∂ ζ f 1 = 0, ∂ t f 1 + E∂ ζ f 2 - E ζ (f 0 -f 2 ) = - 2σf 1 ζ 3 . ( 49 
)
Using the Hilbert expansions [START_REF] Berthon | An HLLC Scheme to Solve The M1 Model of Radiative Transfer in Two Space Dimensions[END_REF] as in the previous case, the following diffusion equation is obtained

∂ t f 0 0 (t, ζ) -E∂ ζ Eζ 3 6σ ∂ ζ f 0 0 (t, ζ) - Eζ 2 3σ f 0 0 (t, ζ) = 0. ( 50 
)

Limit of the relaxation approach

Using the ideas introduced in [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF], one could think in deriving a relaxation scheme for system [START_REF] Jin | The relaxation scheme for systems of conservation laws in arbitrary space dimension[END_REF]. Even if the approach is similar, the relaxation scheme involved would be significantly different with the one proposed in [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF] since the source term -E ζ (f 0 -f 2 ) should be added. To assess such an issue, we first consider the collisionless case

   ∂ t f 0 + E∂ ζ f 1 = 0, ∂ t f 1 + E∂ ζ f 2 - E ζ (f 0 -f 2 ) = 0. ( 51 
)
Setting

∂ ζ z(ζ) = 1/ζ, we propose the following relaxation model                    ∂ t f 0 + E∂ ζ φ -E(f 1 -φ)z (ζ) = 0, ∂ t φ + E∂ ζ f 0 -2Ef 0 z (ζ) = µ(f 1 -φ), ∂ t f 1 + E∂ ζ π -E(f 0 -π)z (ζ) = 0, ∂ t π + E∂ ζ f 1 -2Ef 1 z (ζ) = µ(f 2 -π), ∂ t z = 0, ( 52 
)
where φ and π are relaxation variables. In the case µ = 0, the previous system is hyperbolic, the eigenvalues are -E, 0, E and are associated with linearly degenerate fields. Hence, the Riemann problem can be solved.

Eigenvalue Multiplicity Riemann Invariants Eigenvectors

E 2 f 0 + φ, f 1 + π, z t (0, 0, 1, 1, 0), t (1, 1, 0, 0, 0) -E 2 -f 0 + φ, -f 1 + π, z t (0, 0, -1, 1, 0), t (-1, 1, 0, 0, 0) 0 1 f 1 ζ 2 , f 0 ζ 2 , ζ(π -f 0 /3), ζ(φ -f 1 /3) t (2f 0 , f 1 -φ, 2f 1 , f 0 -π, 1)
Table 1: Features of the Riemann problem

In order to be consistent with the notations [START_REF] Berthon | An asymptotic preserving relaxation scheme for a moment model of radiative transfer[END_REF], we introduce

w = t (f 0 , φ, f 1 , π, z), U = t (f 0 , f 1 ), F(U) = t Ef 1 , Ef 2 (f 0 , f 1 ) (53) Lemma 1. Let w L,R be equilibrium constant states with φ L,R = f L,R 1 and π L,R = f L,R 2 
. Defining the initial condition of ( 52) by w 0 (x) = w L if x < 0 and w 0 (x) = w R if x > 0 for µ = 0, the solution of (52) writes

w(x, t) =            w L if x/t < -E, w L * if -E < x/t < 0, w R * if 0 < x/t < E, w R if E < x/t, ( 54 
)
with f L * ,R * 0 = 3(ζ L,R ) 2 4(2(ζ R ) 6 + 2(ζ L ) 6 + 5(ζ R ) 3 (ζ L ) 3 ) (-f R 2 -2f R 1 + 3f R 0 )(ζ R ) 4 + (-f L 2 + 2f L 1 + 3f L 0 )(ζ L ) 4 +(f L 2 +4f L 1 + 3f L 0 )(ζ R ) 3 (ζ L ) + (f R 2 -4f R 1 + 3f R 0 )(ζ R )(ζ L ) 3 , f L * ,R * 1 = 3(ζ L,R ) 2 4(2(ζ R ) 6 + 2(ζ L ) 6 + 5(ζ R ) 3 (ζ L ) 3 ) (3f R 2 -2f R 1 -f R 0 )(ζ R ) 4 + (-3f L 2 -2f L 1 + f L 0 )(ζ L ) 4 +(-3f 2 L -4f L 1 -f L 0 )(ζ R ) 3 (ζ L ) + (3f R 2 -4f R 1 + f R 0 )(ζ R )(ζ L ) 3 , z L * ,R * = z L,R , φ L * = f L 0 + f L 1 -f L * 0 , φ R * = -f R 0 + f R 1 + f R * 0 , π L * = f L 1 + f L 2 -f L * 1 , π R * = -f R 1 + f R 2 + f R * 1 ,
and

U L * ,R * = t (f L * ,R * 0 , f L * ,R * 1
) satisfy the admissibility conditions (4).

The computation of the intermediate states U L * ,R * is straightfoward using the Riemann invariants given in Table 1. A long but easy calculation, using the expressions gives the admissibility conditions ( 4). The relaxation model ( 52) enables the computation of a numerical scheme [START_REF] Berthon | Numerical approximations of the 10-moment Gaussian closure[END_REF][START_REF] Jin | The relaxation scheme for systems of conservation laws in arbitrary space dimension[END_REF][START_REF] Bouchut | Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for sources[END_REF] for the model ( 51). However, one notices the complexity of the intermediate states U L * ,R * and an extension including the collisional term -2α ei f 1 /ζ 3 is very challenging. Different relaxation models were tested in order to include the collisional source term, but, because of their complexity, they lead to configurations where a Riemann invariant is missing and the problem remains unclosed. In a recent work [START_REF] Desveaux | Well-balanced schemes to capture non-explicit steady states[END_REF], the same issue is encountered and an additional relation is arbitrarily imposed. In the present situation, this strategy leads to particularly inconvenient solutions and the admissibility conditions are lost.

The numerical method

The numerical approach presented in the case without electric field is now considered. Contrarily to the relaxation-type procedure, this method enables to include the source term

-E ζ (f 0 -f 2 ) naturally.
Integrating the second equation of ( 49) by

a ζ ∆t -a ζ ∆t ∆t 0
and multiplying by 1 2a ζ ∆t gives the following expression

f * 1 = 2a ζ ζ 3 2a ζ ζ 3 + 2σ∆ζ f L 1 + f R 1 2 - 1 2a ζ (Ef R 2 -Ef L 2 ) + ∆ζ 2a ζ S L,R , (55) 
with

S L,R = 1 2 E ζ R (f R 0 -f R 2 ) + E ζ L (f L 0 -f L 2 ) . (56) 
The unknown f L * 0 , f R * 0 , f n+1 0 and f n+1 1 are computed following the same approach as in the first part

       f n+1 0i = a ζ ∆t ∆ζ f R * 0i-1/2 + (1 - 2a ζ ∆t ∆ζ )f n 0i + a ζ ∆t ∆ζ f L * 0i+1/2 , f n+1 1i = a ζ ∆t ∆ζ f * 1i-1/2 + (1 - 2a ζ ∆t ∆ζ )f n 1i + a ζ ∆t ∆ζ f * 1i+1/2 , (57) 
where the unknowns f R * 0 and f L * 0 are given by

f L * 0 = f0 -Γθ, f R * 0 = f0 + Γθ, (58) with Γ 
= 1 2 [f R 0 -f L 0 - ζ a ζ (f L 1 -2f * 1 + f R 1 )] (59) and f0 
= f L 0 + f R 0 2 - 1 2a ζ [ζf R 1 -ζf L 1 ]. (60) 
Using, the same arguments as in the case without electric field, we set a ζ = |E|

Properties

In this part, we are interested in the equilibrium solution of system [START_REF] Jin | The relaxation scheme for systems of conservation laws in arbitrary space dimension[END_REF]. It is shown that the scheme ( 55)-( 57)-( 58) preserves this solution. Then, the asymptotic-preserving feature of the scheme is exhibited.

A stationnary solution of system (49) satifies

       E ∂f 1 ∂ζ = 0, E ∂f 2 ∂ζ - E ζ (f 0 -f 2 ) = - 2σf 1 ζ 3 . (61) 
The first equation of [START_REF] Mcdonald | Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution[END_REF] implies that f 1 is independant of ζ. Using the definitions of the angular moments (2) and the definition (3), it follows that f 1 = 0 and f 2 = f 0 /3. Indeed the definitions (2) implies f 1 = 0 in ζ = 0. The second equation of the previous system is solved and gives the equibrium solution of the model ( 49)

f 0 = Kζ 2 , f 1 = 0, ( 62 
)
where K is a scalar constant. Theorem 2. The numerical scheme given by ( 55)-( 57)-( 58) is well-balanced in the sense that the stationary states (62) are exactly preserved by the scheme.

Proof. Using the stationary states (62) into the definition (55) leads to

f * 1 = 2a ζ ζ 3 a ζ ζ 3 + 2σ∆ζ - 1 3a ζ (EKζ 2 R -EKζ 2 L ) + ∆ζEK 3a ζ (ζ R + ζ L ) . ( 63 
) Since (ζ 2 R -ζ 2 L ) = (ζ R + ζ L )(ζ R -ζ L ) = (ζ R + ζ L )
∆ζ, the calculation of the previous equation gives

f * 1 = 0. ( 64 
)
Using the second equation of (57) leads to

f n+1 1 = 0. ( 65 
)
With the definition (32) it follows that

     f R * 0 = 1 2 [f 0L -θf 0L + f 0R + θf 0R ], f L * 0 = 1 2 [f 0R -θf 0R + f 0L + θf 0L ]. (66) 
The initial conditions (62) implies θ = 1 and inserting (66) into the first equation of ( 57) gives

f n+1 0i = a∆t ∆ζ Kζ 2 i + (1 - 2a∆t ∆ζ )Kζ 2 i + a∆t ∆ζ Kζ 2 i . (67) 
Finally, the previous equation simplifies to give

f n+1 0i = Kζ 2 i . (68) 
The stationary solution ( 62) is then preserved by the scheme.

Using the ideas introduced in the first section, we obtain that the scheme ( 55)-( 57)-( 58) is consistent with the limit diffusion equation (50) in the diffusive limit. Theorem 3. When ε tends to zero, the unknown f n+1 0 given by the numerical scheme ( 55)-( 57)-( 58) satifies the following discrete equation

f n+1,0 0i -f n,0 0i ∆t - E ∆ζ ζ 3 i+1/2 6σ∆ζ (Ef n,0 0i+1 -Ef n,0 0i ) - ζ 3 i-1/2 6σ∆ζ (Ef n,0 0i -Ef n,0 0i-1 ) + ζ 3 i+1/2 S n,0 i+1/2
2σ -

ζ 3 i-1/2 S n,0 i-1/2 2σ = 0, with S n,0 i+1/2 = E 3 f n,0 0i+1 ζ i+1 + f n,0 0i ζ i .
Proof. The proof is the same as in the case without electric field.

Numerical examples

Depending on the regime, we compare the asymptotic-preserving scheme to the standard HLL scheme [START_REF] Harten | On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] or to the explicit discretisation of the diffusion equation.

Free transport without electric field

We first consider the system equation ( 5), without collisions, to validate the numerical scheme proposed in ( 27)-( 32)-( 35) on a simple advection of an initial profile. The solution is compared with the exact solution. Consider the initial conditions

       f 0 (x, 0) = 2 π exp(- x 2 
2 ), with periodical boundary conditions. In this case we have fixed ζ = 5 and the space step ∆x to 5.10 -3 . In Figure 2, we compare the numerical solution obtained with the scheme ( 27)-( 32)-( 35) displayed in red with the exact solution in dashed blue at time t=6. The numerical and exact solutions match perfectly.

f 1 (x, 0) = 2 π exp(- x 2 2 ), (69) 

Hot wall with collisions without electric field

We now consider the system equation ( 5) with collisions to validate the numerical scheme ( 27)-( 32)- (35) taking into account the collisional part. The solution obtained with the scheme presented in this paper is compared with the classical HLL scheme.

Consider the initial conditions

     f 0 (x, ζ, 0) = 2 π ζ 2 T ini (x) 3/2 exp - ζ 2 2T ini (x) , f 1 (x, ζ, 0) = 0,
with T ini (x) = 0.1 and the left boundary condition

     f 0 (0, ζ, t) = 2 π ζ 2 T ext (x) 3/2 exp - ζ 2 2T ext (x) , f 1 (0, ζ, t) = 0,
with T ext (x) = 1 and σ = 1. The energy range chosen is [0, 6] with an energy step ∆ζ = 0.1 and the space range is [0, 2] with a space step ∆x = 10 -3 . In Figure 3, we compare the numerical solution obtained with the AP scheme ( 27)-( 32)-(35) (AP) displayed in continuous lines with the solution given by HLL scheme in dashed lines at time 0.1, 0.25 and 0.5. The (AP) numerical scheme and the HLL scheme gives comparable results. However, because of the large discontinuity between the initial temperature profile and the temperature at the left boundary in addition to the important numerical viscosity of the HLL scheme, one can notice the slight differences of behavior between the two numerical schemes. 

Hot wall in the diffusive regime without electric field

In this example, the numerical scheme ( 27)-( 32)-( 35) is validated in the diffusive regime. The results are compared with the diffusion solution and with the one obtained with the HLL scheme. Consider the initial conditions

     f 0 (x, ζ, 0) = 2 π ζ 2 T ini (x) 3/2 exp - ζ 2 2T ini (x) , f 1 (x, ζ, 0) = 0, (70) 
with T ini (x) = 0.1 and the left boundary condition

     f 0 (0, ζ, t) = 2 π ζ 2 T ext (x) 3/2 exp - ζ 2 2T ext (x) , f 1 (0, ζ, t) = 0, (71) 
with T ext (x) = 1 and σ = 10 4 . The energy range chosen is [0, 6] with an energy step ∆ζ = 0.1 and the space range is [0, 2] with a space step ∆x = 10 -2 . In Figure 4, we compare the numerical solution obtained with the scheme ( 27)-( 32)-(35) (AP) displayed in continuous red lines with the solution given by HLL scheme in continuous green lines and the diffusion solution in dashed blue lines at time t=1, t=2, 5 and 10. The (AP) numerical scheme and the diffusion solution match perfectly while the HLL scheme gives very inaccurate results. 

Discontinous initial condition in the diffusive regime without electric field

In this case, a discontinous initial condition in the diffusive regime without electric field is considered. The results are compared with the diffusion equation solution and the HLL scheme. The energy range chosen is [0, 6] with an energy step ∆ζ = 0.1 and the space range L=[-10, 10] with a space step ∆x = 5.10 -2 . Consider the initial conditions

           f 0 (x, ζ, 0) =      1 if x ≤ L/3, 0 if L/3 ≤ x ≤ 2L/3, 1 if L/3 ≤ x, f 1 (x, ζ, 0) = 0,
with periodical boundary conditions and σ = 10 4 . In Figure 5, we compare the numerical solution obtained with the asymptotic-preserving scheme displayed in red with the diffusion solution in dashed blue and the HLL scheme in green at time t=200. The AP and diffusion solutions match prefectly while the HLL scheme is very inaccurate. Figure 5: discontinuous initial condition: comparison of the f 0 profile for the asymptoticpreserving scheme (AP), for the HLL scheme (HLL) and the diffusion solution at time t=200.

Relaxation of a Gaussian profile, in the homogeneous case in the diffusive regime with electric field

We consider the system equation ( 49) with collisions and the source term E ζ (f 0 -f 2 ) to validate the numerical scheme ( 55)-( 57)-(58) in the diffusive limit. The energy range chosen is [0, 20] with an energy step ∆ζ = 10 -2 . We consider the initial conditions

     f 0 (ζ, 0) = 2 π exp(- ζ 2 
2 ),

f 1 (ζ, 0) = 0. ( 72 
)
In Figure 6, we compare the numerical solution obtained with the scheme ( 55)-( 57)-( 58) displayed in red with the diffusion solution in dashed blue and the HLL scheme at time t=20. The asymptotic-preserving and diffusion solutions match prefectly while the HLL scheme is very diffusive.

Relaxation of a Gaussian profile in the diffusive regime without electric field in the case of a non-constant collisional parameter

In this example, the numerical scheme ( 27)-( 32)-( 35) is validated in the diffusive regime without electric field in a inhomogeneous collisional plasma. In this case the coefficient σ is not constant and follows the linear profile σ(x) = (5x/8 + 15/2).10 -3

Then σ(-4) = 5.10 -3 and σ(4) = 10 -4 . The energy range chosen is [0, 8] with an energy step ∆ζ = 0.1 and the space range [-4, 4] with a space step ∆x = 5.10 -2 . The initial conditions are the following 

In Figure 7, we compare the numerical solution obtained with the asymptotic-preserving scheme displayed in red with the diffusion solution in dashed blue at time t=150. In this case, the asymptotic-preserving and diffusion solutions also match prefectly. The HLL scheme results are not given in Figure 7, since the final time t=150 is important the HLL results are completely wrong. 

Conclusion

In this work, we have proposed a numerical scheme for the electronic M 1 model in the case without electric field and in the homogeneous case. We have exhibited an approximate Riemann solver that satisfies the admissibility conditions. Contrarily to the HLL scheme, the proposed numerical scheme is asymptotic-preserving and recovers the correct diffusion equation in the diffusive limit. It has been shown, in the homogeneous case, that the method presented, enables to include the source term -E(f 0 -f 2 )/ζ, while a relaxation type method seems inconvenient. In addition, the scheme is well-balanced, capturing the steady state considered. Several numerical tests have been performed, it has been shown that the presented scheme behaves correctly in the classical regime and in the diffusive limit. Indeed, while, the HLL scheme is very inaccurate in the diffusive regime, the asymptotic-preserving scheme matches perfectly with the exprected diffusion solution. Also, the method correctely handles the case where the collisionnal parameter is not constant. The present study can be extended to the general electronic M 1 model (1). However, the correct treatment of the mixed-derivatives, arising in the diffusive limit when considering the entire model is a challenging issue. This problem will be investigated in a forthcoming paper.

Figure 2 :

 2 Figure 2: Free transport: comparison of the numerical solution (red) and the exact solution (dashed blue) at time t=6.
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 53 Figure 3: Hot wall: comparison of the temperature profile for the numerical solution (AP) and for the HLL scheme (HLL) at time 0.1, 0.25 and 0.5.
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 4 Figure4: Hot wall in the diffusive limit: comparison of the temperature profile for the numerical solution (AP), for the HLL scheme (HLL) and the diffusion solution at time t=1, 2, 5 and 10.
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 61 Figure6: Relaxation of a Gaussian profile: comparison of the f 0 profile for the asymptoticpreserving scheme (AP), for the HLL scheme (HLL) and the diffusion solution at time t=20.
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 7 Figure 7: Relaxation of a Gaussian profile in the case of a linear collisionnal parameter: comparison of the f 0 profile for the asymptotic-preserving scheme (AP) and the diffusion solution at time t=150.

Univ. Bordeaux, IMB, UMR 5251, F-33405 Talence, France.

Univ. Bordeaux, CELIA, UMR 5107, F-33400 Talence, France.

The authors are grateful to C. Berthon for interesting discussions on the topic.